



# How negative dependence broke the quadratic barrier for learning with graphs and kernels

**Michal Valko** 



# **ONLINE LEARNING**

when we reason on the fly



# IN 2007 IT ALL STARTED WITH AN IDEA...

- Develop sequential machine learning recognition system
- System with **minimal feedback**
- 90% accurate over 90% of time
- With theory that guarantee's its performance
- Efficient (e.g., mobile device)









from B. Kveton

# ... AND RESULTED IN A REAL SYSTEM IN 2009

- adaptive graph-based recognition system
  - highly accurate
  - trained from a small amount of labeled data
  - real-time running time
  - robust to outliers
  - theoretical analysis





 $\frac{1}{n} \sum_{t} \left( \ell_t^{q}[t] - y_t \right)^2 \le \frac{1}{n_i} \sum_{i \in I} \left( l_i^* - y_i \right)^2 + O(n^{-\frac{1}{2}})$ 

from B. Kveton

### THIS CAN'T SCALE: CONNECTED CAR





#### Personalization

## **2 BIG REAL-WORLD ISSUES**

### SIZE and SPEED

### ANOMALIES





 $\mathbf{f}_{u} = (\mathbf{L}_{uu} + \gamma_{g}\mathbf{I})^{-1} (\mathbf{W}_{ul}\mathbf{f}_{l})$ 



Online Semi-Supervised Learning on Quantized Graphs. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, California, July 2010.









MV, Kveton, Huang, Ting: Online Semi-Supervised Learning on Quantized Graphs UAI 2010

Kveton, MV, Rahimi, Huang: Semi-Supervised Learning with Max-Margin Graph Cuts AISTATS 2010

Calandriello, Lazaric, MV: Distributed sequential sampling for kernel matrix approximation AISTATS 2017

Calandriello, Lazaric, MV: Second-order kernel online convex optimization with adaptive sketching, ICML 2017

Calandriello, Lazaric, MV: Efficient second-order online kernel learning with adaptive embedding, NIPS 2017

Calandriello, Koutis, Lazaric, MV: Improved large-scale graph learning through ridge spectral sparsification, ICML 2018

Calandriello, Carratino, Lazaric, MV, Rosasco: Gaussian process optimization with adaptive sketching: Scalable and no regret, COLT 2019 and NEGDEP@ICML2019

Dereziński\*, Calandriello\*, MV: Exact sampling of determinantal point processes with sublinear time preprocessing, NEGDEP@ICML2019

code: <a href="http://researchers.lille.inria.fr/~valko/hp/publications/squeak.py">http://researchers.lille.inria.fr/~valko/hp/publications/squeak.py</a>



# COMING UP...

- Sparsification
- Resistance distance
- Leverage scores
- 1-pass is a must
- Online leverage scores
- Negative dependence!
- SQUEAK
- Back to the beginning
  - Spectral sparsifiers
- Back to the future
  - GP-UCB & DPPs

# JOINT WORK WITH...





Alessandro Lazaric FAIR Paris



**Ali Rahimi** Google Research



**Branislav Kveton** Google Research



Daniel Ting Tableau Research



Daniele Calandriello IIT, Genova



Ling Huang AHI Fintech



Lorenzo Rosasco IIT, Genova



Luigi Carratino IIT, Genova



**Michał Dereziński** UC Berkeley



Yiannis Koutis NJIT & CMU



### Laplacians and kernels

Reproducing kernel Hilbert space\* Vector space  $\mathcal{H}$  with inner product  $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Feature map  $\varphi(\mathbf{x}) : \mathcal{X} \to \mathcal{H}$ Kernel function  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \langle \mathcal{K}(\mathbf{x}, \cdot), \mathcal{K}(\mathbf{x}', \cdot) \rangle_{\mathcal{H}} = \langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle_{\mathcal{H}}$ 

Kernels evaluated at the dataset

Features  $\varphi(\mathbf{x}_i) = \phi_i$ Kernel  $\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \langle \varphi(\mathbf{x}_i), \varphi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \phi_i^{\mathsf{T}} \phi_j$ Feature map  $\mathbf{\Phi}_n = [\phi_1, \phi_2, \dots, \phi_n] : \mathbb{R}^n \to \mathcal{H}$ Empirical kernel matrix  $\mathbf{K}_n \in \mathbb{R}^{n \times n}$ , s.t.  $[\mathbf{K}]_{i,j} = \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j)$ Column  $\mathbf{k}_{[t-1],t} \in \mathbb{R}^{t-1} = \mathbf{\Phi}_{t-1}^{\mathsf{T}} \phi_t$ Kernel at a point  $k_{i,i} \in \mathbb{R} = \phi_t^{\mathsf{T}} \phi_t$ 

\*Not entering into formal details

#### Laplacians and kernels

Reproducing kernel Hilbert space\* Vector space  $\mathcal{H}$  with inner product  $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Feature map  $\varphi(\mathbf{x}) : \mathcal{X} \to \mathcal{H}$ Kernel function  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \langle \mathcal{K}(\mathbf{x}, \cdot), \mathcal{K}(\mathbf{x}', \cdot) \rangle_{\mathcal{H}} = \langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle_{\mathcal{H}}$ 

Kernels evaluated at the dataset

Features  $\varphi(\mathbf{x}_i) = \phi_i$ Kernel  $\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \langle \varphi(\mathbf{x}_i), \varphi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \phi_i^{\mathsf{T}} \phi_j$ Feature map  $\mathbf{\Phi}_n = [\phi_1, \phi_2, \dots, \phi_n] : \mathbb{R}^n \to \mathcal{H}$ Empirical kernel matrix  $\mathbf{K}_n \in \mathbb{R}^{n \times n}$ , s.t.  $[\mathbf{K}]_{i,j} = \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j)$ Column  $\mathbf{k}_{[t-1],t} \in \mathbb{R}^{t-1} = \mathbf{\Phi}_{t-1}^{\mathsf{T}} \phi_t$ Kernel at a point  $k_{i,i} \in \mathbb{R} = \phi_t^{\mathsf{T}} \phi_t$ 

\*Not entering into formal details

DeepMind

#### Part 1: Kernel Dictionary Learning - The Hammer



#### **Dictionary Learning**

Covariance operator:  $\mathbf{\Phi}_n \mathbf{\Phi}_n^\mathsf{T} = \sum_{i=1}^n \phi_i \phi_i^\mathsf{T}$ 



*Dictionary learning\*:* find an accurate representation of the input data as a linear combination of a small set of basic elements (atoms)

\*other people may give other definitions...



#### Singular Value Decomposition – Learning Atoms

SVD of  $\mathbf{\Phi}_n = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathsf{T}}$  (with rank r)\*

$$\mathbf{\Phi}_{n}\mathbf{\Phi}_{n}^{\mathsf{T}} = \sum_{i=1}^{n} \phi_{i}\phi_{i}^{\mathsf{T}} = \sum_{j=1}^{r} \sigma_{i}^{2}\mathbf{v}_{i}\mathbf{v}_{i}^{\mathsf{T}}$$

\*With kernels (e.g., Gaussian), r is often as large as n

#### Dataset Subsampling – Learning Weights

Dictionary  $\mathcal{I} = \{(w_j, \phi_j)\}_{j=1}^m$ 



\**Remark:* we do not reduce the vectors  $\phi_i$ 

DeepMind

#### Nyström Sampling – Intuition

Sample points  $\mathbf{x}_i$  w.p.  $p_i$  and add it to  $\mathcal{I}$  with weight  $\propto 1/p_i$ 



#### Nyström Sampling – Intuition

Sample points  $\mathbf{x}_i$  w.p.  $p_i$  and add it to  $\mathcal{I}$  with weight  $\propto 1/p_i$ 



Input: budget  $\overline{q}$ , probabilities  $\{p_i\}_i$  (not necessarily normalized!) Init:  $\mathcal{I} = \emptyset$ For all i = 1, ..., nDraw  $q_i \sim \mathcal{B}(p_i, \overline{q})$ Compute weight  $w_i = \frac{1}{p_i} \frac{q_i}{\overline{q}}$ Add  $(w_i, \mathbf{x}_i)$  to  $\mathcal{I}$ Output:  $\mathcal{I}$ 

 $q_i$  may be seen as adding  $q_i$  copies of  $\mathbf{x}_i$  with weight  $1/(p_i \overline{q})$ 

#### Lemma

The Nyström estimator  $(z_{i,j}$ : one out of  $\overline{q}$  Bernoulli trials of probability  $p_i$ )

$$\mathbf{\Phi}_{n}\mathbf{S}_{n}\mathbf{S}_{n}^{\mathsf{T}}\mathbf{\Phi}_{n}^{\mathsf{T}}=\sum_{i=1}^{n}\sum_{j=1}^{\overline{q}}\frac{1}{p_{i}}\frac{z_{i,j}}{\overline{q}}\phi_{i}\phi_{i}^{\mathsf{T}}$$

is unbiased

DeepMind

$$\mathbb{E}_{\mathbf{S}_n} \Big[ \mathbf{\Phi}_n \mathbf{S}_n \mathbf{S}_n^{\mathsf{T}} \mathbf{\Phi}_n^{\mathsf{T}} \Big] = \mathbf{\Phi}_n \mathbf{\Phi}_n^{\mathsf{T}}$$

and its dictionary has size

$$\mathbb{P}\Big(|\mathcal{I}| \geq 3\overline{q}\sum_{i=1}^n p_i\Big) \leq \exp\Big(-\overline{q}\sum_{i=1}^n p_i\Big)$$

E.g., uniform sampling  $p_i = 1/n$ ,  $|\mathcal{I}| \leq 3\overline{q}$  w.h.p.

