
ACTIVE LEARNING ON NETWORKS AND
ONLINE INFLUENCE MAXIMIZATION

 
Michal Valko, SequeL, Inria Lille - Nord Europe

Decision Theory and Network Science: Methods and Applications,

STOR-i Workshop at Lancaster University, Sep 18th, 2017  

2016-2017, NIPS 2017  
https://arxiv.org/abs/1605.06593

2015-2016, AISTAST 2016

ACTIVE LEARNING ON NETWORKS AND
WHERE IS JUSTING BIBER?

https://arxiv.org/abs/1605.06593

4

Centres

Antennas

Saclay
Ile-de-France

Rennes
Bretagne Atlantique

Bordeaux
Sud-Ouest

Lille
Nord Europe

Paris

Nancy
Grand est

Grenoble
Rhône-Alpes

Sophia Antipolis
Méditerranée

Nantes

Pau

Montpellier

Lyon

Strasbourg

Philippe Preux
SequeL, Inria

Rémi Munos  
Google DeepMind

+

10 YEARS

3

SequeL
DatInG Day, March 30th, 2017

Inria project team 2006-2018 (Building A, ground floor)
March 30, 2017 1 / 6

Composition

Permanent sta�

I Romaric Gaudel
I Emilie Kaufmann
I Alessandro Lazaric
I Jérémie Mary
I Odalric-Ambrym Maillard
I Philippe Preux
I Daniil Ryabko
I Michal Valko

On leave of absence:
I Christos Dimitrakakis

(Harvard), Rémi Munos,
Olivier Pietquin, Bilal Piot:
Google/Deepmind

March 30, 2017 2 / 6

… LAST 10 YEARS AND INDUSTRY

4

R.Munos 
O. Pietquin 
B. Piot 
G. Dulac-Arnold  
A. Huang 
M. Azar 
JB. Grill

R. Coulom 
CrazyStone

A. Lazaric 

J. Mary 

M. Ghavamzadeh 

M. Davy 

5

Berkeley’s floating sensor network

Erdös number project

online social networks

6

7

8

Example of a graph bandit problem

movie recommendation

recommend movies to a single user

goal: maximise the sum of the ratings  
(minimise regret)

good prediction after just a few steps

extra information

ratings are smooth on a graph

main question: can we learn faster?

T ⌧ N

Th
e S

haw
sha

nk
Re

dem
pti

on
(19

94)

Th
e G

odf
ath

er
(19

72)

Th
e G

odf
ath

er:
Par

t II
(19

74)

Th
e D

ark
Kn

igh
t (2

008
)

Pul
p Fic

tion
(19

94)

The
Goo

d, t
he B

ad and
the

Ugl
y (196

6)

Schi
ndle

r’s L
ist (

1993
)

12 Ang
ry Men (195

7)

The
Lord

of th
e Ri

ngs:
The

Retu
rn of th

e Ki
ng (200

3)

Figh
t Clu

b (1999
)

The L
ord of the

Rings
: The

Fellow
ship of the

Ring
(2001

)

Star W
ars: E

pisode
V - The

Empire S
trikes

Back
(1980)

Incept
ion (2010)

Forrest
Gump (1994)

One Flew Over the Cuckoo’s
Nest (19

75)

The Lord of the Rings: The
Two Towers (20

02)

Goodfellas (199
0)

Star Wars: Episode IV - A New Hope (1977)

The Matrix (1999)

Seven Samurai (1954)
City of God (2002)
Se7en (1995)
The Usual Suspects (1995)The Silence of the Lambs (1991)Once Upon a Time in the West (1968)
It’s a Wonderful Life (1946)
Léon: The Professional (1994)
Casablanca (1942)Life Is Beautiful (1997)
Raiders of the Lost Ark (1981)

American History X (1998)

Psycho (1960)
Rear Window (1954)

City Lights (1931)

Saving Private Ryan (1998)

Spirited Away (2001)

The Intouchables (2011)

Memento (2000)

Terminator 2: Judgment Day (1991)

Modern Times (1936) 0

1

9

GETTING REAL

Let’s be lazy and ignore the structure

Multi-armed bandit problem!

Worst case regret (to the best fixed strategy)

Matching lower bound (Auer, Cesa-Bianchi, Freund, Schapire 2002)

How big is N? Number of movies on http://www.imdb.com/stats: 4,513,842

 Number of active users on FaceBook: https://newsroom.fb.com/company-info/ 2,017,822,735

Problem: Too many actions!

#actions

#rounds

10

http://www.imdb.com/stats
https://newsroom.fb.com/company-info/

LEARNING FASTER

Arm independence is too strong and unnecessary

Replace N with something much smaller

problem/instance/data dependent

example: linear bandits N to D

In this talk: Online Influence Maximization!

sequential problems where actions are nodes on a graph

find strategies that replace N with a smaller graph-dependent quantity

#actions

#rounds

#dimensions

11

GRAPH BANDITS: GENERAL SETUP

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#

Michal Valko – Graphs in Machine Learning SequeL - 12/63

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#

Michal Valko – Graphs in Machine Learning SequeL - 12/63

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#

Michal Valko – Graphs in Machine Learning SequeL - 12/63

Every round t the learner

picks a node

incurs a loss

optional feedback

The performance is total expected regret

Specific problems differ in

1. loss

2. feedback

3. guarantees
12

5. Polymatroid bandits

In this chapter, we first introduce polymatroids and illustrate them on practical problems. We use
the problem of the minimum-cost flow (Megiddo 1974) on a network as an illustrative example
before we give the formal definition of polymatroids and learning with them.

⌅ Example 5.1 Consider a flow network with L source nodes and one sink node. The network is
illustrated in Figure 5.1.

Source'1' Source'2'

1'1'

1.5' 1.5'

1.5'

K'

...'
Source'3' Source'4'

1'1'

Source'L'0'1' Source'L'

1'1'

Figure 5.1: The flow network contains L source nodes and the maximum flow is K. The capacity of
the link is shown next to the link.

The network is defined by three constraints. First, the maximum flow through any source node
is 1. Second, the maximum flow through any two consecutive source nodes, e and e+ 1 where
e = 2i�1 for i 2 {1, . . . ,L/2}, is 3

2 . Third, the maximum flow is K. We assume that K is an integer
multiple of 3

2 . The cost of the flow from source node e is a Bernoulli random variable with mean:

w(e) =
⇢

0.5�D/2 e 4
3 K

0.5+D/2 otherwise. (5.1)

STRUCTURES IN BANDIT PROBLEMS

13

GRAPHS

POLYMATROIDS

BLACK-BOX FUNCTIONS

KERNELS

STRUCTURES WITHOUT TOPOLOGY

…

A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015

The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄⇤

I Limited sampling resources n

At time t n one can either

I sample a new arm ⌫Kt from the
reservoir distr. with mean
µKt ⇠ F , and set It = Kt,

I or choose an arm It among the
Kt�1

observed arms {⌫k}kKt�1 ,

and then collect Xt ⇠ ⌫kt

Objective: after n rounds, return an
arm bk whose mean µbk is as large as
possible. Minimize the simple regret

rn = µ̄⇤ � µbk,

where µ̄⇤ is the right end point of
1� F .

At time t...:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5

Arm 6

etc...

A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015

SPECIFIC GRAPH BANDIT SETTINGS

smoothness spectral bandits

side observations on graphs

influence maximisation revealing bandits

Revealing Graph bandits: Influence Maximization
Ignoring the structure again? The best we can do is eO �p

r⇤TN
�

We aim to do better: RT = eO �p
r⇤TD⇤

�
D⇤ - detectable dimension dependent on T and the structureI good case: star-shaped graph can have D⇤ = 1I bad case: a graph with many small cliques.I the worst case: all nodes are disconnected except 2Idea of the algorithm:
I exploration phase: sample randomly to find out ⇡ D⇤ nodes
I bandit case: use any bandit algorithm on these nodes

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

3

8

/

6

6

Exp3-IX regret bound

RT log N
⌘

+
⇣⌘

2 + �
⌘ TX

t=
1

E

2↵t log

✓
1 +

dN2/�e+ N
↵t

◆
+ 2

�

RT = eO
⇣p

↵T ln N
⌘

Next step
Generalization of the setting to combinatorial actions

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

2

7

/

6

6

Spectral Bandits Summary
I Spectral bandit setting (smooth graph functions).I SpectralUCB

I Regret bound
RT = eO

⇣

d

p
T ln

T

⌘

I SpectralTS
I Regret bound

RT = eO
⇣

d

p
T ln

N

⌘

I Computationally more e�cient.I SpectralEliminator
I Regret bound

RT = eO
⇣p

d

T ln
T

⌘

I Better upper, empirically does not seem to work well (yet)
I Bounds scale with e�ective dimension

d ⌧
D.

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

3

6

/

4

0

#relevant
eigenvectors

detectable
dimension

independence
number

14

Survey: http://researchers.lille.inria.fr/~valko/hp/publications/valko2016bandits.pdf

http://researchers.lille.inria.fr/~valko/hp/publications/valko2016bandits.pdf

ONLINE INFLUENCE MAXIMIZATION
 
Michal Valko, SequeL, Inria Lille - Nord Europe

Decision Theory and Network Science: Methods and Applications,

STOR-i Workshop at Lancaster University, Sep 18th, 2017

2016-2017, NIPS 2017  
https://arxiv.org/abs/1605.06593

2015-2016, AISTAST 2016

https://arxiv.org/abs/1605.06593

HOW TO RULE THE WORLD?

16

“IA” EST DÉJÀ LÀ

17

How to rule the world: “AI” is here

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/

1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a_story.html

https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/

Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U

Michal Valko – Graphs in Machine Learning SequeL - 8/41

INSOUMISE OU ENRACINÉE ?

Le "big data" ou la recette secrète du succès d'Emmanuel Macron?

https://www.rts.ch/info/sciences-tech/8580821-le-big-data-ou-la-recette-secrete-du-
succes-d-emmanuel-macron-.html

18

https://www.rts.ch/info/sciences-tech/8580821-le-big-data-ou-la-recette-secrete-du-succes-d-emmanuel-macron-.html

HOW TO RULE THE WORLD?