#### Lemma

The Nyström estimator  $(z_{i,j}$ : one out of  $\overline{q}$  Bernoulli trials of probability  $p_i$ )

$$\mathbf{\Phi}_{n}\mathbf{S}_{n}\mathbf{S}_{n}^{\mathsf{T}}\mathbf{\Phi}_{n}^{\mathsf{T}}=\sum_{i=1}^{n}\sum_{j=1}^{\overline{q}}\frac{1}{p_{i}}\frac{z_{i,j}}{\overline{q}}\phi_{i}\phi_{i}^{\mathsf{T}}$$

is unbiased

DeepMind

$$\mathbb{E}_{\mathbf{S}_n} \Big[ \mathbf{\Phi}_n \mathbf{S}_n \mathbf{S}_n^{\mathsf{T}} \mathbf{\Phi}_n^{\mathsf{T}} \Big] = \mathbf{\Phi}_n \mathbf{\Phi}_n^{\mathsf{T}}$$

and its dictionary has size

$$\mathbb{P}\Big(|\mathcal{I}| \geq 3\overline{q}\sum_{i=1}^{n}p_{i}\Big) \leq \exp\Big(-\overline{q}\sum_{i=1}^{n}p_{i}\Big)$$

E.g., uniform sampling  $p_i = 1/n$ ,  $|\mathcal{I}| \le 3\overline{q}$  w.h.p. But is the approximate covariance good?

#### **Reconstruction Guarantees**

An 
$$(\varepsilon, \gamma)$$
-accurate dictionary  $\mathcal{I}$  satisfies\*

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{multiplicative error} \\ (1-\varepsilon) \boldsymbol{\Phi}_n \boldsymbol{\Phi}_n^{\mathsf{T}} - \end{array} & \begin{array}{c} \text{additive error} \\ \varepsilon \gamma \mathbf{I} \end{array} \preceq \boldsymbol{\Phi}_n \mathbf{S} \mathbf{S}^{\mathsf{T}} \boldsymbol{\Phi}_n^{\mathsf{T}} \preceq (1+\varepsilon) \boldsymbol{\Phi}_n \boldsymbol{\Phi}_n^{\mathsf{T}} + \end{array} & \begin{array}{c} \end{array} \\ \begin{array}{c} \varepsilon \gamma \mathbf{I} \end{array} \end{array}$$

#### Remarks

If  $\gamma = 0$ , all spectrum of  $\Phi_n \Phi_n^{\mathsf{T}}$  is preserved up to  $1 \pm \varepsilon$ multiplicative error If  $\gamma > 0$  only eigenvalues larger than  $\varepsilon \gamma$  are preserved

\*If a dictionary is accurate in this sense, then it is accurate to build many other things

#### Nyström Sampling Guarantees – Intuition



$$\boldsymbol{\Phi}_{n}\boldsymbol{\Phi}_{n}^{\mathsf{T}}-\boldsymbol{\Phi}_{n}\boldsymbol{\mathsf{S}}\boldsymbol{\mathsf{S}}^{\mathsf{T}}\boldsymbol{\Phi}_{n}^{\mathsf{T}}=\sum_{i=1}^{n}\phi_{i}\phi_{i}^{\mathsf{T}}-\sum_{j=1}^{m}w_{j}\phi_{j}\phi_{j}^{\mathsf{T}}$$

"Important" directions may have probability too small to be selected "Redundant" directions may have probability too large to be selected

$$\tau_{n,i} = \mathbf{e}_{n,i} \mathbf{K}_n^\mathsf{T} (\mathbf{K}_n + \gamma \mathbf{I}_n)^{-1} \mathbf{e}_{n,i} = \phi_i^\mathsf{T} (\mathbf{\Phi}_n \mathbf{\Phi}_n^\mathsf{T} + \gamma \mathbf{I})^{-1} \phi_i$$

\*leverage scores evaluate the "relevance" of a point in statistics

DeepMind

M. Valko: Breaking the quadratic barrier

$$\tau_{n,i} = \mathbf{e}_{n,i} \mathbf{K}_n^{\mathsf{T}} (\mathbf{K}_n + \gamma \mathbf{I}_n)^{-1} \mathbf{e}_{n,i} = \boldsymbol{\phi}_i^{\mathsf{T}} (\boldsymbol{\Phi}_n \boldsymbol{\Phi}_n^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \boldsymbol{\phi}_i$$

RLS capture "soft" orthogonality

▶ If all  $\phi_i$  are orthogonal

$$\tau_{n,i} = \phi_i^{\mathsf{T}} (\boldsymbol{\phi}_i \boldsymbol{\phi}_i^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \boldsymbol{\phi}_i = \frac{\phi_i^{\mathsf{T}} \phi_i}{\phi_i^{\mathsf{T}} \phi_i + \gamma} \sim \mathbf{1}$$

▶ If all  $\phi_i$  are *collinear* 

DeepMind

$$\tau_{n,i} = \phi_i^{\mathsf{T}} (\mathbf{n}\phi_i \phi_i^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi_i = \frac{\phi_i^{\mathsf{T}} \phi_i}{\mathbf{n}\phi_i^{\mathsf{T}} \phi_i + \gamma} \sim \frac{1}{n}$$

\*leverage scores evaluate the "relevance" of a point in statistics

$$\tau_{n,i} = \mathbf{e}_{n,i} \mathbf{K}_n^{\mathsf{T}} (\mathbf{K}_n + \gamma \mathbf{I}_n)^{-1} \mathbf{e}_{n,i} = \boldsymbol{\phi}_i^{\mathsf{T}} (\boldsymbol{\Phi}_n \boldsymbol{\Phi}_n^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \boldsymbol{\phi}_i$$

RLS capture "soft" orthogonality

▶ If all  $\phi_i$  are orthogonal

$$\tau_{n,i} = \phi_i^{\mathsf{T}} (\phi_i \phi_i^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi_i = \frac{\phi_i^{\mathsf{T}} \phi_i}{\phi_i^{\mathsf{T}} \phi_i + \gamma} \mathbf{1}$$

▶ If all  $\phi_i$  are *collinear* 

了 DeepMind

$$\tau_{n,i} = \phi_i^{\mathsf{T}} (\mathbf{n}\phi_i \phi_i^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi_i = \frac{\phi_i^{\mathsf{T}} \phi_i}{\mathbf{n}\phi_i^{\mathsf{T}} \phi_i + \gamma} \sim \frac{1}{n}$$

Given  $\boldsymbol{\Phi}_{t-1}\text{,}$  adding columns reduce previous RLS

 $au_{\mathbf{t},\mathbf{i}} \leq au_{\mathbf{t}-\mathbf{1},\mathbf{i}}$ 

\*leverage scores evaluate the "relevance" of a point in statistics

$$\tau_{n,i} = \mathbf{e}_{n,i} \mathbf{K}_n^{\mathsf{T}} (\mathbf{K}_n + \gamma \mathbf{I}_n)^{-1} \mathbf{e}_{n,i} = \boldsymbol{\phi}_i^{\mathsf{T}} (\boldsymbol{\Phi}_n \boldsymbol{\Phi}_n^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \boldsymbol{\phi}_i$$

RLS capture "soft" orthogonality

▶ If all  $\phi_i$  are orthogonal

$$\tau_{n,i} = \phi_i^{\mathsf{T}} (\phi_i \phi_i^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi_i = \frac{\phi_i^{\mathsf{T}} \phi_i}{\phi_i^{\mathsf{T}} \phi_i + \gamma} \mathbf{1}$$

▶ If all  $\phi_i$  are *collinear* 

$$\tau_{n,i} = \phi_i^{\mathsf{T}} (\mathbf{n}\phi_i \phi_i^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi_i = \frac{\phi_i^{\mathsf{T}} \phi_i}{\mathbf{n}\phi_i^{\mathsf{T}} \phi_i + \gamma} \sim \frac{1}{n}$$

Given  $\mathbf{\Phi}_{t-1}$ , adding columns reduce previous RLS

$$au_{\mathbf{t},\mathbf{i}} \leq au_{\mathbf{t}-\mathbf{1},\mathbf{i}}$$

RLS decrease with  $\gamma$ 

DeepMind

\*leverage scores evaluate the "relevance" of a point in statistics





#### **Effective Dimension**

DeepMind

The effective dimension is the number of relevant directions in the data



#### **Effective Dimension**

DeepMind

The effective dimension is the number of relevant directions in the data



Input: budget  $\overline{q}$ , probabilities  $\{p_i\}_i$  (not necessarily normalized!) Init:  $\mathcal{I} = \emptyset$ For all i = 1, ..., nSet  $p_i = \tau_{n,i}$ Draw  $q_i \sim \mathcal{B}(p_i, \overline{q})$ Compute weight  $w_i = \frac{1}{p_i} \frac{q_i}{\overline{q}}$ Add  $(w_i, \mathbf{x}_i)$  to  $\mathcal{I}$ 

Output:  $\mathcal{I}$ 

 $q_i$  may be seen as adding  $q_i$  copies of  $\mathbf{x}_i$  with weight  $1/(p_i \overline{q})$ 

#### **Oracle RLS Sampling**

Theorem (Alaoui and Mahoney, 2014)

Consider the Nyström estimator with oracle RLS sampling  $p_i = \tau_{n,i}$ . If

$$\overline{q} \geq \frac{4\log(n/\delta)}{\varepsilon^2}$$

then  $\mathcal{I}$  is an  $(\varepsilon, \gamma)$ -accurate dictionary w.p.  $1 - \delta$  and

 $|\mathcal{I}| \leq 3\overline{q} d_{\textit{eff}}^{\textit{n}}(\gamma)$ 



#### **Oracle RLS Sampling**

#### Theorem (Alaoui and Mahoney, 2014)

Consider the Nyström estimator with oracle RLS sampling  $p_i = \tau_{n,i}$ . If

$$\overline{q} \geq \frac{4\log(n/\delta)}{\varepsilon^2}$$

then  ${\mathcal I}$  is an  $(arepsilon,\gamma)$ -accurate dictionary w.p.  $1-\delta$  and