19

Religion CulturePolitics
JULY 18, 2016 March 26, 2017 September 1, 2009

Influence the influential!

HOW TO RULE THE WORLD?

20

Religion CulturePolitics

Influence the influential in England?

HOW TO RULE THE WORLD?

21

Religion ? CulturePolitics ?

Influence the influential in England!

HOW TO RULE THE WORLD?

22

Religion ? CulturePolitics ?

Influence the influential in England!

338 ET 200

23slide from Stefanie Jegelka

24

EXAMPLE: INFLUENCE IN SOCIAL NETWORKS  
[KEMPE, KLEINBERG, TARDOS KDD ’03]

 Who should get free cell phones?
 V = {Alice,Bob,Charlie,Dorothy,Eric,Fiona}
 F(A) = Expected number of people influenced when targeting A

0.5

0.3
0.5 0.4

0.2

0.2 0.5

Alice

Bob

Charlie

Dorothy Eric

Fiona

Prob.	 of 
influencing

MAXIMIZING INFLUENCE

Product placement

dispatch few to sell more

target influential people

Gathering the information?

likes on FB

promotional codes

Unknown graphs

all prior work needed to know the graph

here: provably learning faster without it

25

p
i

j

REVEALING BANDITS FOR LOCAL INFLUENCE

26

p
i

j

pij

i j

Unknown (pij)ij — (symmetric) probability of influences

In each time step t = 1, …., n

learner picks a node kt

environment reveals the set of influenced node Skt

Select influential people = Find the strategy maximising

Alexandra Carpentier, Michal Valko

2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

Why this is a bandit problem?

What are bandits anyway?

Case n < d

PERFORMANCE CRITERION

27

The number of expected influences of node k is by definition

Oracle strategy always selects the best

Expected reward of the oracle strategy

Alexandra Carpentier, Michal Valko

2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

Alexandra Carpentier, Michal Valko

2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

Alexandra Carpentier, Michal Valko

2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

Alexandra Carpentier, Michal Valko

2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

Expected regret of any adaptive strategy unaware of (pij)ij

p
i

j

pij

i j

UPPER CONFIDENCE BOUND BASED ALGOS

28

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

MULTI-ARM BANDITS IN CAFÉ CULTURE

29

Video recorded March 30th, 2017, 13h50,
Université de Lille, Susie & the Piggy Bones Band

UPPER CONFIDENCE BOUND BASED ALGOS

30

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

UPPER CONFIDENCE BOUND BASED ALGOS

31

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

UPPER CONFIDENCE BOUND BASED ALGOS

32

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

DETECTABLE DIMENSION

33

number of nodes we can efficiently extract in less than n rounds

function D controls number of nodes given a gap

D(r) = d for r≥ r* and D(0) = number of most influenced nodes

Detectable dimension D* = D(Δ∆*)

Detectable gap Δ∆* constants coming from the analysis and the Bernstein inequality

Detectable horizon T*, smallest integer s.t.

Equivalently: D* corresponding to smallest T* such that

- For (easy, structured) star graphs D* = 1 even for small n (big gain)

Revealing graph bandits for maximizing local influence

� > 0 such that for n large enough, depending
on ", we have that

inf supE [Rn] � �min
⇣

r?n, r?d+
p

r?nd
⌘

,

where inf sup means the best possible algorithm
on the worst possible graph bandit problem.

• Upper bound. There exists a constant U > 0
such that the regret of Algorithm 1 is bounded as

E [Rn] U min
⇣

r?n, r?d+
p

r?nd
⌘

.

Algorithm 1 GraphMOSS
Input

d: the number of nodes
n: time horizon

Initialization
Sample each arm twice
Update brk,2d, b�k,2d, and Tk,2d 2, for 8k d

for t = 2d+ 1, . . . , n do

Ck,t 2b�k,t

q

max(log(n/(dTk,t)),0)
Tk,t

+ 2max(log(n/(dTk,t)),0)
Tk,t

, for 8k d

kt argmaxk brk,t + Ck,t

Sample node kt and receive |Skt,t|
Update brk,t+1

, b�k,t+1

, and Tk,t+1

, for 8k d
end for

The lower bound holds also in the specific case where
the graph G is undirected (i.e., symmetric M), as is
explained in the proof. This is an important remark
as the undirected graphs are a canonical and “per-
fect” example of graphs where influencing and being
influenced is correlated and where the dual influence
is equal to the influence for each node.

3 The BARE algorithm and results

In this section we treat the unrestricted setting de-
scribed in Section 2.1 where we get revealed the iden-
tity of the influenced nodes, while the reward stays the
same as in Section 2.2. First, note that the minimax-
optimal rate in this setting is the same as in the re-
stricted information case above. To see that, one can,
for instance, consider a network composed of isolated
nodes with only a very small clique of most influen-
tial nodes, connected only to each other. Another ex-
ample is a graph where the fact of being influential
is uncorrelated with the fact of being influenced and
where, for instance, the most influential node is not
influenced by any node. For the same reasons as the
ones described in Theorem 1, when n d, there is

no adaptive strategy in a minimax sense, also in this
unrestricted setting.

However, the cases where the identity of the influenced
nodes does not help, are somewhat pathological. In-
tuitively, they correspond to cases where the graph
structure is not very informative for finding the most
influential node. This is the case when there are many
isolated nodes, and also in the case where observing
nodes that are very influenced does not provide in-
formation on these nodes’ influence. In many typical
and more interesting situations, this is not the case.
First, in these problems, the nodes that have high
influence are also very likely to be subject being in-
fluenced, for instance, many interesting networks are
symmetric and then it is immediately the case. Sec-
ond, in the realistic graphs, there is typically a small
portion of the nodes that are noticeably more con-
nected than the others (Barabási & Albert, 1999).

In order to rigorously define these non-degenerate
cases, let us first define function D that controls the
number of nodes with a given dual gap, i.e., a given
suboptimality with respect to the most influenced
node

D(�)
def

= |{i d : r�? � r�i �}| .
The function D(�) is a non-decreasing quantity dual
to the arm gaps. Note that D(r) = d for any r � r�?
and that D(0) is the number of most influenced nodes.
We now define the problem dependent quantities that
express the di�culty of the problem and allow us to
state our results.

Definition 1. We define the detectable horizon as
the smallest integer T? > 0 such that

T?r
�
? �

p

D?nr�?,

when such T? exists and T? = n otherwise. Here, D?

is the detectable dimension defined as

D?
def

=D(�?),

where the detectable gap �? is defined as

�?
def

= 16

s

r�?d log (nd)

T?
+

80d log (nd)

T?
·

Remark 1. From the definitions above, the detectable
dimension is the D? that corresponds to the smallest
integer T? > 0 such that

T?r
�
? �

v

u

u

u

tD

0

@16

s

r�?d log (nd)

T?
+

80d log (nd)

T?

1

Anr�?,

or D? = d if such T? does not exist. It is therefore
a well defined quantity. Moreover, since D is nonde-
creasing and D(0) is the number of most influenced

Revealing graph bandits for maximizing local influence

� > 0 such that for n large enough, depending
on ", we have that

inf supE [Rn] � �min
⇣

r?n, r?d+
p

r?nd
⌘

,

where inf sup means the best possible algorithm
on the worst possible graph bandit problem.

• Upper bound. There exists a constant U > 0
such that the regret of Algorithm 1 is bounded as

E [Rn] U min
⇣

r?n, r?d+
p

r?nd
⌘

.

Algorithm 1 GraphMOSS
Input

d: the number of nodes
n: time horizon

Initialization
Sample each arm twice
Update brk,2d, b�k,2d, and Tk,2d 2, for 8k d

for t = 2d+ 1, . . . , n do

Ck,t 2b�k,t

q

max(log(n/(dTk,t)),0)
Tk,t

+ 2max(log(n/(dTk,t)),0)
Tk,t

, for 8k d

kt argmaxk brk,t + Ck,t

Sample node kt and receive |Skt,t|
Update brk,t+1

, b�k,t+1

, and Tk,t+1

, for 8k d
end for

The lower bound holds also in the specific case where
the graph G is undirected (i.e., symmetric M), as is
explained in the proof. This is an important remark
as the undirected graphs are a canonical and “per-
fect” example of graphs where influencing and being
influenced is correlated and where the dual influence
is equal to the influence for each node.

3 The BARE algorithm and results

In this section we treat the unrestricted setting de-
scribed in Section 2.1 where we get revealed the iden-
tity of the influenced nodes, while the reward stays the
same as in Section 2.2. First, note that the minimax-
optimal rate in this setting is the same as in the re-
stricted information case above. To see that, one can,
for instance, consider a network composed of isolated
nodes with only a very small clique of most influen-
tial nodes, connected only to each other. Another ex-
ample is a graph where the fact of being influential
is uncorrelated with the fact of being influenced and
where, for instance, the most influential node is not
influenced by any node. For the same reasons as the
ones described in Theorem 1, when n d, there is

no adaptive strategy in a minimax sense, also in this
unrestricted setting.

However, the cases where the identity of the influenced
nodes does not help, are somewhat pathological. In-
tuitively, they correspond to cases where the graph
structure is not very informative for finding the most
influential node. This is the case when there are many
isolated nodes, and also in the case where observing
nodes that are very influenced does not provide in-
formation on these nodes’ influence. In many typical
and more interesting situations, this is not the case.
First, in these problems, the nodes that have high
influence are also very likely to be subject being in-
fluenced, for instance, many interesting networks are
symmetric and then it is immediately the case. Sec-
ond, in the realistic graphs, there is typically a small
portion of the nodes that are noticeably more con-
nected than the others (Barabási & Albert, 1999).