 $|\mathcal{I}| \leq 3\overline{q}d_{eff}^n(\gamma)$ 

Small and accurate dictionary adapting to the "complexity" of the data

$$d_{ ext{eff}}^n(\gamma) = \sum_{i=1}^n au_{i,n} \ll n au_{ ext{max}}$$

Given the RLS as input

#### **Oracle RLS Sampling**

#### Theorem (Alaoui and Mahoney, 2014)

Consider the Nyström estimator with oracle RLS sampling  $p_i = \tau_{n,i}$ . If

$$\overline{q} \geq \frac{4\log(n/\delta)}{\varepsilon^2}$$

then  ${\mathcal I}$  is an  $(arepsilon,\gamma)$ -accurate dictionary w.p.  $1-\delta$  and

 $|\mathcal{I}| \leq 3\overline{q}d_{eff}^n(\gamma)$ 

Small and accurate dictionary adapting to the "complexity" of the data

$$d_{ ext{eff}}^n(\gamma) = \sum_{i=1}^n au_{i,n} \ll n au_{ ext{max}}$$

Given the RLS as input

Computing  $\tau_{n,i} = \mathbf{e}_{n,i} \mathbf{K}_n^{\mathsf{T}} (\mathbf{K}_n + \gamma \mathbf{I}_n)^{-1} \mathbf{e}_{n,i}$  requires storing and inverting  $\mathbf{K}_n$
### Estimating RLS from a Dictionary

Approximate the kernel matrix directly

$$\tau_{n,i} = \mathbf{e}_{n,i} \mathbf{K}_n^{\mathsf{T}} (\mathbf{K}_n + \gamma \mathbf{I}_n)^{-1} \mathbf{e}_{n,i}$$
$$\widetilde{\tau}_{n,i} = \mathbf{e}_i^{\mathsf{T}} \widetilde{\mathbf{K}_n} (\widetilde{\mathbf{K}_n} + \gamma \mathbf{I})^{-1} \mathbf{e}_i$$



#### Estimating RLS from a Dictionary

Approximate the kernel matrix directly

$$\tau_{n,i} = \mathbf{e}_{n,i} \mathbf{K}_n^{\mathsf{T}} (\mathbf{K}_n + \gamma \mathbf{I}_n)^{-1} \mathbf{e}_{n,i}$$
$$\tilde{\tau}_{n,i} = \mathbf{e}_i^{\mathsf{T}} \widetilde{\mathbf{K}}_n (\widetilde{\mathbf{K}}_n + \gamma \mathbf{I})^{-1} \mathbf{e}_i$$

Instead, approximate  $au_{n,i}$  directly in  $\mathcal{H}$ 

$$\begin{aligned} \tau_{n,i} &= \phi_i^{\mathsf{T}} (\mathbf{\Phi}_n \mathbf{\Phi}_n^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi_i \\ \widetilde{\tau}_{n,i} &= \phi_i^{\mathsf{T}} (\mathbf{\Phi}_n \mathbf{S}_n \mathbf{S}_n^{\mathsf{T}} \mathbf{\Phi}_n^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi_i \end{aligned}$$

DeepMind

#### Chicken and Egg problem

Given accurate  $\tilde{\tau}_{n,i} \Rightarrow$  compute accurate dictionary Given accurate dictionary  $\Rightarrow$  compute accurate  $\tilde{\tau}_{n,i}$ 





### Sequential RLS Sampling – Intuition





Dictionary 
$$\mathcal{I}_t = \{(j, \phi_j, q_{t,j}, \widetilde{p}_{t,j})\}$$
, weights  $w_i = \frac{q_{t,j}}{\widetilde{p}_{t,j}\overline{q}}$ 

| Input: $\mathcal{D}$ , regular                      | ization $\gamma, \overline{\pmb{q}},  arepsilon$ , $old Output$ : $\mathcal{I}_{\pmb{n}}$                       |                                                     |             |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------|
| 1: Initialize $\mathcal{I}_0$ a                     | s empty, $\widetilde{p}_{1,0}=1$                                                                                |                                                     |             |
| 2: for $t = 1,$                                     | , n <b>do</b>                                                                                                   |                                                     |             |
| 3: Receive ne                                       | w sample $\mathbf{x}_t$                                                                                         |                                                     |             |
| 4: Compute a                                        | -app. RLS $\{\widetilde{	au}_{t,i}: i\in \mathcal{I}_{t-1}\cup \{t\}$                                           | $\{\}\}$ , using $\mathcal{I}_{t-1}$ , $m{\lambda}$ | (t          |
| 5: Set $\tilde{\mathbf{p}}_{t,i} = \mathbf{r}$      | $\min\left\{ \widetilde{	au}_{\mathbf{t},\mathbf{i}},\ \widetilde{\mathbf{p}}_{\mathbf{t}-1,\mathbf{i}} ight\}$ |                                                     |             |
| 6: Initialize $\mathcal{I}_{t}$                     | $= \emptyset$                                                                                                   |                                                     | )           |
| 7: for all $j \in $                                 | $\{1,\ldots,t-1\}$ do                                                                                           | <u>ן</u>                                            |             |
| 8: <b>if</b> $q_{t-1,j}$                            | $\neq$ 0 then                                                                                                   |                                                     |             |
| 9: $q_{t,j} \sim$                                   | $\mathcal{B}(\widetilde{\mathbf{p}}_{t,j}/\widetilde{\mathbf{p}}_{t-1,j},\mathbf{q}_{t-1,j})$                   | SUDINK                                              |             |
| 10: Add (                                           | $(j, oldsymbol{\phi}_j, oldsymbol{q}_{t,j}, \widetilde{oldsymbol{p}}_{t,j})$ to $\mathcal{I}_t$ .               | SHRINK                                              | DICT-UPDATE |
| 11: end if                                          |                                                                                                                 |                                                     |             |
| 12: end for                                         |                                                                                                                 | _]                                                  |             |
| 13: $q_{t,t} \sim \mathcal{B}(\widetilde{p}_{t,t})$ | $(\mathbf{t},\mathbf{t},\overline{\mathbf{q}})$                                                                 | EVDAND                                              |             |
| 14: Add $q_{t,t}$ co                                | opies of $(t, \phi_t, q_{t,t}, \widetilde{p}_{t,t})$ to $\mathcal{I}_t$                                         | J LAPAND                                            | J           |

#### 15: end for

🕥 DeepMind

#### Theorem

Consider the Nyström estimator built using  $\operatorname{SQUEAK}$  . If

$$\overline{q} \geq rac{4lpha \log(n/\delta)}{arepsilon^2} \quad ext{ where } lpha = (rac{1+arepsilon}{1-arepsilon}),$$

then for all  $t = 1, ..., n \mathcal{I}_t$  is an  $(\varepsilon, \gamma)$ -accurate dictionary w.p.  $1 - \delta$  and

 $|\mathcal{I}_t| \leq 3\overline{q}d_{eff}^t(\gamma)$ 



#### Theorem

Consider the Nyström estimator built using  $\operatorname{SQUEAK}$  . If

$$\overline{q} \geq rac{4lpha \log(n/\delta)}{arepsilon^2} \quad \textit{ where } lpha = (rac{1+arepsilon}{1-arepsilon}),$$

then for all  $t = 1, ..., n \mathcal{I}_t$  is an  $(\varepsilon, \gamma)$ -accurate dictionary w.p.  $1 - \delta$  and

 $|\mathcal{I}_t| \leq 3\overline{q} d_{eff}^t(\gamma)$ 

- Accuracy and space/time guarantees
- Anytime guarantees
- In worst case, no space gain (stores full K<sub>n</sub>)
- ▶ In worst case, no space overhead (stores full K<sub>n</sub>)
- ▶ RLS estimator not incremental, not easy because of changing weights
- Unnormalized p
  <sub>t,i</sub>

DeepMind

#### Theorem

Consider the Nyström estimator built using  $\operatorname{SQUEAK}$  . If

$$\overline{q} \geq rac{4lpha \log(n/\delta)}{arepsilon^2} \quad ext{ where } lpha = (rac{1+arepsilon}{1-arepsilon}),$$

then for all  $t = 1, ..., n \ \mathcal{I}_t$  is an  $(\varepsilon, \gamma)$ -accurate dictionary w.p.  $1 - \delta$  and

 $|\mathcal{I}_t| \leq 3\overline{q}d_{eff}^t(\gamma)$ 

- ▶ Only need to compute  $\widetilde{\tau}_{t,i}$  if  $i \in \mathcal{I}_t$ , never recompute after dropping
  - $\vdash$  Never construct the whole  $K_n$

- Store points directly in the dictionary
  - $\stackrel{}{\mapsto} \widetilde{\mathcal{O}}(\mathbf{d}_{\mathrm{eff}}^{\mathbf{n}}(\gamma)^{2} + \mathbf{d}_{\mathrm{eff}}^{\mathbf{n}}(\gamma)\mathbf{D}) \text{ space "constant" in } n$ 
    - ingle pass over the dataset (streaming)









#### DeepMind Paris - 22/37

 $\widetilde{p}_{1,i} \propto \widetilde{ au}_{1,i}, \ z_{1,i} = \mathbb{I}\{Ber(\widetilde{p}_{1,i})\}$ 

DeepMind



 $\widetilde{p}_{1,i} \propto \widetilde{ au}_{1,i}, \ z_{1,i} = \mathbb{I}\{Ber(\widetilde{p}_{1,i})\}$ 





DeepMind











| $\mathbf{a} = oracle,$ | $\mu(\gamma) = {\sf max}_i  	au_{{\sf n},i}(\gamma) \leq 1/\gamma$ regularized coherence |
|------------------------|------------------------------------------------------------------------------------------|
|------------------------|------------------------------------------------------------------------------------------|

|                      | $\widetilde{\mathcal{O}}(Runtime)$ | $\mathcal{O}( \mathcal{I}_n )$ | Passes |
|----------------------|------------------------------------|--------------------------------|--------|
| Bach, 2013 (Uniform) | $n\mu(\gamma) + \ge$               | n $\mu(\gamma)$                | 1      |



| $\mathbf{a} = oracle,$ | $\mu(\gamma) = {\sf max}_i  	au_{{\sf n},i}(\gamma) \leq 1/\gamma$ regularized coherence |
|------------------------|------------------------------------------------------------------------------------------|
|------------------------|------------------------------------------------------------------------------------------|

|                      | $\widetilde{\mathcal{O}}(Runtime)$ | $\mathcal{O}( \mathcal{I}_n )$   | Passes |
|----------------------|------------------------------------|----------------------------------|--------|
| Bach, 2013 (Uniform) | $n\mu(\gamma) + \ge$               | n $\mu(\gamma)$                  | 1      |
| Oracle RLS sampling  | n + 🖴                              | $d_{	ext{eff}}^n(\gamma)\log(n)$ | Many   |



| $\mathbf{a} = oracle,$ | $\mu(\gamma) = {\sf max}_i  	au_{{\sf n},i}(\gamma) \leq 1/\gamma$ regularized coherence |
|------------------------|------------------------------------------------------------------------------------------|
|------------------------|------------------------------------------------------------------------------------------|

|                      | $\widetilde{\mathcal{O}}(Runtime)$ | $\mathcal{O}( \mathcal{I}_n )$   | Passes |
|----------------------|------------------------------------|----------------------------------|--------|
| Bach, 2013 (Uniform) | $n\mu(\gamma) + \ge$               | n $\mu(\gamma)$                  | 1      |
| Oracle RLS sampling  | n + 🖴                              | $d_{	ext{eff}}^n(\gamma)\log(n)$ | Many   |
| Exact RLS sampling   | n <sup>3</sup>                     | $d_{	ext{eff}}^n(\gamma)\log(n)$ | Many   |



$$\mathbf{s}=$$
 oracle,  $\mu(\gamma)=\max_i au_{n,i}(\gamma)\leq 1/\gamma$  regularized coherence

|                          | $\widetilde{\mathcal{O}}(Runtime)$ | $\mathcal{O}( \mathcal{I}_n )$                  | Passes |
|--------------------------|------------------------------------|-------------------------------------------------|--------|
| Bach, 2013 (Uniform)     | $n\mu(\gamma) + \ge$               | n $\mu(\gamma)$                                 | 1      |
| Oracle RLS sampling      | n + 🖴                              | $d_{	ext{eff}}^n(\gamma)\log(n)$                | Many   |
| Exact RLS sampling       | n <sup>3</sup>                     | $d_{	ext{eff}}^n(\gamma)\log(n)$                | Many   |
| Alaoui and Mahoney, 2015 | $n^3\mu(\gamma)^2$                 | $n\mu(\gamma) + d_{	ext{eff}}^n(\gamma)\log(n)$ | 3      |



$$\mathbf{s}=$$
 oracle,  $\mu(\gamma)=\max_i au_{n,i}(\gamma)\leq 1/\gamma$  regularized coherence

|                            | $\widetilde{\mathcal{O}}(Runtime)$ | $\mathcal{O}( \mathcal{I}_n )$                  | Passes |
|----------------------------|------------------------------------|-------------------------------------------------|--------|
| Bach, 2013 (Uniform)       | $n\mu(\gamma) + \ge$               | n $\mu(\gamma)$                                 | 1      |
| Oracle RLS sampling        | n + 😫                              | $d_{	ext{eff}}^n(\gamma)\log(n)$                | Many   |
| Exact RLS sampling         | n <sup>3</sup>                     | $d_{	ext{eff}}^n(\gamma)\log(n)$                | Many   |
| Alaoui and Mahoney, 2015   | $n^3 \mu(\gamma)^2$                | $n\mu(\gamma) + d_{	ext{eff}}^n(\gamma)\log(n)$ | 3      |
| SQUEAK                     | $(n/k)d^n(\alpha)^3$               | $d^{n}(\omega)\log(n)$                          | 1      |
| Calandriello et al., 2017a | $(\Pi/\kappa) u_{\rm eff}(\gamma)$ | $u_{\rm eff}(\gamma)\log(n)$                    | T      |



$$\mathbf{s}=$$
 oracle,  $\mu(\gamma)=\max_i au_{n,i}(\gamma)\leq 1/\gamma$  regularized coherence

|                            | $\widetilde{\mathcal{O}}(Runtime)$ | $\mathcal{O}( \mathcal{I}_n )$                  | Passes |
|----------------------------|------------------------------------|-------------------------------------------------|--------|
| Bach, 2013 (Uniform)       | $n\mu(\gamma) + 2$                 | n $\mu(\gamma)$                                 | 1      |
| Oracle RLS sampling        | n + 😫                              | $d_{	ext{eff}}^n(\gamma)\log(n)$                | Many   |
| Exact RLS sampling         | n <sup>3</sup>                     | $d_{	ext{eff}}^n(\gamma)\log(n)$                | Many   |
| Alaoui and Mahoney, 2015   | $n^3\mu(\gamma)^2$                 | $n\mu(\gamma) + d_{	ext{eff}}^n(\gamma)\log(n)$ | 3      |
| SQUEAK                     | $(m/l) d^n (n)^3$                  | $d^{n}(x) \log r(x)$                            | 1      |
| Calandriello et al., 2017a | $(n/\kappa)a_{\rm eff}(\gamma)$    | $a_{\rm eff}(\gamma) \log(n)$                   | 1      |
| KORS                       | $nd^n(\alpha)^2$                   | $d^{n}(a) \log^{2}(a)$                          | 1      |
| Calandriello et al., 2017b | $  n u_{eff}(\gamma)  $            | $a_{\rm eff}(\gamma) \log(n)$                   | L      |

$$\mathbf{u}=$$
 oracle,  $\mu(\gamma)=\max_i au_{n,i}(\gamma)\leq 1/\gamma$  regularized coherence

|                            | $\widetilde{\mathcal{O}}(Runtime)$ | $\mathcal{O}( \mathcal{I}_n )$                  | Passes    |
|----------------------------|------------------------------------|-------------------------------------------------|-----------|
| Bach, 2013 (Uniform)       | $n\mu(\gamma) + \ge$               | n $\mu(\gamma)$                                 | 1         |
| Oracle RLS sampling        | n + 🖴                              | $d_{	ext{eff}}^n(\gamma)\log(n)$                | Many      |
| Exact RLS sampling         | n <sup>3</sup>                     | $d_{	ext{eff}}^n(\gamma)\log(n)$                | Many      |
| Alaoui and Mahoney, 2015   | $n^3\mu(\gamma)^2$                 | $n\mu(\gamma) + d_{	ext{eff}}^n(\gamma)\log(n)$ | 3         |
| SQUEAK                     | $(n/k)d^n(\alpha)^3$               | $d^{n}(\omega)\log(n)$                          | 1         |
| Calandriello et al., 2017a | $(\Pi/\kappa) u_{\rm eff}(\gamma)$ | $u_{\rm eff}(\gamma) \log(n)$                   | L         |
| KORS                       | $nd^n(\alpha)^2$                   | $d^{n}(n) \log^{2}(n)$                          | 1         |
| Calandriello et al., 2017b | nu <sub>eff</sub> ('y)             | $u_{\rm eff}(\gamma) \log(n)$                   | L         |
| Musco and Musco, 2017      | $\mathit{nd}^n_{eff}(\gamma)^2$    | $d_{	ext{eff}}^n(\gamma)\log(n)$                | $\log(n)$ |

Construct a small, provably accurate dictionary in near-linear time

SQUEAK and DISQUEAK Sub-linear time using multiple machines Final dictionary can be updated if new samples arrive



Construct a small, provably accurate dictionary in near-linear time

 $\operatorname{SQUEAK}$  and  $\operatorname{DISQUEAK}$ 

Sub-linear time using multiple machines

Final dictionary can be updated if new samples arrive

Novel analysis, potentially useful for general importance sampling



Construct a small, provably accurate dictionary in near-linear time

#### SQUEAK and DISQUEAK

Sub-linear time using multiple machines

Final dictionary can be updated if new samples arrive

Novel analysis, potentially useful for general importance sampling

Future work

Experiments

↓ Easy to implement: distributed task queue Preliminary results promising, easily scales to 1M+ samples

Construct a small, provably accurate dictionary in near-linear time

SQUEAK and DISQUEAK

Sub-linear time using multiple machines

Final dictionary can be updated if new samples arrive

Novel analysis, potentially useful for general importance sampling

Future work

Experiments

 ↓ Easy to implement: distributed task queue Preliminary results promising, easily scales to 1M+ samples
 Beyond passive processing: SQUEAK for active learning

# Part 2: Applications - The Nails



# **Kernel Regression**

Kernel ridge regression

$$\widehat{\boldsymbol{\omega}}_n = \arg\min_{\boldsymbol{\omega}} \|\mathbf{y}_n - \mathbf{K}_n \boldsymbol{\omega}\|^2 + \lambda \|\boldsymbol{\omega}\|^2 = (\mathbf{K}_n + \lambda \mathbf{I})^{-1} \mathbf{y}_n$$

Regularized Nyström kernel approximation  $\widetilde{\boldsymbol{K}}_{n} = \boldsymbol{\mathsf{K}}_{n} \boldsymbol{\mathsf{S}}_{n} (\boldsymbol{\mathsf{S}}_{n}^{\mathsf{T}} \boldsymbol{\mathsf{K}}_{n} \boldsymbol{\mathsf{S}}_{n} + \gamma \boldsymbol{\mathsf{I}}_{\mathcal{I}_{n}})^{-1} \boldsymbol{\mathsf{S}}_{n}^{\mathsf{T}} \boldsymbol{\mathsf{K}}_{n} = \boldsymbol{\Phi}_{n}^{\mathsf{T}} \boldsymbol{\Phi}_{n} \boldsymbol{\mathsf{S}}_{n} (\boldsymbol{\mathsf{S}}_{n}^{\mathsf{T}} \boldsymbol{\mathsf{K}}_{n} \boldsymbol{\mathsf{S}}_{n} + \gamma \boldsymbol{\mathsf{I}}_{\mathcal{I}_{n}})^{-1} \boldsymbol{\mathsf{S}}_{n}^{\mathsf{T}} \boldsymbol{\Phi}_{n}^{\mathsf{T}} \boldsymbol{\Phi}_{n}$ 

$$\begin{split} \widetilde{\boldsymbol{\omega}}_n &= (\widetilde{\boldsymbol{\kappa}}_n + \lambda \mathbf{I}_n)^{-1} \mathbf{y}_n \\ &= \frac{1}{\lambda} \left( \mathbf{y}_n - \mathbf{\kappa}_n \mathbf{S}_n (\mathbf{S}_n^\mathsf{T} \mathbf{\kappa}_n \mathbf{S}_n + \lambda (\mathbf{S}_n^\mathsf{T} \mathbf{\kappa}_n \mathbf{S}_n + \gamma \mathbf{I}_{\mathcal{I}_n}))^{-1} \mathbf{S}_n^\mathsf{T} \mathbf{\kappa}_n \mathbf{y}_n \right) \end{split}$$