In order to rigorously define these non-degenerate
cases, let us first define function D that controls the
number of nodes with a given dual gap, i.e., a given
suboptimality with respect to the most influenced
node

D(�)
def

= |{i d : r�? � r�i �}| .
The function D(�) is a non-decreasing quantity dual
to the arm gaps. Note that D(r) = d for any r � r�?
and that D(0) is the number of most influenced nodes.
We now define the problem dependent quantities that
express the di�culty of the problem and allow us to
state our results.

Definition 1. We define the detectable horizon as
the smallest integer T? > 0 such that

T?r
�
? �

p

D?nr�?,

when such T? exists and T? = n otherwise. Here, D?

is the detectable dimension defined as

D?
def

=D(�?),

where the detectable gap �? is defined as

�?
def

= 16

s

r�?d log (nd)

T?
+

80d log (nd)

T?
·

Remark 1. From the definitions above, the detectable
dimension is the D? that corresponds to the smallest
integer T? > 0 such that

T?r
�
? �

v

u

u

u

tD

0

@16

s

r�?d log (nd)

T?
+

80d log (nd)

T?

1

Anr�?,

or D? = d if such T? does not exist. It is therefore
a well defined quantity. Moreover, since D is nonde-
creasing and D(0) is the number of most influenced

Revealing graph bandits for maximizing local influence

� > 0 such that for n large enough, depending
on ", we have that

inf supE [Rn] � �min
⇣

r?n, r?d+
p

r?nd
⌘

,

where inf sup means the best possible algorithm
on the worst possible graph bandit problem.

• Upper bound. There exists a constant U > 0
such that the regret of Algorithm 1 is bounded as

E [Rn] U min
⇣

r?n, r?d+
p

r?nd
⌘

.

Algorithm 1 GraphMOSS
Input

d: the number of nodes
n: time horizon

Initialization
Sample each arm twice
Update brk,2d, b�k,2d, and Tk,2d 2, for 8k d

for t = 2d+ 1, . . . , n do

Ck,t 2b�k,t

q

max(log(n/(dTk,t)),0)
Tk,t

+ 2max(log(n/(dTk,t)),0)
Tk,t

, for 8k d

kt argmaxk brk,t + Ck,t

Sample node kt and receive |Skt,t|
Update brk,t+1

, b�k,t+1

, and Tk,t+1

, for 8k d
end for

The lower bound holds also in the specific case where
the graph G is undirected (i.e., symmetric M), as is
explained in the proof. This is an important remark
as the undirected graphs are a canonical and “per-
fect” example of graphs where influencing and being
influenced is correlated and where the dual influence
is equal to the influence for each node.

3 The BARE algorithm and results

In this section we treat the unrestricted setting de-
scribed in Section 2.1 where we get revealed the iden-
tity of the influenced nodes, while the reward stays the
same as in Section 2.2. First, note that the minimax-
optimal rate in this setting is the same as in the re-
stricted information case above. To see that, one can,
for instance, consider a network composed of isolated
nodes with only a very small clique of most influen-
tial nodes, connected only to each other. Another ex-
ample is a graph where the fact of being influential
is uncorrelated with the fact of being influenced and
where, for instance, the most influential node is not
influenced by any node. For the same reasons as the
ones described in Theorem 1, when n d, there is

no adaptive strategy in a minimax sense, also in this
unrestricted setting.

However, the cases where the identity of the influenced
nodes does not help, are somewhat pathological. In-
tuitively, they correspond to cases where the graph
structure is not very informative for finding the most
influential node. This is the case when there are many
isolated nodes, and also in the case where observing
nodes that are very influenced does not provide in-
formation on these nodes’ influence. In many typical
and more interesting situations, this is not the case.
First, in these problems, the nodes that have high
influence are also very likely to be subject being in-
fluenced, for instance, many interesting networks are
symmetric and then it is immediately the case. Sec-
ond, in the realistic graphs, there is typically a small
portion of the nodes that are noticeably more con-
nected than the others (Barabási & Albert, 1999).

In order to rigorously define these non-degenerate
cases, let us first define function D that controls the
number of nodes with a given dual gap, i.e., a given
suboptimality with respect to the most influenced
node

D(�)
def

= |{i d : r�? � r�i �}| .
The function D(�) is a non-decreasing quantity dual
to the arm gaps. Note that D(r) = d for any r � r�?
and that D(0) is the number of most influenced nodes.
We now define the problem dependent quantities that
express the di�culty of the problem and allow us to
state our results.

Definition 1. We define the detectable horizon as
the smallest integer T? > 0 such that

T?r
�
? �

p

D?nr�?,

when such T? exists and T? = n otherwise. Here, D?

is the detectable dimension defined as

D?
def

=D(�?),

where the detectable gap �? is defined as

�?
def

= 16

s

r�?d log (nd)

T?
+

80d log (nd)

T?
·

Remark 1. From the definitions above, the detectable
dimension is the D? that corresponds to the smallest
integer T? > 0 such that

T?r
�
? �

v

u

u

u

tD

0

@16

s

r�?d log (nd)

T?
+

80d log (nd)

T?

1

Anr�?,

or D? = d if such T? does not exist. It is therefore
a well defined quantity. Moreover, since D is nonde-
creasing and D(0) is the number of most influenced

Revealing graph bandits for maximizing local influence

� > 0 such that for n large enough, depending
on ", we have that

inf supE [Rn] � �min
⇣

r?n, r?d+
p

r?nd
⌘

,

where inf sup means the best possible algorithm
on the worst possible graph bandit problem.

• Upper bound. There exists a constant U > 0
such that the regret of Algorithm 1 is bounded as

E [Rn] U min
⇣

r?n, r?d+
p

r?nd
⌘

.

Algorithm 1 GraphMOSS
Input

d: the number of nodes
n: time horizon

Initialization
Sample each arm twice
Update brk,2d, b�k,2d, and Tk,2d 2, for 8k d

for t = 2d+ 1, . . . , n do

Ck,t 2b�k,t

q

max(log(n/(dTk,t)),0)
Tk,t

+ 2max(log(n/(dTk,t)),0)
Tk,t

, for 8k d

kt argmaxk brk,t + Ck,t

Sample node kt and receive |Skt,t|
Update brk,t+1

, b�k,t+1

, and Tk,t+1

, for 8k d
end for

The lower bound holds also in the specific case where
the graph G is undirected (i.e., symmetric M), as is
explained in the proof. This is an important remark
as the undirected graphs are a canonical and “per-
fect” example of graphs where influencing and being
influenced is correlated and where the dual influence
is equal to the influence for each node.

3 The BARE algorithm and results

In this section we treat the unrestricted setting de-
scribed in Section 2.1 where we get revealed the iden-
tity of the influenced nodes, while the reward stays the
same as in Section 2.2. First, note that the minimax-
optimal rate in this setting is the same as in the re-
stricted information case above. To see that, one can,
for instance, consider a network composed of isolated
nodes with only a very small clique of most influen-
tial nodes, connected only to each other. Another ex-
ample is a graph where the fact of being influential
is uncorrelated with the fact of being influenced and
where, for instance, the most influential node is not
influenced by any node. For the same reasons as the
ones described in Theorem 1, when n d, there is

no adaptive strategy in a minimax sense, also in this
unrestricted setting.

However, the cases where the identity of the influenced
nodes does not help, are somewhat pathological. In-
tuitively, they correspond to cases where the graph
structure is not very informative for finding the most
influential node. This is the case when there are many
isolated nodes, and also in the case where observing
nodes that are very influenced does not provide in-
formation on these nodes’ influence. In many typical
and more interesting situations, this is not the case.
First, in these problems, the nodes that have high
influence are also very likely to be subject being in-
fluenced, for instance, many interesting networks are
symmetric and then it is immediately the case. Sec-
ond, in the realistic graphs, there is typically a small
portion of the nodes that are noticeably more con-
nected than the others (Barabási & Albert, 1999).

In order to rigorously define these non-degenerate
cases, let us first define function D that controls the
number of nodes with a given dual gap, i.e., a given
suboptimality with respect to the most influenced
node

D(�)
def

= |{i d : r�? � r�i �}| .
The function D(�) is a non-decreasing quantity dual
to the arm gaps. Note that D(r) = d for any r � r�?
and that D(0) is the number of most influenced nodes.
We now define the problem dependent quantities that
express the di�culty of the problem and allow us to
state our results.

Definition 1. We define the detectable horizon as
the smallest integer T? > 0 such that

T?r
�
? �

p

D?nr�?,

when such T? exists and T? = n otherwise. Here, D?

is the detectable dimension defined as

D?
def

=D(�?),

where the detectable gap �? is defined as

�?
def

= 16

s

r�?d log (nd)

T?
+

80d log (nd)

T?
·

Remark 1. From the definitions above, the detectable
dimension is the D? that corresponds to the smallest
integer T? > 0 such that

T?r
�
? �

v

u

u

u

tD

0

@16

s

r�?d log (nd)

T?
+

80d log (nd)

T?

1

Anr�?,

or D? = d if such T? does not exist. It is therefore
a well defined quantity. Moreover, since D is nonde-
creasing and D(0) is the number of most influenced

HOW DOES D* BEHAVE?

For (easy, structured) star graphs D* = 1 even for small n (big gain)

For (difficult) empty graphs D*= d even for large n (no gain)

In general: D* roughly decreases with n and it is small when D decreases quickly

For n large enough D* is the number of the most influences nodes

Example: D* for Barabási–Albert model & Enron graph as a function of n 

34

n - number of rounds

D
*-

de
te

ct
ab

le
 d

im
en

si
on

Enron - Number of nodes: 36692 - Number of runs: 1 - revelation p = 0.80

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0

0.5

1

1.5

2

2.5

3

3.5

4
× 104

n - number of rounds

D
*-

de
te

ct
ab

le
 d

im
en

si
on

Barabasi-Albert - Number of nodes: 1000 - Number of runs: 10 - revelation p = 0.80

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
200

300

400

500

600

700

800

900

1000

35

Algorithm BARE - BAndit REvelator

Alexandra Carpentier, Michal Valko

nodes, then D? converges to the number of most influ-
enced nodes as n tends to infinity.