Efficient computation

- Construct the matrix  $\mathcal{O}(n|\mathcal{I}_n|^2)$
- lnvert the matrix  $\mathcal{O}(|\mathcal{I}_n|^3)$

► Time 
$$\mathcal{O}(\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}) \Rightarrow \mathcal{O}(n|\mathcal{I}_n|^2 + |\mathcal{I}_n|^3)$$

▶ Space  $\mathcal{O}(n|\mathcal{I}_n|)$  ⇒  $\mathcal{O}(n|\mathcal{I}_n|)$ 

DeepMind

# **Kernel Regression**

#### Theorem (Alaoui and Mahoney, 2014)

Consider the regularized Nyström kernel approximation generated by an  $(\varepsilon,\gamma)\text{-accurate}$  dictionary. Then

$$\mathbf{0} \preceq \mathbf{K}_n - \widetilde{\mathbf{K}}_n \preceq \frac{\gamma}{1 - \varepsilon} \mathbf{K}_n (\mathbf{K}_n + \gamma \mathbf{I}_n)^{-1} \preceq \frac{\gamma}{1 - \varepsilon} \mathbf{I}_n.$$

and

DeepMind

$$\mathcal{R}_{\mathcal{D}}(\widetilde{\boldsymbol{\omega}}) \leq \left(1 + rac{\gamma}{\lambda} rac{arepsilon}{1 - arepsilon}
ight)^2 \mathcal{R}_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}),$$

If  $\gamma = \lambda$  (i.e., additive error of the same order of the regularization)

- SQUEAK can be used to computed  $\widetilde{\omega}$  in  $\mathcal{O}(nd_{\text{eff}}^n(\lambda)^2 + d_{\text{eff}}^n(\lambda)^3)$  time
- $\blacktriangleright$  with a prediction error  $1/(1-arepsilon)^2$  larger than the exact solution

# **Online Kernel Learning (OKL)**

**Online** game between learner and adversary, at each round  $t \in [T]$ 

- 1 the adversary reveals a new point  $arphi(\mathbf{x}_t) = oldsymbol{\phi}_t \in \mathcal{H}$
- 2 the learner chooses a function  $f_{\mathbf{w}_t}$  and predicts  $f_{\mathbf{w}_t}(\mathbf{x}_t) = \varphi(\mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t$ ,
- 3 the adversary reveals the curved loss  $\ell_t$ ,
- 4 the learner suffers  $\ell_t(\phi_t^\mathsf{T} \mathbf{w}_t)$  and observes the associated gradient  $\mathbf{g}_t$ .

# **Online Kernel Learning (OKL)**

**Online** game between learner and adversary, at each round  $t \in [T]$ 

- 1 the adversary reveals a new point  $arphi(\mathbf{x}_t)=oldsymbol{\phi}_t\in\mathcal{H}$
- 2 the learner chooses a function  $f_{\mathbf{w}_t}$  and predicts  $f_{\mathbf{w}_t}(\mathbf{x}_t) = \varphi(\mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t$ ,
- 3 the adversary reveals the curved loss  $\ell_t$ ,
- 4 the learner suffers  $\ell_t(\phi_t^\mathsf{T} \mathbf{w}_t)$  and observes the associated gradient  $\mathbf{g}_t$ .

Kernel flexible but curse of kernelization

t parameters  $\Rightarrow \mathcal{O}(t)$  per-step prediction cost

$$\mathbf{g}_t = \ell_t'(\boldsymbol{\phi}_t^\mathsf{T} \mathbf{w}_t) \boldsymbol{\phi}_t := \dot{g}_t \boldsymbol{\phi}_t$$

# **Online Kernel Learning (OKL)**

**Online** game between learner and adversary, at each round  $t \in [T]$ 

- 1 the adversary reveals a new point  $arphi(\mathbf{x}_t)=oldsymbol{\phi}_t\in\mathcal{H}$
- 2 the learner chooses a function  $f_{\mathbf{w}_t}$  and predicts  $f_{\mathbf{w}_t}(\mathbf{x}_t) = \varphi(\mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t$ ,
- 3 the adversary reveals the curved loss  $\ell_t$ ,
- 4 the learner suffers  $\ell_t(\phi_t^\mathsf{T} \mathbf{w}_t)$  and observes the associated gradient  $\mathbf{g}_t$ .

Kernel flexible but curse of kernelization

t parameters  $\Rightarrow \mathcal{O}(t)$  per-step prediction cost

$$\mathbf{g}_t = \ell_t'(\boldsymbol{\phi}_t^\mathsf{T} \mathbf{w}_t) \boldsymbol{\phi}_t := \dot{g}_t \boldsymbol{\phi}_t$$

**Learning** to minimize regret  $R(\mathbf{w}) = \sum_{t=1}^{T} \ell_t(\phi_t^T \mathbf{w}_t) - \ell_t(\phi_t^T \mathbf{w})$ and compete with best-in-hindsight  $\mathbf{w}^* := \arg \min_{\mathbf{w} \in \mathcal{H}} \sum_{t=1}^{T} \ell_t(\phi_t \mathbf{w})$ 

#### **OGD** and losses



#### convex

First order (GD) [Kivinen et al., 2004; Zinkevich, 2003]  $\sqrt{T}$  regret,  $\mathcal{O}(d)/\mathcal{O}(t)$  time/space per-step





 $\sqrt{T}$  regret,  $\mathcal{O}(d)/\mathcal{O}(t)$  time/space per-step

First order (GD) [Hazan et al., 2008] log(T) regret,


First order (GD) [Kivinen et al., 2004; Zinkevich, 2003]  $\sqrt{T}$  regret,  $\mathcal{O}(d)/\mathcal{O}(t)$  time/space per-step

First order (GD) [Hazan et al., 2008] log(T) regret, but often not satisfied in practice  $\mapsto$  (e.g.  $(y_t - \phi_t^T \mathbf{w}_t)^2$ )







Weaker than strong convexity





Weaker than strong convexity

Satisfied by exp-concave losses: Lasquared loss, squared hinge-loss, logistic loss



Weaker than strong convexity

Satisfied by exp-concave losses: Lasquared loss, squared hinge-loss, logistic loss

#### **Assumptions:**

 $\ell_t$  are  $\sigma$ -curved and  $|\ell_t'(z)| \leq L$  whenever  $|z| \leq C$  (scalar Lipschitz)

Second-Order Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{A}_t^{-1} \mathbf{g}_t, \qquad \mathbf{A}_t = \sum_{s=1}^t \sigma \mathbf{g}_s \mathbf{g}_s^{\mathsf{T}} + \alpha \mathbf{I} = \mathbf{G}_t \mathbf{G}_t^{\mathsf{T}} + \alpha \mathbf{I}$$



Second-Order Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{A}_t^{-1} \mathbf{g}_t, \qquad \mathbf{A}_t = \sum_{s=1}^t \sigma \mathbf{g}_s \mathbf{g}_s^{\mathsf{T}} + \alpha \mathbf{I} = \mathbf{G}_t \mathbf{G}_t^{\mathsf{T}} + \alpha \mathbf{I}$$

Regret [Hazan et al., 2006; Luo et al., 2016]

$$R(\mathbf{w}^*) \leq \frac{\|\mathbf{w}^* - \mathbf{w}_0\|_2^2}{\|\mathbf{w}^* - \mathbf{w}_0\|_2^2} + \mathcal{O}\left(\sum_{t=1}^T \mathbf{g}_t^\mathsf{T} (\mathbf{G}_t \mathbf{G}_t^\mathsf{T} + \alpha \mathbf{I})^{-1} \mathbf{g}_t\right)$$

Second-Order Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{A}_t^{-1} \mathbf{g}_t, \qquad \mathbf{A}_t = \sum_{s=1}^t \sigma \mathbf{g}_s \mathbf{g}_s^{\mathsf{T}} + \alpha \mathbf{I} = \mathbf{G}_t \mathbf{G}_t^{\mathsf{T}} + \alpha \mathbf{I}$$

Regret [Hazan et al., 2006; Luo et al., 2016]

$$R(\mathbf{w}^*) \leq \frac{\|\mathbf{w}^* - \mathbf{w}_0\|_2^2}{\|\mathbf{w}^* - \mathbf{w}_0\|_2^2} + \mathcal{O}\left(\sum_{t=1}^T \mathbf{g}_t^\mathsf{T} (\mathbf{G}_t \mathbf{G}_t^\mathsf{T} + \alpha \mathbf{I})^{-1} \mathbf{g}_t\right)$$

$$\leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|^2 + \mathcal{O}\left(L\sum_{t=1}^{I} \boldsymbol{\phi}_t^{\mathsf{T}} (\boldsymbol{\Phi}_t \boldsymbol{\Phi}_t^{\mathsf{T}} + \alpha \mathbf{I})^{-1} \boldsymbol{\phi}_t\right)$$

Second-Order Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{A}_t^{-1} \mathbf{g}_t, \qquad \mathbf{A}_t = \sum_{s=1}^t \sigma \mathbf{g}_s \mathbf{g}_s^{\mathsf{T}} + \alpha \mathbf{I} = \mathbf{G}_t \mathbf{G}_t^{\mathsf{T}} + \alpha \mathbf{I}$$