Finally let us write the influential-influenced gap as

"?
def

= r? � max
k2D�

rk,

where D� def

={i : r�i = maxk r�k}. The quantity "? quan-
tifies the gap between the most influential node overall
vs. the most influential node in the set of most influ-
enced nodes.

Remark 2. The quantity "? is small when one of the
most influenced nodes is also very influential. It is
exactly zero when one of the most influential nodes
happens to also be one of the most influenced nodes.
For instance, the case "? = 0 appears in undirected
social network models with mutual influence.

The graph structure is helpful when the D function
decreases quickly with n. To give an intuition about
how is D linked to the graph topology, consider a star-
shaped graph which is the most helpful and can have
D? = 1 even for a small n. On the other hand, a bad
case is a graph with many small cliques. The worst
case is where all nodes are disconnected except two,
where D? will be of order d even for a large n.

The detectable dimension D? is a problem dependent
quantity that represents the complexity of the problem
instead of d. In real networks, D? is typically smaller
than the number of nodes d and we give several ex-
amples of the empirical value of D? in Section 5 and
Appendix ??. As our analysis will show, D? represents
the number of nodes that we can e�ciently extract
from d nodes in less than n rounds of the time budget.
Our bandit revelator algorithm, BARE (Algorithm 2),
starts by the global-exploration phase and extracts a
subset of cardinality less than or equal toD?, that con-
tains a very influential node, that is at most "? away
from the most influential node. BARE does this extrac-
tion without scanning all the d nodes, which could be
impossible anyway, since we do not restrict to d n.
In the subsequent bandit phase, BARE proceeds with
scanning this smaller set of selected nodes to find the
most influential one.

We now state our main theoretical result that proves
a bound on the regret of BARE.
Theorem 2 (proof in Section 4). In the unrestricted
local influence setting with information about the
neighbors, BARE satisfies, for a constant C > 0,

E [Rn] Cmin
⇣

r?n,D?r? +
p

r?nD? + n"?
⌘

.

Remark 3. Note that BARE does not need prelimi-
nary information about G, as a classic multi-arm ban-
dit strategy described in Section 2.2 would require in
order to attain this rate.

Algorithm 2 BARE: Bandit revelator
Input
d: the number of nodes
n: time horizon

Initialization
Tk,t 0, for 8k d
dr�k,t 0, for 8k d

t 1, bT? 0, bD?,t d, b�?,1 d
Global exploration phase

while t
⇣

b�?,t � 4
p

d log(dn)/t
⌘

q

bD?,tn do

Influence a node at random (choose kt uniformly
at random) and get Skt,t from this node
\r�k,t+1

 t
t+1

dr�k,t +
d

t+1

Skt,t(k)

b�?,t+1

 maxk0

q

\r�k0,t+1

+ 8d log(nd)/(t+ 1)

w?,t+1

 8b�?,t+1

q

d log(nd)
t+1

+ 24d log(nd)
t+1

bD?,t+1

�

�

�

n

k : maxk0 \r�k0,t+1

�\r�k,t+1

 w?,t+1

o

�

�

�

t t+ 1
end while
bT? t.
Bandit phase
Run minimax-optimal bandit algorithm on the
bD?,bT?

chosen nodes (e.g., Algorithm 1)

Corollary 1. For an undirected social network model
the expected regret of BARE is

E [Rn] Cmin
⇣

r?n,D?r? +
p

r?nD?

⌘

,

which is the minimax-optimal regret in the case where
there are D? instead of d nodes. This highlights the
dimensionality reduction potential of our method.

Finally, we state a lower bound for our setting. Notice
that the influential-influence gap also appears here.

Theorem 3 (proof in Appendix ??). Let d � Cn > 0
where C > 0 is an universal constant. Consider the
set of unrestricted local influence settings with infor-
mation about the neighbors, and the set of all problems
that have maximal influence bounded by r, detectable
dimension smaller than D d/2 and influential-
influence gap smaller than ". Then the expected regret
of the best possible algorithm in the worst case of these
problems is lower bounded as

C 00 min
⇣

rn,Dr? +
p

rnD + n"
⌘

,

where C 00 is a universal constant.

4 Proof of Theorem 2

For any node k d and any round t that is during
the global exploration phase, let us define the following

EMPIRICAL RESULTS

Manuscript under review by AISTATS 2016

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.80

0 200 400 600 800 1000 1200
0

5

10

15
× 104

BARE
GraphMOSS

bD⇤ = 134, bT⇤ = 36

round t

re
gr

et

Graph: Facebook - Number of runs: 100 - revelation p = 0.80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5
× 106

BARE
GraphMOSS

bD⇤ = 125, bT⇤ = 28

round t

re
gr

et

Graph: Enron - Number of runs: 100 - revelation p = 0.80

1 5000 10000 15000 20000 25000 30000 35000
0

1

2

3

4

5

6

7

8

9
× 107

BARE
GraphMOSS

bD⇤ = 564, bT⇤ = 107

round t

re
gr

et

Graph: Gnutella - Number of runs: 100 - revelation p = 0.80

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

8

9
× 105

BARE
GraphMOSS

bD⇤ = 3916, bT⇤ = 779

Figure 1: Left : Barabási-Albert. Middle left : Facebook. Middle right : Enron. Right : Gnutella.

bD⇤ = 529, bT⇤ = 147 bD⇤ = 230, bT⇤ = 64 bD⇤ = 161, bT⇤ = 50 bD⇤ = 134, bT⇤ = 36 bD⇤ = 133, bT⇤ = 34

Figure 2: Barabási-Albert model with varying p between 0.2 and 1

We first performed an experiment on a graph gen-
erated by 10-out-degree Barabási-Albert model with
d = 1000 nodes. Figure 1 (left) compares BARE with
GraphMOSS. As expected, GraphMOSS su↵ers linear
regret up to time t = d, since there is no sharing of in-
formation and for t d, GraphMOSS pulls each arm
once. While the regret of GraphMOSS is no longer
linear for t > d and eventually detects the best node,
BARE is able to detect promising nodes much sooner
during its global exploration phase and we can see the
benefit of revealed information already around t = 300.

In Figure 2, we varied the probability of revelation p
for a Barabási-Albert graph. When p close is to one,
the more of the graph structure is revealed and the
problem becomes easier. On the other hand, with p
close to zero we do not get as much information on the
structure and the performance of BARE and Graph-
MOSS are similar.

We also performed the experiments on Enron mail
graph (Klimt & Yang, 2004) with d = 36692 and the
snapshot of symmetrized version of Gnuttella network
from August 4th, 2002 (Ripeanu et al., 2002) with
d = 10879, obtained from Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014). Further-
more, we evaluated BARE on a subset of Facebook
network with d = 4039 (Viswanath et al., 2009). We
used the same parameters as for the Barabási-Albert
case.

As expected, Figure 1 (middle left, middle right,
right) shows that the performance gains of BARE over
GraphMOSS depends heavily on the structure. In En-
ron and Facebook, the gain of BARE is significant
which suggests that the graphs from these networks

feature a relatively small number of influential nodes.
On the other hand, the gain of BARE in Gnutella was
much smaller which again suggests that this network
is more decentralized.

In all the plots we include also the empirical estimate
of the detectable dimension bD⇤ and the detectable
horizon bT⇤. Notice that the smaller bD⇤, as compared
to d, and the smaller bT⇤ is as compared to n, the sooner
is BARE able to learn the most influential node as
compared to GraphMOSS.

6 Conclusion

We hope that out work on local revelation incites the
extensions on more elaborate propagation models on
graphs (Kempe et al., 2015). One way to directly ex-
tend to more general propagation models is to consider
that a more distant neighbor is a direct neighbor with
contamination probability being the sum of the path
products. Moreover, if we allow for more feedback,
e.g., identity of the influencing paths, our results could
extend more e�ciently.

Note that in our setting, we were completely agnos-
tic to the graph structure. Realistic networks often
exhibit some additional structural properties that are
captured by graph generator models, such as various
stochastic block models (Girvan & Newman, 2002).

In future, we would like to extend our approach to
cases where we can take advantage of the assump-
tions stemming from these models and consider the
subclasses of graph structures where we can further
improve the learning rates.

Enron and Facebook vs. Gnutella (decentralised)

36

BETTER

Revealing graph bandits for maximizing local influence

bD? = 134, bT? = 36 bD? = 125, bT? = 28 bD? = 564, bT? = 107 bD? = 3916, bT? = 779

Figure 1: Left : Barabási-Albert. Middle left : Facebook. Middle right : Enron. Right : Gnutella.

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.20

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

4
× 104

BARE
GraphMOSS

bD? = 529, bT? = 147

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.40

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6
× 104

BARE
GraphMOSS

bD? = 230, bT? = 64

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.60

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8
× 104

BARE
GraphMOSS

bD? = 161, bT? = 50

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.80

0 200 400 600 800 1000 1200
0

5

10

15
× 104

BARE
GraphMOSS

bD? = 134, bT? = 36

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 1.00

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14
× 104

BARE
GraphMOSS

bD? = 133, bT? = 34

Figure 2: Barabási-Albert model with varying p between 0.2 and 1

We first performed an experiment on a graph gen-
erated by 10-out-degree Barabási-Albert model with
d = 1000 nodes. Figure 1 (left) compares BARE with
GraphMOSS. As expected, GraphMOSS su↵ers linear re-
gret up to time t = d, since there is no sharing of
information and for t d, GraphMOSS pulls each arm
once. While the regret of GraphMOSS is no longer linear
for t > d and eventually detects the best node, BARE is
able to detect promising nodes much sooner during its
global exploration phase and we can see the benefit of
revealed information already around t = 300.

In Figure 2, we varied the probability of revelation p
for a Barabási-Albert graph. When p close is to one,
the more of the graph structure is revealed and the
problem becomes easier. On the other hand, with p
close to zero we do not get as much information
about the structure and the performance of BARE and
GraphMOSS are similar.

We also performed the experiments on Enron mail
graph (Klimt & Yang, 2004) with d = 36692 and the
snapshot of symmetrized version of Gnutella network
from August 4th, 2002 (Ripeanu et al., 2002) with
d = 10879, obtained from Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014). Further-
more, we evaluated BARE on a subset of Facebook net-
work with d = 4039 (Viswanath et al., 2009). We used
the same parameters as for the Barabási-Albert case.

As expected, Figure 1 (middle left, middle right,
right) shows that the performance gains of BARE over
GraphMOSS depend heavily on the structure. In Enron
and Facebook, the gain of BARE is significant which
suggests that the graphs from these networks feature
a relatively small number of influential nodes. On the
other hand, the gain of BARE on Gnutella was much
smaller which again suggests that this network is more
decentralized.

In all the plots we include also the empirical estimate
of the detectable dimension bD? and the detectable
horizon bT?. Notice that the smaller bD?, as compared
to d, and the smaller bT? is as compared to n, the sooner
is BARE able to learn the most influential node as com-
pared to GraphMOSS.

6 Conclusion

We hope that out work on local revelation incites the
extensions on more elaborate propagation models on
graphs (Kempe et al., 2015). One way to directly ex-
tend to more general propagation models is to consider
that a more distant neighbor is a direct neighbor with
contamination probability being the sum of the path
products. Moreover, if we allow for more feedback,
e.g., the identity of the influencing paths, our results
could extend more e�ciently. Note that in our setting,
we were completely agnostic to the graph structure.
Realistic networks often exhibit some additional struc-
tural properties that are captured by graph generator
models, such as various stochastic block models (Gir-
van & Newman, 2002). In future, we would like to
extend our approach to cases where we can take advan-
tage of the assumptions stemming from these models
and consider the subclasses of graph structures where
we can further improve the learning rates.

Acknowledgements We thank Alan Mislove for
the Facebook dataset. The research presented in this
paper was supported by French Ministry of Higher
Education and Research, Nord-Pas-de-Calais Regional
Council, French National Research Agency project
ExTra-Learn (n.ANR-14-CE24-0010-01), and by Ger-
man Research Foundation’s Emmy Noether grant
MuSyAD (CA 1488/1-1).

BETTER

Varying a (constant) probability of influence

REVEALING BANDITS: WHAT DO YOU MEAN?

Ignoring the structure?

BAndit REvelator: 2-phase algorithm

global exploration phase

super-efficient exploration

linear regret — needs to be short!

extracts D* nodes

bandit phase

uses a minimax-optimal bandit algorithm (GraphMOSS)

has a “square root” regret on D* nodes

D* realizes the optimal trade-off !

different from exploration/exploitation tradeoff

37

reward of the
best node

D* - detectable dimension
(depends on n and the structure)

good case: star-shaped graph
can have D* = 1

bad case: a graph with many
small cliques.

the worst case: all nodes are
disconnected except 2

Regret of BARE

O(
p

r?nD?)

O(
p
r?nd)

NEXT: GLOBAL INFLUENCE MODELS

Kempe, Kleinberg, Tárdos, 2003, 2015: Independence Cascades, Linear Threshold models

global and multiple-source models

Different feed-back models

Full bandit (only the number of influenced nodes)

Node-level semi-bandit (identities of influenced nodes)

Edge-level semi-bandit (identities of influenced edges)

Wen, Kveton, Valko, Vaswani, to appear at NIPS 2017

preprint: https://arxiv.org/abs/1605.06593

IMLinUCB with linear parametrization of edge weights

Regret analysis for general graphs, cascading model, and multiple-sources

38

https://arxiv.org/abs/1605.06593

39

Online Influence Maximization under Independent
Cascade Model with Semi-Bandit Feedback

Zheng Wen
Adobe Research

San Jose, CA 95110
zwen@adobe.com

Branislav Kveton
Adobe Research

San Jose, CA 95110
kveton@adobe.com

Michal Valko
Inria Lille-Nord Europe

59650 Villeneuve d’Ascq, France
michal.valko@inria.fr

Sharan Vaswani
University of British Columbia

Vancouver, B.C., Canada
sharanv@cs.ubc.ca

Abstract

We study the stochastic online problem of learning to influence in a social network
with semi-bandit feedback, where we observe how users influence each other. The
problem combines challenges of limited feedback, because the learning agent
only observes the influenced portion of the network, and combinatorial number of
actions, because the cardinality of the feasible set is exponential in the maximum
number of influencers. We propose a computationally efficient UCB-like algorithm,
IMLinUCB, and analyze it. Our regret bounds are polynomial in all quantities
of interest; reflect the structure of the network and the probabilities of influence.
Moreover, they do not depend on inherently large quantities, such as the cardinality
of the action set. To the best of our knowledge, these are the first such results.
IMLinUCB permits linear generalization and therefore is suitable for large-scale
problems. Our experiments show that the regret of IMLinUCB scales as suggested
by our upper bounds in several representative graph topologies; and based on linear
generalization, IMLinUCB can significantly reduce regret of real-world influence
maximization semi-bandits.

1 Introduction

Social networks have been playing an increasingly important role in the past decade as the media
for spreading information, ideas, and influence. A large research field of computational advertising
studies various models of how the influence spreads [19, 9, 13]. The best known and studied are the
models of Kempe et al. [19], and in particular the independent cascade model. In this model, the
social network is a directed graph, where each directed edge (i, j) is associated with an activation
probability w(i, j). We say a node j is a downstream neighbor of node i if there is a directed edge
(i, j) from i to j. After the agent chooses a set of influencers (source nodes) S, the independent
cascade model defines an activation (influence, diffusion) process: At the beginning, all nodes in
S are activated; subsequently, every activated node i can activate its downstream neighbor j with
probability w(i, j) once, independently of the history of the process. This process runs until no
activations are possible. In an influence maximization (IM) problem, the goal of the agent is to
maximize the expected number of the influenced (activated) nodes subject to a cardinality constraint
on S . This problem is NP-hard but can be efficiently approximated within the factor of 1� 1/e [19].

In many social networks, however, the activation probabilities are unknown, and the agent needs to
choose a good set of source nodes while interacting with the network. This motivates the learning
framework of IM bandits [32]. Depending on the feedback to the agent, the IM bandits can have (1) a

CHALLENGES AND SOLUTIONS

Already the offline problem is NP hard

solution: approximation/randomized algorithms

Lots of edges

lots of parameters to learn, if we want to scale, we need to reduce this complexity

solution: linear approximation of probabilities

Combinatorial size of possible seed-sets

Combinatorial Bandits: IMLinUCB

Understanding what’s going on?

known analyses VERY loose (e.g., scaling with 1/pmin, or only assymptotic)

40

full-bandit feedback, where only the number of influenced nodes is observed; (2) a node semi-bandit
feedback, where the identity of influenced nodes is observed; or (3) an edge semi-bandit feedback,
where the identity of influenced edges (edges from influenced nodes) is observed. In all models, the
IM bandits combines two main challenges. First, the number of actions S grows exponentially with
the cardinality constraint on S . Second, we only observe the influenced portion of the network.

Although IM bandits have been studied very recently [23, 11, 32, 27], open challenges remain. One
challenge is to identify reasonable complexity metrics, which should depend on both the structure
(topology) of the network and the activation probabilities of edges to reflect the information-theoretic
complexity of IM bandits, and develop learning algorithms whose performance scales gracefully with
these metrics. Another challenge is to develop efficient learning algorithms for large-scale IM bandits,
which is increasingly important because social networks have millions or even billions of users.

In this paper, we suggest to overcome these two challenges in IM bandits in the case of edge semi-
bandit feedback, where we observe for each influenced node the downstream neighbors that this
node influenced (activated). Modern online social networks track activities of their users and these
activation events can often be observed, for instance when the user retweets a tweet of another
user. We refer to our model as an independent cascade semi-bandit (ICSB). We make four main
contributions. First, we propose IMLinUCB, a UCB-like algorithm for ICSBs that permits linear
generalization and is suitable for large-scale problems. Second, we propose a novel complexity
metric, referred to as maximum observed relevance C⇤ for ICSB, which depends on the topology of
the network and is a non-decreasing function of activation probabilities. C⇤ can be upper bounded
based on network topology or number of nodes/ edges in the network, but it is expected to be much
smaller than these upper bounds in real-world social networks due to the relatively low activation
probabilities, which favorably impacts our performance guarantees. Third, we bound the regret of
IMLinUCB. Our regret bounds are polynomial in all quantities of interest; reflect the structure and
activation probabilities of the network through C⇤; and do not depend on inherently large quantities,
such as the reciprocal of the minimum probability of being influenced [11] and the cardinality of the
action set. Finally, we evaluate IMLinUCB on several problems. Our experiment results show that the
regret of IMLinUCB scales as suggested by our topology-dependent regret bounds; and based on linear
generalization, IMLinUCB can significantly reduce regrets for real-world influence maximization
semi-bandit problems.

2 Influence Maximization under Independence Cascade Models

Consider an directed graph G = (V, E) with a set V of L = |V| nodes, a set E of directed edges,
and a binary1 weight function w : E ! {0, 1}. We say that a node v

2

2 V is reachable from a
node v

1

2 V under w if there is a directed path2 p = (e
1

, e
2

, . . . , e
l

) from v
1

to v
2

in G satisfying
w(e

i

) = 1 for all i = 1, 2, . . . , l. For a given source node set S ✓ V and w, we say that node v 2 V
is influenced if v is reachable from at least one source node in S under w; and denote the number of
influenced nodes in G by f(S,w). By definition, the nodes in S are always influenced.