Regret [Hazan et al., 2006; Luo et al., 2016]

$$R(\mathbf{w}^*) \leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|_2^2 + \mathcal{O}\left(\sum_{t=1}^T \mathbf{g}_t^\mathsf{T} (\mathbf{G}_t \mathbf{G}_t^\mathsf{T} + \alpha \mathbf{I})^{-1} \mathbf{g}_t\right)$$
  
online effective dimension  
$$\leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|^2 + \mathcal{O}\left(L\sum_{t=1}^T \phi_t^\mathsf{T} (\mathbf{\Phi}_t \mathbf{\Phi}_t^\mathsf{T} + \alpha \mathbf{I})^{-1} \phi_t\right)$$

Second-Order Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{A}_t^{-1} \mathbf{g}_t, \qquad \mathbf{A}_t = \sum_{s=1}^t \sigma \mathbf{g}_s \mathbf{g}_s^{\mathsf{T}} + \alpha \mathbf{I} = \mathbf{G}_t \mathbf{G}_t^{\mathsf{T}} + \alpha \mathbf{I}$$

Regret [Hazan et al., 2006; Luo et al., 2016]

$$R(\mathbf{w}^*) \leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|_2^2 + \mathcal{O}\left(\sum_{t=1}^T \mathbf{g}_t^\mathsf{T} (\mathbf{G}_t \mathbf{G}_t^\mathsf{T} + \alpha \mathbf{I})^{-1} \mathbf{g}_t\right)$$
  
$$\leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|^2 + \mathcal{O}\left(L\sum_{t=1}^T \phi_t^\mathsf{T} (\mathbf{\Phi}_t \mathbf{\Phi}_t^\mathsf{T} + \alpha \mathbf{I})^{-1} \phi_t\right)$$
  
$$\leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|^2 + \mathcal{O}(\log \operatorname{Det}(\mathbf{K}_T / \alpha + \mathbf{I}_n))$$

Second-Order Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{A}_t^{-1} \mathbf{g}_t, \qquad \mathbf{A}_t = \sum_{s=1}^t \sigma \mathbf{g}_s \mathbf{g}_s^{\mathsf{T}} + \alpha \mathbf{I} = \mathbf{G}_t \mathbf{G}_t^{\mathsf{T}} + \alpha \mathbf{I}$$

Regret [Hazan et al., 2006; Luo et al., 2016]

$$R(\mathbf{w}^*) \leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|_2^2 + \mathcal{O}\left(\sum_{t=1}^T \mathbf{g}_t^\mathsf{T} (\mathbf{G}_t \mathbf{G}_t^\mathsf{T} + \alpha \mathbf{I})^{-1} \mathbf{g}_t\right)$$
  
online effective dimension  
$$\leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|^2 + \mathcal{O}\left(L\sum_{t=1}^T \phi_t^\mathsf{T} (\mathbf{\Phi}_t \mathbf{\Phi}_t^\mathsf{T} + \alpha \mathbf{I})^{-1} \phi_t\right)$$
  
$$\leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|^2 + \mathcal{O}(\log \operatorname{Det}(\mathbf{K}_T / \alpha + \mathbf{I}_n))$$
  
$$\leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|^2 + \mathcal{O}(\log \operatorname{Det}(\mathbf{K}_T / \alpha + \mathbf{I}_n))$$

#### Effective Dimension in online learning

$$R(\mathbf{w}^*) \leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|^2 + \mathcal{O}(d_{\mathsf{eff}}^{\mathsf{T}}(\alpha) \log(\mathsf{T}))$$

 $d_{\text{eff}}^{T}(\alpha)$  number of relevant orthogonal directions played by the adversary.

Every new orthogonal direction causes some regret. if it is played often enough (i.e.,  $\geq \alpha/(L\sigma)$ )

#### Effective Dimension in online learning

$$R(\mathbf{w}^*) \leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|^2 + \mathcal{O}(d_{\mathsf{eff}}^{\mathsf{T}}(\alpha) \log(\mathsf{T}))$$

 $d_{\text{eff}}^{T}(\alpha)$  number of relevant orthogonal directions played by the adversary.

Every **new** orthogonal direction causes some regret. if it is played often enough (i.e.,  $\geq \alpha/(L\sigma)$ )



#### Effective Dimension in online learning

$$R(\mathbf{w}^*) \leq \alpha \|\mathbf{w}^* - \mathbf{w}_0\|^2 + \mathcal{O}(d_{\mathsf{eff}}^{\mathsf{T}}(\alpha) \log(\mathsf{T}))$$

 $d_{\rm eff}^{T}(\alpha)$  number of relevant orthogonal directions played by the adversary.

Every **new** orthogonal direction causes some regret. if it is played often enough (i.e.,  $\geq \alpha/(L\sigma)$ )

If all  $\phi_t$  are orthogonalIf  $\phi_t$  from finite subspace $d_{eff}^T(\sqrt{T}) \sim \sqrt{T}$  $d_{eff}^T(1) \sim \mathcal{O}(1) \leq r$ andis constant in T and $R(\mathbf{w}^*) \leq \sqrt{T} + \sqrt{T} \log(T) \sim \sqrt{T}$  $R(\mathbf{w}^*) \leq \mathcal{O}(1) + \mathcal{O}(1) \log(T) \sim \log T$ 

KONS:  $d_{\text{eff}}^{T}(\alpha) \log(T)$  regret

 $\ \, {\sf large} \ \, \mathcal{H} \Rightarrow \mathcal{O}(t) \ \, {\sf prediction} \ \, \phi_t^{\sf T} {\sf w}_t, \ \, \mathcal{O}(t^2) \ \, {\sf updates} \ \, {\sf g}_t - {\sf A}_t^{-1} {\sf g}_t$ 

KONS:  $d_{\text{eff}}^{T}(\alpha) \log(T)$  regret

 $\ \, {\sf large} \ \, \mathcal{H} \Rightarrow \mathcal{O}(t) \ \, {\sf prediction} \ \, \phi_t^{\sf T} {\sf w}_t, \ \, \mathcal{O}(t^2) \ \, {\sf updates} \ \, {\sf g}_t - {\sf A}_t^{-1} {\sf g}_t$ 

Use approximate second order updates in large  $\mathcal{H}$  [Calandriello et al., 2017b]

 $\downarrow$   $d_{\text{eff}}^{T}(\alpha) \log(T)$  regret, but prediction still depends on t



KONS:  $d_{\text{eff}}^{T}(\alpha) \log(T)$  regret

 $\ \, {\sf large} \ \, \mathcal{H} \Rightarrow \mathcal{O}(t) \ \, {\sf prediction} \ \, \phi_t^{\sf T} {\sf w}_t, \ \, \mathcal{O}(t^2) \ \, {\sf updates} \ \, {\sf g}_t - {\sf A}_t^{-1} {\sf g}_t$ 

Use approximate second order updates in large  $\mathcal{H}$  [Calandriello et al., 2017b]  $\downarrow d_{eff}^{T}(\alpha) \log(T)$  regret, but prediction still depends on t

Use exact second order updates in small approximate  $\widetilde{\mathcal{H}}$ 

 $\vdash$  replace  $\varphi$  with approximate map  $\widetilde{\varphi}$  (random features, embeddings)

KONS:  $d_{\text{eff}}^{T}(\alpha) \log(T)$  regret

 $\ \, {\sf Large} \ \, \mathcal{H} \Rightarrow \mathcal{O}(t) \ \, {\sf prediction} \ \, \phi_t^{\sf T} {\sf w}_t, \ \, \mathcal{O}(t^2) \ \, {\sf updates} \ \, {\sf g}_t - {\sf A}_t^{-1} {\sf g}_t$ 

Use approximate second order updates in large  $\mathcal{H}$  [Calandriello et al., 2017b]  $\downarrow d_{\text{eff}}^{T}(\alpha) \log(T)$  regret, but prediction still depends on t

Use exact second order updates in small approximate  $\widetilde{\mathcal{H}}$ 

→ replace  $\varphi$  with approximate map  $\tilde{\varphi}$  (random features, embeddings) finite  $\tilde{\mathcal{H}} \Rightarrow$  constant per-step prediction/update cost

DeepMind

KONS:  $d_{\text{eff}}^{T}(\alpha) \log(T)$  regret

 $\ \, {\sf Large} \ \, \mathcal{H} \Rightarrow \mathcal{O}(t) \ \, {\sf prediction} \ \, \phi_t^{\sf T} {\sf w}_t, \ \, \mathcal{O}(t^2) \ \, {\sf updates} \ \, {\sf g}_t - {\sf A}_t^{-1} {\sf g}_t$ 

Use approximate second order updates in large  $\mathcal{H}$  [Calandriello et al., 2017b]  $\downarrow d_{\text{eff}}^{T}(\alpha) \log(T)$  regret, but prediction still depends on t

Use exact second order updates in small approximate  $\widetilde{\mathcal{H}}$   $\hookrightarrow$  replace  $\varphi$  with approximate map  $\widetilde{\varphi}$  (random features, embeddings) finite  $\widetilde{\mathcal{H}} \Rightarrow$  constant per-step prediction/update cost

$$\sum_{t=1}^{T} \ell_t(\widetilde{\phi}_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \mathbf{w}^*) = \sum_{t=1}^{T} \underbrace{\ell_t(\widetilde{\phi}_t \widetilde{\mathbf{w}}_t) - \ell_t(\widetilde{\phi}_t \overline{\mathbf{w}})}_{a} + \underbrace{\ell_t(\phi_t \overline{\mathbf{w}}) - \ell_t(\phi_t \mathbf{w}^*)}_{b}$$

DeepMind

KONS:  $d_{\text{eff}}^{T}(\alpha) \log(T)$  regret

 $\ \, {\sf Large} \ \, \mathcal{H} \Rightarrow \mathcal{O}(t) \ \, {\sf prediction} \ \, \phi_t^{\sf T} {\sf w}_t, \ \, \mathcal{O}(t^2) \ \, {\sf updates} \ \, {\sf g}_t - {\sf A}_t^{-1} {\sf g}_t$ 