The influence maximization (IM) problem is characterized by a triple (G,K,w), where G is a given
directed graph, K L is the cardinality of source nodes, and w : E ! [0, 1] is a probability weight
function mapping each edge e 2 E to a real number w(e) 2 [0, 1]. The agent needs to choose a
set of K source nodes S ✓ V based on (G,K,w). Then a binary weight function w is obtained by
independently sampling a Bernoulli random variable w(e) ⇠ Bern (w(e)) for each edge e 2 E . The
agent’s objective is to maximize the expected number of the influenced nodes: maxS: |S|=K

f(S, w),
where f(S, w) �

= Ew [f(S,w)] is the expected number of influenced nodes when the source node set
is S and w is sampled according to w.3 It is well-known that the (offline) IM problem is NP-hard [19],
but can be approximately solved by approximation / randomized algorithms [9]. In this paper, we
refer to such algorithms as oracles to distinguish them from the machine learning algorithms discussed
in following sections. Let Sopt be the optimal solution of this problem, and S⇤

= ORACLE(G,K,w)
be the (possibly random) solution of an oracle ORACLE. For any ↵, � 2 [0, 1], we say that ORACLE

1Notice, that for a binary w there is no randomness in the subsequent definition.
2As is standard in graph theory, a directed path is a sequence of directed edges connecting a sequence of

distinct nodes, under the restriction that all edges are directed in the same direction.
3Notice that the definitions of f(S, w) and f(S,w) are consistent in the sense that if w 2 {0, 1}|E|, then

f(S, w) = f(S,w) with probability 1.

2

seed sizeseed set

APPROXIMATION ORACLE

41

full-bandit feedback, where only the number of influenced nodes is observed; (2) a node semi-bandit
feedback, where the identity of influenced nodes is observed; or (3) an edge semi-bandit feedback,
where the identity of influenced edges (edges from influenced nodes) is observed. In all models, the
IM bandits combines two main challenges. First, the number of actions S grows exponentially with
the cardinality constraint on S . Second, we only observe the influenced portion of the network.

Although IM bandits have been studied very recently [23, 11, 32, 27], open challenges remain. One
challenge is to identify reasonable complexity metrics, which should depend on both the structure
(topology) of the network and the activation probabilities of edges to reflect the information-theoretic
complexity of IM bandits, and develop learning algorithms whose performance scales gracefully with
these metrics. Another challenge is to develop efficient learning algorithms for large-scale IM bandits,
which is increasingly important because social networks have millions or even billions of users.

In this paper, we suggest to overcome these two challenges in IM bandits in the case of edge semi-
bandit feedback, where we observe for each influenced node the downstream neighbors that this
node influenced (activated). Modern online social networks track activities of their users and these
activation events can often be observed, for instance when the user retweets a tweet of another
user. We refer to our model as an independent cascade semi-bandit (ICSB). We make four main
contributions. First, we propose IMLinUCB, a UCB-like algorithm for ICSBs that permits linear
generalization and is suitable for large-scale problems. Second, we propose a novel complexity
metric, referred to as maximum observed relevance C⇤ for ICSB, which depends on the topology of
the network and is a non-decreasing function of activation probabilities. C⇤ can be upper bounded
based on network topology or number of nodes/ edges in the network, but it is expected to be much
smaller than these upper bounds in real-world social networks due to the relatively low activation
probabilities, which favorably impacts our performance guarantees. Third, we bound the regret of
IMLinUCB. Our regret bounds are polynomial in all quantities of interest; reflect the structure and
activation probabilities of the network through C⇤; and do not depend on inherently large quantities,
such as the reciprocal of the minimum probability of being influenced [11] and the cardinality of the
action set. Finally, we evaluate IMLinUCB on several problems. Our experiment results show that the
regret of IMLinUCB scales as suggested by our topology-dependent regret bounds; and based on linear
generalization, IMLinUCB can significantly reduce regrets for real-world influence maximization
semi-bandit problems.

2 Influence Maximization under Independence Cascade Models

Consider an directed graph G = (V, E) with a set V of L = |V| nodes, a set E of directed edges,
and a binary1 weight function w : E ! {0, 1}. We say that a node v

2

2 V is reachable from a
node v

1

2 V under w if there is a directed path2 p = (e
1

, e
2

, . . . , e
l

) from v
1

to v
2

in G satisfying
w(e

i

) = 1 for all i = 1, 2, . . . , l. For a given source node set S ✓ V and w, we say that node v 2 V
is influenced if v is reachable from at least one source node in S under w; and denote the number of
influenced nodes in G by f(S,w). By definition, the nodes in S are always influenced.

The influence maximization (IM) problem is characterized by a triple (G,K,w), where G is a given
directed graph, K L is the cardinality of source nodes, and w : E ! [0, 1] is a probability weight
function mapping each edge e 2 E to a real number w(e) 2 [0, 1]. The agent needs to choose a
set of K source nodes S ✓ V based on (G,K,w). Then a binary weight function w is obtained by
independently sampling a Bernoulli random variable w(e) ⇠ Bern (w(e)) for each edge e 2 E . The
agent’s objective is to maximize the expected number of the influenced nodes: maxS: |S|=K

f(S, w),
where f(S, w) �

= Ew [f(S,w)] is the expected number of influenced nodes when the source node set
is S and w is sampled according to w.3 It is well-known that the (offline) IM problem is NP-hard [19],
but can be approximately solved by approximation / randomized algorithms [9]. In this paper, we
refer to such algorithms as oracles to distinguish them from the machine learning algorithms discussed
in following sections. Let Sopt be the optimal solution of this problem, and S⇤

= ORACLE(G,K,w)
be the (possibly random) solution of an oracle ORACLE. For any ↵, � 2 [0, 1], we say that ORACLE

1Notice, that for a binary w there is no randomness in the subsequent definition.
2As is standard in graph theory, a directed path is a sequence of directed edges connecting a sequence of

distinct nodes, under the restriction that all edges are directed in the same direction.
3Notice that the definitions of f(S, w) and f(S,w) are consistent in the sense that if w 2 {0, 1}|E|, then

f(S, w) = f(S,w) with probability 1.

2

the oracle solution that is 𝛾-optimal with probability at least 𝛼

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

𝛾-optimal

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

𝛾-optimal with probability at least 𝛼

full-bandit feedback, where only the number of influenced nodes is observed; (2) a node semi-bandit
feedback, where the identity of influenced nodes is observed; or (3) an edge semi-bandit feedback,
where the identity of influenced edges (edges from influenced nodes) is observed. In all models, the
IM bandits combines two main challenges. First, the number of actions S grows exponentially with
the cardinality constraint on S . Second, we only observe the influenced portion of the network.

Although IM bandits have been studied very recently [23, 11, 32, 27], open challenges remain. One
challenge is to identify reasonable complexity metrics, which should depend on both the structure
(topology) of the network and the activation probabilities of edges to reflect the information-theoretic
complexity of IM bandits, and develop learning algorithms whose performance scales gracefully with
these metrics. Another challenge is to develop efficient learning algorithms for large-scale IM bandits,
which is increasingly important because social networks have millions or even billions of users.

In this paper, we suggest to overcome these two challenges in IM bandits in the case of edge semi-
bandit feedback, where we observe for each influenced node the downstream neighbors that this
node influenced (activated). Modern online social networks track activities of their users and these
activation events can often be observed, for instance when the user retweets a tweet of another
user. We refer to our model as an independent cascade semi-bandit (ICSB). We make four main
contributions. First, we propose IMLinUCB, a UCB-like algorithm for ICSBs that permits linear
generalization and is suitable for large-scale problems. Second, we propose a novel complexity
metric, referred to as maximum observed relevance C⇤ for ICSB, which depends on the topology of
the network and is a non-decreasing function of activation probabilities. C⇤ can be upper bounded
based on network topology or number of nodes/ edges in the network, but it is expected to be much
smaller than these upper bounds in real-world social networks due to the relatively low activation
probabilities, which favorably impacts our performance guarantees. Third, we bound the regret of
IMLinUCB. Our regret bounds are polynomial in all quantities of interest; reflect the structure and
activation probabilities of the network through C⇤; and do not depend on inherently large quantities,
such as the reciprocal of the minimum probability of being influenced [11] and the cardinality of the
action set. Finally, we evaluate IMLinUCB on several problems. Our experiment results show that the
regret of IMLinUCB scales as suggested by our topology-dependent regret bounds; and based on linear
generalization, IMLinUCB can significantly reduce regrets for real-world influence maximization
semi-bandit problems.

2 Influence Maximization under Independence Cascade Models

Consider an directed graph G = (V, E) with a set V of L = |V| nodes, a set E of directed edges,
and a binary1 weight function w : E ! {0, 1}. We say that a node v

2

2 V is reachable from a
node v

1

2 V under w if there is a directed path2 p = (e
1

, e
2

, . . . , e
l

) from v
1

to v
2

in G satisfying
w(e

i

) = 1 for all i = 1, 2, . . . , l. For a given source node set S ✓ V and w, we say that node v 2 V
is influenced if v is reachable from at least one source node in S under w; and denote the number of
influenced nodes in G by f(S,w). By definition, the nodes in S are always influenced.

The influence maximization (IM) problem is characterized by a triple (G,K,w), where G is a given
directed graph, K L is the cardinality of source nodes, and w : E ! [0, 1] is a probability weight
function mapping each edge e 2 E to a real number w(e) 2 [0, 1]. The agent needs to choose a
set of K source nodes S ✓ V based on (G,K,w). Then a binary weight function w is obtained by
independently sampling a Bernoulli random variable w(e) ⇠ Bern (w(e)) for each edge e 2 E . The
agent’s objective is to maximize the expected number of the influenced nodes: maxS: |S|=K

f(S, w),
where f(S, w) �

= Ew [f(S,w)] is the expected number of influenced nodes when the source node set
is S and w is sampled according to w.3 It is well-known that the (offline) IM problem is NP-hard [19],
but can be approximately solved by approximation / randomized algorithms [9]. In this paper, we
refer to such algorithms as oracles to distinguish them from the machine learning algorithms discussed
in following sections. Let Sopt be the optimal solution of this problem, and S⇤

= ORACLE(G,K,w)
be the (possibly random) solution of an oracle ORACLE. For any ↵, � 2 [0, 1], we say that ORACLE

1Notice, that for a binary w there is no randomness in the subsequent definition.
2As is standard in graph theory, a directed path is a sequence of directed edges connecting a sequence of

distinct nodes, under the restriction that all edges are directed in the same direction.
3Notice that the definitions of f(S, w) and f(S,w) are consistent in the sense that if w 2 {0, 1}|E|, then

f(S, w) = f(S,w) with probability 1.

2

the optimal offline solution seed size

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

unknown to the agentOur problem is a triple:

seed sizetopology

LINEAR GENERALIZATION

42

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

— learning the only network (weights) is VERY impractical

true weights

linear approximation

this is small

— by choosing the dimension (size of 𝜃*) we can reduce this complexity

— if we do not want to lose generality we set d to the number of edges

ALGORITHM AND PERFORMANCE MEASURE

43

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤ CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤ CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤ CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤ CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

MAXIMUM OBSERVED RELEVANCE

44

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤ CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤ CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

depends on bothonly depends on topology

max (over) 2-norm of N weighted by P

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤ CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

#nodes

seed size

#edgesWorst-case upper bound:

WORST-CASE BOUNDS

45

(a) (b) (c) (d)

Figure 1: a. Bar graph on 8 nodes. b. Star graph on 4 nodes. c. Ray graph on 10 nodes. d. Grid
graph on 9 nodes. Each undirected edge denotes two directed edges in opposite directions.

where CG is the maximum / worst-case (over w) C⇤ for the directed graph G, and the maximum
is obtained by setting w(e) = 1 for all e 2 E . Since CG is worst-case, it might be very far away
from C⇤ if the activation probabilities are small. Indeed, this is what we except a typical real-world
situation. Notice also that if max

e2E w(e) ! 0, then PS,e

! 0 for all e whose start node is not in S ,
and C⇤ ! C0

G
�

= maxS: |S|=K

qP
e2E(S)

N2

S,e

, where E(S) is the set of edges with start node in S .

Hence if K is small, C0

G is much less than CG in many topologies. Finally, it is worth pointing out
that there exists (G, w) such that C⇤ = ⇥(L2

). One such example is when G is a complete graph
with L nodes and w(e) = L/(L+ 1) for all edges e in this graph.

To give more intuition, in the rest of this subsection, we illustrate how CG , the worst-case C⇤, varies
with four graph topologies in Figure 1: bar, star, ray, and grid, as well as two other topologies:
general tree and complete graph. We fix the node set V = {1, 2, . . . , L} for all graphs. The bar
graph (Figure 1a) is a graph where nodes i and i + 1 are connected when i is odd. The star graph
(Figure 1b) is a graph where node 1 is central and all remaining nodes i 2 V \ {1} are connected
to it. The distance between any two of these nodes is 2. The ray graph (Figure 1c) is a star graph
with k =

⌃p
L� 1

⌥
arms, where node 1 is central and each arm contains either d(L � 1)/ke or

b(L� 1)/kc nodes connected in a line. The distance between any two nodes in this graph is O(

p
L).

The grid graph (Figure 1d) is a classical non-tree graph with O(L) edges.

To see how CG varies with the graph topology, we start with the simplified case when K = |S| = 1.
In the bar graph (Figure 1a), only one edge is relevant to a node v 2 V \ S and all the other edges
are not relevant to any nodes. Therefore, CG 1. In the star graph (Figure 1b), for any s, at
most one edge is relevant to at most L � 1 nodes and the remaining edges are relevant to at most
one node. In this case, CG

p
L2

+ L = O(L). In the ray graph (Figure 1c), for any s, at most
O(

p
L) edges are relevant to L� 1 nodes and the remaining edges are relevant to at most O(

p
L)

nodes. In this case, CG = O(

p
L

1
2L2

+ LL) = O(L
5
4
). Finally, recall that for all graphs we can

bound CG by O(L
p
|E|), regardless of K. Hence, for the grid graph (Figure 1d) and general tree

graph, CG = O(L
3
2
) since |E| = O(L); for the complete graph CG = O(L2

) since |E| = O(L2

).
Clearly, CG varies widely with the topology of the graph. The second column of Table 1 summarizes
how CG varies with the above-mentioned graph topologies for general K = |S|.

4.2 Regret guarantees

Consider C⇤ defined in Section 4.1 and the recall the worst-case upper bound C⇤ (L�K)

p
|E|,

we have the following regret guarantees for IMLinUCB.

Theorem 1 Assume that (1) w(e) = xT
e

✓⇤ for all e 2 E and (2) ORACLE is an (↵, �)-approximation
algorithm. Let D be a known upper bound on k✓⇤k

2

, if we apply IMLinUCB with � = 1 and

c =

s

d log

✓
1 +

n|E|
d

◆
+ 2 log (n(L+ 1�K)) +D, (4)

5

topology CG (worst-case C⇤) R

↵�(n) for general X R

↵�(n) for X = I

bar graph O(
p
K) eO (dK

p
n/(↵�)) eO

⇣
L

p
Kn/(↵�)

⌘

star graph O(L
p
K) eO

⇣
dL

3
2
p
Kn/(↵�)

⌘
eO
⇣
L

2

p
Kn/(↵�)

⌘

ray graph O(L
5
4
p
K) eO

⇣
dL

7
4
p
Kn/(↵�)

⌘
eO
⇣
L

9
4
p
Kn/(↵�)

⌘

tree graph O(L
3
2) eO �

dL

2

p
n/(↵�)

� eO
⇣
L

5
2
p
n/(↵�)

⌘

grid graph O(L
3
2) eO �

dL

2

p
n/(↵�)

� eO
⇣
L

5
2
p
n/(↵�)

⌘

complete graph O(L2) eO �
dL

3

p
n/(↵�)

� eO �
L

4

p
n/(↵�)

�

Table 1: CG and worst-case regret bounds for different graph topologies

then we have

R↵�

(n) 2cC⇤
↵�

s

dn|E| log
2

✓
1 +

n|E|
d

◆
+ 1 =

eO
⇣
dC⇤

p
|E|n/(↵�)

⌘
(5)

 eO
�
d(L�K)|E|

p
n/(↵�)

�
. (6)

Moreover, if the feature matrix X = I 2 <|E|⇥|E| (i.e., the tabular case), we have

R↵�

(n) 2cC⇤
↵�

p
n|E| log

2

(1 + n) + 1 =

eO
�
|E|C⇤

p
n/(↵�)

�
(7)

 eO
⇣
(L�K)|E| 32

p
n/(↵�)

⌘
. (8)

Please refer to Appendix A for the proof of Theorem 1, that we outline in Section 4.3. We now briefly
comment on the regret bounds in Theorem 1.

Topology-dependent bounds: Since C⇤ is topology-dependent, the regret bounds in Equations 5
and 7 are also topology-dependent. Table 1 summarizes the regret bounds for each topology5

discussed in Section 4.1. Since the regret bounds in Table 1 are the worst-case regret bounds for a
given topology, more general topologies have larger regret bounds. For instance, the regret bounds
for tree are larger than their counterparts for star and ray, since star and ray are special trees. The
grid and tree can also be viewed as special complete graphs by setting w(e) = 0 for some e 2 E ,
hence complete graph has larger regret bounds. Again, in practice we expect C⇤ to be far lower due
to activation probabilities.

Tighter bounds in tabular case and under exact oracle: Notice that for the tabular case with
feature matrix X = I and d = |E|, eO(

p
|E|) tighter regret bounds are obtained in Equations 7 and

8. Also notice that the eO(1/(↵�)) factor is due to the fact that ORACLE is an (↵, �)-approximation
oracle. If ORACLE solves the IM problem exactly (i.e., ↵ = � = 1), then R↵�

(n) = R(n).

Tightness of our regret bounds: First, note that our regret bound in the bar case with K = 1 matches
the regret bound of the classic LinUCB algorithm. Specifically, with perfect linear generalization, this
case is equivalent to a linear bandit problem with L arms and feature dimension d. From Table 1,
our regret bound in this case is eO (d

p
n), which matches the known regret bound of LinUCB that can

be obtained by the technique of [1]. Second, we briefly discuss the tightness of the regret bound in
Equation 6 for a general graph with L nodes and |E| edges. Note that the eO(

p
n)-dependence on time

is near-optimal, and the eO(d)-dependence on feature dimension is standard in linear bandits6[1, 34].
The eO(L�K) factor is due to the fact that the reward in this problem is from K to L, rather than
from 0 to 1. To explain the eO(|E|) factor in this bound, notice that one eO(

p
|E|) factor is due to the

fact that at most eO(|E|) edges might be observed at each round (see Theorem 3), and is intrinsic to
the problem similarly to combinatorial semi-bandits [22]; another eO(

p
|E|) factor is due to linear

generalization (see Lemma 1) and might be removed by better analysis. We conjecture that our
eO (d(L�K)|E|pn/(↵�)) regret bound in this case is at most eO(

p
|E|d) away from being tight.

5The regret bound for bar graph is based on Theorem 2 in the appendix, which is a stronger version of
Theorem 1 for disconnected graph.