Use approximate second order updates in large  $\mathcal{H}$  [Calandriello et al., 2017b]  $\downarrow d_{\text{eff}}^{T}(\alpha) \log(T)$  regret, but prediction still depends on t

Use exact second order updates in small approximate  $\widetilde{\mathcal{H}}$   $\hookrightarrow$  replace  $\varphi$  with approximate map  $\widetilde{\varphi}$  (random features, embeddings) finite  $\widetilde{\mathcal{H}} \Rightarrow$  constant per-step prediction/update cost

$$\sum_{t=1}^{T} \ell_t(\widetilde{\phi}_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \mathbf{w}^*) = \sum_{t=1}^{T} \underbrace{\ell_t(\widetilde{\phi}_t \widetilde{\mathbf{w}}_t) - \ell_t(\widetilde{\phi}_t \overline{\mathbf{w}})}_{a} + \underbrace{\ell_t(\phi_t \overline{\mathbf{w}}) - \ell_t(\phi_t \mathbf{w}^*)}_{b}$$
(a) Exact KONS in  $\widetilde{\mathcal{H}}$ :  $d_{\text{eff}}^T(\alpha) \log(T)$ 

DeepMind

KONS:  $d_{\text{eff}}^{T}(\alpha) \log(T)$  regret

 $\ \, {\sf Large} \ \, \mathcal{H} \Rightarrow \mathcal{O}(t) \ \, {\sf prediction} \ \, \phi_t^{\sf T} {\sf w}_t, \ \, \mathcal{O}(t^2) \ \, {\sf updates} \ \, {\sf g}_t - {\sf A}_t^{-1} {\sf g}_t$ 

Use approximate second order updates in large  $\mathcal{H}$  [Calandriello et al., 2017b]  $\downarrow d_{\text{eff}}^{T}(\alpha) \log(T)$  regret, but prediction still depends on t

Use exact second order updates in small approximate  $\widetilde{\mathcal{H}}$   $\hookrightarrow$  replace  $\varphi$  with approximate map  $\widetilde{\varphi}$  (random features, embeddings) finite  $\widetilde{\mathcal{H}} \Rightarrow$  constant per-step prediction/update cost

$$\sum_{t=1}^{T} \ell_t(\widetilde{\phi}_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \mathbf{w}^*) = \sum_{t=1}^{T} \underbrace{\ell_t(\widetilde{\phi}_t \widetilde{\mathbf{w}}_t) - \ell_t(\widetilde{\phi}_t \overline{\mathbf{w}})}_{a} + \underbrace{\ell_t(\phi_t \overline{\mathbf{w}}) - \ell_t(\phi_t \mathbf{w}^*)}_{b}$$
(a) Exact KONS in  $\widetilde{\mathcal{H}}$ :  $d_{\text{eff}}^T(\alpha) \log(T)$ 
(b) error between  $\overline{\mathbf{w}}$  best in  $\widetilde{\mathcal{H}}$  and  $\mathbf{w}^*$  best in  $\mathcal{H}$ : bound how?

 $\widetilde{\mathcal{H}}$  cannot be fixed

 $\vdash$  the adversary will find orthogonal points and exploit this



 $\widetilde{\mathcal{H}}$  cannot be fixed

→ the adversary will find orthogonal points and exploit this same for fixed budget (e.g., *k*-rank approx [Luo et al., 2016])



 $\widetilde{\mathcal{H}}$  cannot be fixed

→ the adversary will find orthogonal points and exploit this same for fixed budget (e.g., *k*-rank approx [Luo et al., 2016])

Use Nyström approximation instead and adapt it online



 $\widetilde{\mathcal{H}}$  cannot be fixed

→ the adversary will find orthogonal points and exploit this same for fixed budget (e.g., *k*-rank approx [Luo et al., 2016])

Use Nyström approximation instead and adapt it online  $\downarrow$  if the adversary plays a "sufficiently orthogonal"  $\phi_t$ , add it to  $\mathcal{I}_{t+1}$ 

 $\widetilde{\mathcal{H}}$  cannot be fixed

→ the adversary will find orthogonal points and exploit this same for fixed budget (e.g., *k*-rank approx [Luo et al., 2016])

Use Nyström approximation instead and adapt it online

→ if the adversary plays a "sufficiently orthogonal"  $\phi_t$ , add it to  $\mathcal{I}_{t+1}$  $\widetilde{\mathcal{H}}_t = \text{Span}(\mathcal{I}_t)$  defined using  $m_t$  inducing points  $\mathcal{I}_t = \{\phi_s\}_{s=1}^{m_t}$ 



 $\widetilde{\mathcal{H}}$  cannot be fixed

→ the adversary will find orthogonal points and exploit this same for fixed budget (e.g., *k*-rank approx [Luo et al., 2016])

Use Nyström approximation instead and adapt it online  $\downarrow$  if the adversary plays a "sufficiently orthogonal"  $\phi_t$ , add it to  $\mathcal{I}_{t+1}$  $\widetilde{\mathcal{H}}_t = \text{Span}(\mathcal{I}_t)$  defined using  $m_t$  inducing points  $\mathcal{I}_t = \{\phi_s\}_{s=1}^{m_t}$ 

Use RLS ( $\mathrm{KORS}$ ) to select inducing points

 $\widetilde{\mathcal{H}}$  cannot be fixed

→ the adversary will find orthogonal points and exploit this same for fixed budget (e.g., *k*-rank approx [Luo et al., 2016])

Use Nyström approximation instead and adapt it online  $\downarrow$  if the adversary plays a "sufficiently orthogonal"  $\phi_t$ , add it to  $\mathcal{I}_{t+1}$  $\widetilde{\mathcal{H}}_t = \text{Span}(\mathcal{I}_t)$  defined using  $m_t$  inducing points  $\mathcal{I}_t = \{\phi_s\}_{s=1}^{m_t}$ 

Use RLS (KORS) to select inducing points  $\downarrow$  SQUEAK without removal ( $\mathcal{I}_t \subseteq \mathcal{I}_{t+1}, \ \widetilde{\mathcal{H}}_t \subseteq \widetilde{\mathcal{H}}_{t+1}$ )

 $\widetilde{\mathcal{H}}$  cannot be fixed

DeepMind

→ the adversary will find orthogonal points and exploit this same for fixed budget (e.g., *k*-rank approx [Luo et al., 2016])

Use Nyström approximation instead and adapt it online  $\downarrow$  if the adversary plays a "sufficiently orthogonal"  $\phi_t$ , add it to  $\mathcal{I}_{t+1}$  $\widetilde{\mathcal{H}}_t = \text{Span}(\mathcal{I}_t)$  defined using  $m_t$  inducing points  $\mathcal{I}_t = \{\phi_s\}_{s=1}^{m_t}$ 

Use RLS (KORS) to select inducing points

L→ SQUEAK without removal  $(\mathcal{I}_t \subseteq \mathcal{I}_{t+1}, \ \widetilde{\mathcal{H}}_t \subseteq \widetilde{\mathcal{H}}_{t+1})$ w.h.p. accurate and maximum size  $|\widetilde{\mathcal{H}}_t| \leq \mathcal{O}(d_{\text{eff}}^T(\gamma) \log^2(T))$ 

 $\widetilde{\mathcal{H}}$  cannot be fixed

→ the adversary will find orthogonal points and exploit this same for fixed budget (e.g., *k*-rank approx [Luo et al., 2016])

Use Nyström approximation instead and adapt it online  $\downarrow$  if the adversary plays a "sufficiently orthogonal"  $\phi_t$ , add it to  $\mathcal{I}_{t+1}$  $\widetilde{\mathcal{H}}_t = \text{Span}(\mathcal{I}_t)$  defined using  $m_t$  inducing points  $\mathcal{I}_t = \{\phi_s\}_{s=1}^{m_t}$ 

Use RLS ( $\mathrm{KORS}$ ) to select inducing points

 $→ SQUEAK without removal ($\mathcal{I}_t \subseteq \mathcal{I}_{t+1}$, $\widetilde{\mathcal{H}}_t \subseteq \widetilde{\mathcal{H}}_{t+1}$)$  $w.h.p. accurate and maximum size <math>|\widetilde{\mathcal{H}}_t| \le \mathcal{O}(d_{\text{eff}}^T(\gamma) \log^2(T))$  $\widetilde{\mathcal{O}}(d_{\text{eff}}^T(\gamma)^2)$  time/space cost to run exact KONS in  $\widetilde{\mathcal{H}}_t$ 













DeepMind



Every time we change  $\widetilde{\mathcal{H}}$  we pay  $\alpha \|\overline{\mathbf{w}}_j - \mathbf{w}_{t_j}\|_2^2$  (initial error in GD)  $\mapsto$  the adversary can influence  $\mathbf{w}_{t_i}$  and make it large

DeepMind



Reset  $\widetilde{\mathbf{w}}_t$  and  $\widetilde{\mathbf{A}}_t$  when  $\widetilde{\mathcal{H}}_t$  changes

→ wasteful, but not too often. At most  $J \le d_{\text{eff}}^T(\gamma)$  times. learning is preserved through  $\widetilde{\mathcal{H}}_t$  that always improves adaptive doubling trick

DeepMind



Reset  $\widetilde{\mathbf{w}}_t$  and  $\widetilde{\mathbf{A}}_t$  when  $\widetilde{\mathcal{H}}_t$  changes

→ wasteful, but not too often. At most  $J \le d_{\text{eff}}^T(\gamma)$  times. learning is preserved through  $\widetilde{\mathcal{H}}_t$  that always improves adaptive doubling trick
#### **PROS-N-KONS**

DeepMind



Reset  $\widetilde{\mathbf{w}}_t$  and  $\widetilde{\mathbf{A}}_t$  when  $\widetilde{\mathcal{H}}_t$  changes

→ wasteful, but not too often. At most  $J \le d_{\text{eff}}^T(\gamma)$  times. learning is preserved through  $\widetilde{\mathcal{H}}_t$  that always improves adaptive doubling trick

#### **Experiments** - regression

| $lpha=1,\ \gamma=1$ |                          |     |       |                           |     |        |
|---------------------|--------------------------|-----|-------|---------------------------|-----|--------|
| Algorithm           | cadata $n = 20k, d = 8$  |     |       | $casp \ n = 45k, \ d = 9$ |     |        |
|                     | Avg. Squared Loss        | #SV | Time  | Avg. Squared Loss         | #SV | Time   |
| FOGD                | $0.04097\ \pm\ 0.00015$  | 30  | —     | $0.08021\pm0.00031$       | 30  | _      |
| NOGD                | $0.03983\pm0.00018$      | 30  | _     | $0.07844\ \pm\ 0.00008$   | 30  | —      |
| PROS-N-KONS         | $0.03095\ \pm\ 0.00110$  | 20  | 18.59 | $0.06773 \pm 0.00105$     | 21  | 40.73  |
| CON-KONS            | $0.02850 \pm 0.00174$    | 19  | 18.45 | $0.06832 \pm 0.00315$     | 20  | 40.91  |
| B-KONS              | $0.03095\ \pm\ 0.00118$  | 19  | 18.65 | $0.06775 \pm 0.00067$     | 21  | 41.13  |
| BATCH               | $0.02202\pm0.00002$      | —   | —     | $0.06100\pm0.00003$       | —   | —      |
| Algorithm           | slice $n = 53k, d = 385$ |     |       | year $n = 463k, d = 90$   |     |        |
|                     | Avg. Squared Loss        | #SV | Time  | Avg. Squared Loss         | #SV | Time   |
| FOGD                | $0.00726 \pm 0.00019$    | 30  | —     | $0.01427\ \pm\ 0.00004$   | 30  |        |
| NOGD                | $0.02636\ \pm\ 0.00460$  | 30  | -     | $0.01427\ \pm\ 0.00004$   | 30  | —      |
| DUAL-SGD            | -                        | _   | -     | $0.01440\ \pm\ 0.00000$   | 100 | —      |
| PROS-N-KONS         | did not complete         | —   | —     | $0.01450\ \pm\ 0.00014$   | 149 | 884.82 |
| CON-KONS            | did not complete         | _   | -     | $0.01444\ \pm\ 0.00017$   | 147 | 889.42 |
| B-KONS              | $0.00913 \pm 0.00045$    | 100 | 60    | $0.01302 \pm 0.00006$     | 100 | 505.36 |
| BATCH               | $0.00212\pm0.00001$      | _   | —     | $0.01147  \pm  0.00001$   | —   | —      |

#### **Experiments** - binary classification

| $\alpha = 1, \ \gamma = 1$   |                                           |     |         |                                           |     |        |  |
|------------------------------|-------------------------------------------|-----|---------|-------------------------------------------|-----|--------|--|
| Algorithm                    | ijcnn1 <i>n</i> = 141, 691, <i>d</i> = 22 |     |         | cod-rna $n = 271, 617, d = 8$             |     |        |  |
| Aigoritiin                   | accuracy                                  | #SV | time    | accuracy                                  | #SV | time   |  |
| FOGD                         | $9.06~\pm 0.05$                           | 400 | —       | $10.30\ \pm 0.10$                         | 400 | _      |  |
| NOGD                         | $9.55\ \pm\ 0.01$                         | 100 | —       | $13.80\ \pm 2.10$                         | 100 | —      |  |
| Dual-SGD                     | $\textbf{8.35}~\pm~0.20$                  | 100 | —       | $\textbf{4.83}~\pm~0.21$                  | 100 | —      |  |
| PROS-N-KONS                  | $9.70\ \pm 0.01$                          | 100 | 211.91  | $13.95~\pm 1.19$                          | 38  | 270.81 |  |
| CON-KONS                     | $9.64\ \pm 0.01$                          | 101 | 215.71  | $18.99~\pm 9.47$                          | 38  | 271.85 |  |
| B-KONS                       | $9.70\ \pm 0.01$                          | 98  | 206.53  | $13.99~\pm 1.16$                          | 38  | 274.94 |  |
| BATCH                        | $8.33\pm0.03$                             | —   | —       | $3.781\pm0.01$                            | —   | _      |  |
| $lpha=$ 0.01, $\gamma=$ 0.01 |                                           |     |         |                                           |     |        |  |
| Algorithm                    | ijcnn1 <i>n</i> = 141, 691, <i>d</i> = 22 |     |         | cod-rna <i>n</i> = 271, 617, <i>d</i> = 8 |     |        |  |
| Algorithm                    | accuracy                                  | #SV | time    | accuracy                                  | #SV | time   |  |
| FOGD                         | $9.06~\pm~0.05$                           | 400 | —       | $10.30\ \pm 0.10$                         | 400 | _      |  |
| NOGD                         | $9.55\ \pm\ 0.01$                         | 100 | —       | $13.80\ \pm 2.10$                         | 100 | —      |  |
| DUAL-SGD                     | $8.35\pm0.20$                             | 100 | -       | $4.83\ \pm 0.21$                          | 100 | —      |  |
| PROS-N-KONS                  | $10.73\pm0.12$                            | 436 | 1003.82 | $4.91~\pm 0.04$                           | 111 | 459.28 |  |
| CON-KONS                     | $6.23\pm0.18$                             | 432 | 987.33  | $5.81~\pm{\scriptstyle 1.96}$             | 111 | 458.90 |  |
| B-KONS                       | $\textbf{4.85}~\pm~0.08$                  | 100 | 147.22  | 4.57 ± 0.05                               | 100 | 333.57 |  |
| BATCH                        | 5.61 ± 0.01                               | —   | —       | $3.61\pm{0.01}$                           | —   | —      |  |



#### **PROS-N-KONS** - recap

PROS-N-KONS: avoid curse of kernelization, constant per-step cost



#### **PROS-N-KONS** - recap

PROS-N-KONS: avoid curse of kernelization, constant per-step cost First approximate method with logarithmic regret



Future work



Future work Restarts really necessary?



Future work Restarts really necessary? Adaptive  $\alpha$  and  $\gamma$ ?



Future work Restarts really necessary? Adaptive  $\alpha$  and  $\gamma$ ? ... and now, back to the beginning!

# **BACK TO THE BEGINNING**: GRAPH **SPARSIFICATION**







- Large graphs do not fit in a single machine memory
- multiple passes slow, distribution has communication costs
- removing edges impacts structure/accuracy
- Make the graph sparse, while preserving its structure for learning

$$(1-\varepsilon)\mathsf{L}_{\mathcal{G}} \preceq \mathsf{L}_{\mathcal{H}} \preceq (1+\varepsilon)\mathsf{L}_{\mathcal{G}}$$

$$(1-\varepsilon)\mathsf{L}_{\mathcal{G}} - \frac{\varepsilon\gamma}{\mathsf{I}} \preceq \mathsf{L}_{\mathcal{H}} \preceq (1+\varepsilon)\mathsf{L}_{\mathcal{G}} + \frac{\varepsilon\gamma}{\mathsf{I}}$$



### Theorem

Given an arbitrary graph  ${\cal G}$  w.h.p. DISRE satisfies

(1) each sub-graphs is an  $(\varepsilon, \gamma)$ -sparsifier

(2) with at most  $\mathcal{O}(d_{\text{eff}}(\gamma) \log(n))$  edges.



Dataset: Amazon co-purchase graph [Yang and Leskovec 2015]
↓ natural, artificially sparse (true graph known only to Amazon)
↓ we compute 4-step random walk to recover removed co-purchases
[Gleich and Mahoney 2015]

**Target:** eigenvector **v** associated with  $\lambda_2(\mathbf{L}_{\mathcal{G}})$  [Sadhanala et al. 2016]

n = 334,863 nodes, m = 98,465,352 edges (294 avg. degree)

| Alg.  | Parameters        | $ \mathcal{E} $ (x10 <sup>6</sup> ) | $\ \widetilde{\mathbf{f}}-\mathbf{v}\ _2^2 \ (\sigma\!=\!10^{-3})$ | $\ \widetilde{\mathbf{f}}-\mathbf{v}\ _2^2 \ (\sigma\!=\!10^{-2})$ |
|-------|-------------------|-------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| EXACT |                   | 98.5                                | $0.067 \pm 0.0004$                                                 | $0.756\pm0.006$                                                    |
| kN    | k = 60            | 15.7                                | $0.172\pm0.0004$                                                   | $0.822\pm0.002$                                                    |
| DISRE | $\gamma\!=\!$ 0   | 22.8                                | $0.068 \pm 0.0004$                                                 | $0.756 \pm 0.005$                                                  |
| DISRE | $\gamma\!=\!10^2$ | 11.8                                | $\textbf{0.068} \pm 0.0002$                                        | $0.772\pm0.004$                                                    |

**Time:** Loading  $\mathcal{G}$  from disk 90sec, DISRE 120sec( $k = 4 \times 32$  CPU), computing  $\tilde{\mathbf{f}}$  120sec, computing  $\hat{\mathbf{f}}$  720sec



## AFTER 12 YEARS? THIS IS JUST THE BEGINNING!



### SPARSIFYING GP-UCB RIGHT

- More than 20 years of heuristics
- Even 2019 results on sparsifying LinUCB can go wrong
- BKB adaptive dictionary, guarantees regret and is fast
- BATCHED GP-UCB SPARSIFICATION stay tuned!
- Negative dependence/online leverages scores/DPPs
- FAST SAMPLING OF DPPs repulsion for the sets!
  - w/Michał Dereziński and Daniele Calandriello
  - online lev. Scores + R-DPP + downsampling ~ perfect

Michal Valko, <u>valkom@google.com</u>

http://researchers.lille.inria.fr/~valko/hp/



Michal Valko, <u>valkom@google.com</u> http://researchers.lille.inria.fr/~valko/hp/