6
p
d results are only known for impractical algorithms

6

RESULTS

46

topology CG (worst-case C⇤) R

↵�(n) for general X R

↵�(n) for X = I

bar graph O(
p
K) eO (dK

p
n/(↵�)) eO

⇣
L

p
Kn/(↵�)

⌘

star graph O(L
p
K) eO

⇣
dL

3
2
p
Kn/(↵�)

⌘
eO
⇣
L

2

p
Kn/(↵�)

⌘

ray graph O(L
5
4
p
K) eO

⇣
dL

7
4
p
Kn/(↵�)

⌘
eO
⇣
L

9
4
p
Kn/(↵�)

⌘

tree graph O(L
3
2) eO �

dL

2

p
n/(↵�)

� eO
⇣
L

5
2
p
n/(↵�)

⌘

grid graph O(L
3
2) eO �

dL

2

p
n/(↵�)

� eO
⇣
L

5
2
p
n/(↵�)

⌘

complete graph O(L2) eO �
dL

3

p
n/(↵�)

� eO �
L

4

p
n/(↵�)

�

Table 1: CG and worst-case regret bounds for different graph topologies

then we have

R↵�

(n) 2cC⇤
↵�

s

dn|E| log
2

✓
1 +

n|E|
d

◆
+ 1 =

eO
⇣
dC⇤

p
|E|n/(↵�)

⌘
(5)

 eO
�
d(L�K)|E|

p
n/(↵�)

�
. (6)

Moreover, if the feature matrix X = I 2 <|E|⇥|E| (i.e., the tabular case), we have

R↵�

(n) 2cC⇤
↵�

p
n|E| log

2

(1 + n) + 1 =

eO
�
|E|C⇤

p
n/(↵�)

�
(7)

 eO
⇣
(L�K)|E| 32

p
n/(↵�)

⌘
. (8)

Please refer to Appendix A for the proof of Theorem 1, that we outline in Section 4.3. We now briefly
comment on the regret bounds in Theorem 1.

Topology-dependent bounds: Since C⇤ is topology-dependent, the regret bounds in Equations 5
and 7 are also topology-dependent. Table 1 summarizes the regret bounds for each topology5

discussed in Section 4.1. Since the regret bounds in Table 1 are the worst-case regret bounds for a
given topology, more general topologies have larger regret bounds. For instance, the regret bounds
for tree are larger than their counterparts for star and ray, since star and ray are special trees. The
grid and tree can also be viewed as special complete graphs by setting w(e) = 0 for some e 2 E ,
hence complete graph has larger regret bounds. Again, in practice we expect C⇤ to be far lower due
to activation probabilities.

Tighter bounds in tabular case and under exact oracle: Notice that for the tabular case with
feature matrix X = I and d = |E|, eO(

p
|E|) tighter regret bounds are obtained in Equations 7 and

8. Also notice that the eO(1/(↵�)) factor is due to the fact that ORACLE is an (↵, �)-approximation
oracle. If ORACLE solves the IM problem exactly (i.e., ↵ = � = 1), then R↵�

(n) = R(n).

Tightness of our regret bounds: First, note that our regret bound in the bar case with K = 1 matches
the regret bound of the classic LinUCB algorithm. Specifically, with perfect linear generalization, this
case is equivalent to a linear bandit problem with L arms and feature dimension d. From Table 1,
our regret bound in this case is eO (d

p
n), which matches the known regret bound of LinUCB that can

be obtained by the technique of [1]. Second, we briefly discuss the tightness of the regret bound in
Equation 6 for a general graph with L nodes and |E| edges. Note that the eO(

p
n)-dependence on time

is near-optimal, and the eO(d)-dependence on feature dimension is standard in linear bandits6[1, 34].
The eO(L�K) factor is due to the fact that the reward in this problem is from K to L, rather than
from 0 to 1. To explain the eO(|E|) factor in this bound, notice that one eO(

p
|E|) factor is due to the

fact that at most eO(|E|) edges might be observed at each round (see Theorem 3), and is intrinsic to
the problem similarly to combinatorial semi-bandits [22]; another eO(

p
|E|) factor is due to linear

generalization (see Lemma 1) and might be removed by better analysis. We conjecture that our
eO (d(L�K)|E|pn/(↵�)) regret bound in this case is at most eO(

p
|E|d) away from being tight.

5The regret bound for bar graph is based on Theorem 2 in the appendix, which is a stronger version of
Theorem 1 for disconnected graph.

6
p
d results are only known for impractical algorithms

6

How good (tight) is this?

comparison with linear bandits

comparison with general combinatorial bandits

(L-K) factor

How good is C*?

PROOF SKETCH?

47

when are our upper bounds on the estimates right?

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
eg

re
t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)| c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧ t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

] P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e) U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

] E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v)
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8 L 32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
eg

re
t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)| c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧ t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

] P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e) U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

] E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v)
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8 L 32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

…. decomposes the regret at round t

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

Cu
m

ul
at

ive
 R

eg
re

t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)| c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧ t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

] P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e) U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

] E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v)
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8 L 32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

monotonicity of f decomposed into nodes

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

Cu
m

ul
at

ive
 R

eg
re

t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)| c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧ t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

] P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e) U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

] E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v)
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8 L 32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

probability that node v is influences

studying second-order derivatives of f

monotonicity and concavity of f wrt w

sub-modularity of f wrt newly added edge

EXPERIMENTS

48

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
eg

re
t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)| c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧ t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

] P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e) U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

] E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v)
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8 L 32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

Objective: “Check” how good is our C*

Tabular case, K = 1, exact comparison possible, all weights are same = 𝜔

Conclusion: evidence that our C* is a reasonable complexity measure

and c > 0, both p and log(c) can be estimated by linear regression in the new space. For star graphs
with ! = 0.8 and ! = 0.7, our estimated growth are respectively O(L2.040

) and O(L2.056

), which
are close to the expected eO(L2

). For ray graphs with ! = 0.8 and ! = 0.7, our estimated growth are
respectively O(L2.488

) and O(L2.467

), which are again close to the expected eO(L
9
4
). This shows

that maximum observed relevance C⇤ proposed in Section 4.1 is a reasonable complexity metric for
these two topologies.

5.2 Subgraph of Facebook network

In the second experiment, we demonstrate the potential performance gain of IMLinUCB in real-
world influence maximization semi-bandit problems by exploiting linear generalization across edges.
Specifically, we compare IMLinUCB with CUCB in a subgraph of Facebook network from [24]. The
subgraph has L = |V| = 327 nodes and |E| = 5038 directed edges. Since the true probability weight
function w is not available, we independently sample w(e)’s from the uniform distribution U(0, 0.1)
and treat them as ground-truth. Note that this range of probabilities is guided by empirical evidence
in [17, 5]. We set n = 5000 and K = 10 in this experiment. For IMLinUCB, we choose d = 10

and generate edge feature x
e

’s as follows: we first use node2vec algorithm [18] to generate a node
feature in <d for each node v 2 V ; then for each edge e, we generate x

e

as the element-wise product
of node features of the two nodes connected to e. Note that the linear generalization in this experiment
is imperfect in the sense that min

✓2<d max

e2E |w(e) � xT

e

✓| > 0. For both CUCB and IMLinUCB,
we choose ORACLE as the state-of-the-art offline IM algorithm proposed in [29]. To compute the
cumulative regret, we compare against a fixed seed set S⇤ obtained by using the true w as input to
the oracle proposed in [29]. We average the empirical cumulative regret over 10 independent runs,
and plot the results in figure 2b. The experimental results show that compared with CUCB, IMLinUCB
can significantly reduce the cumulative regret by exploiting linear generalization across w(e)’s.

6 Related Work

IM semi-bandits were studied recently [23, 11, 32]. First, Lei et al. [23] proposed algorithms for
the same feedback model as ours. The algorithms are not analyzed and cannot solve large-scale
problems because they estimate each edge weight independently. Second, our setting is a special
case of stochastic combinatorial semi-bandit with a submodular reward function and stochastically
observed edges [11]. Chen et al. [11] proposed an algorithm for these problems and bounded its
regret. Their work is the closest related work. Their gap-dependent and gap-free bounds are both
problematic because they depend on the reciprocal of the minimum observation probability p⇤ of an
edge: Consider a line graph with |E| edges where all edge weights are 0.5. Then 1/p⇤ is 2|E|�1. On
the other hand, our derived regret bounds in Theorem 1 are polynomial in all quantities of interest.
A recent paper [33] removes the 1/p⇤ factor in [11] and presents a eO(L

p
|E|Kn+ L|E|3) gap-free

regret bound for the tabular case, where the latter term depends on log n. Though this bound is
asymptotically tighter than our eO(L|E| 32pn) bound (Equation 8) in the worst case, our bound is
tighter in finite time when n =

eO(|E|3). As |E| is expected to be huge in social networks, we believe
that our bound is more practical at realistic operating points. Moreover, both Chen et al. [11] and
Wang and Chen [33] do not consider generalization models across edges or nodes, and therefore
their proposed algorithms are unlikely to be practical for real-world social networks. In contrast, our
proposed algorithm scales to large problems by exploiting linear generalization across edges.

IM bandits for different influence models and settings: Vaswani et al. [32] proposed a learning
algorithm for a different and more challenging feedback model, where the learning agent observes
influenced nodes but not the edges, but they do not give any guarantees. Carpentier and Valko [8] give
a minimax optimal algorithm for IM bandits but only consider a local model of influence with a single
source and a cascade of influences never happens. In related networked bandits [14], the learner
chooses a node and its reward is the sum of the rewards of the chosen node and its neighborhood.
The problem gets more challenging when we allow the influence probabilities to change [4], when
we allow the seed set to be chosen adaptively [31], or when we consider a continuous model [15].
Furthermore, Sigla et al. [28] treats the IM setting with an additional observability constraints, where
we face a restriction on which nodes we can choose at each round. This setting is also related to
the volatile multi-armed bandits where the set of possible arms changes [7]. Vaswani et al. [30]
proposed a diffusion-independent algorithm for IM semi-bandits with a wide range of diffusion

8

and c > 0, both p and log(c) can be estimated by linear regression in the new space. For star graphs
with ! = 0.8 and ! = 0.7, our estimated growth are respectively O(L2.040

) and O(L2.056

), which
are close to the expected eO(L2

). For ray graphs with ! = 0.8 and ! = 0.7, our estimated growth are
respectively O(L2.488

) and O(L2.467

), which are again close to the expected eO(L
9
4
). This shows

that maximum observed relevance C⇤ proposed in Section 4.1 is a reasonable complexity metric for
these two topologies.

5.2 Subgraph of Facebook network

In the second experiment, we demonstrate the potential performance gain of IMLinUCB in real-
world influence maximization semi-bandit problems by exploiting linear generalization across edges.
Specifically, we compare IMLinUCB with CUCB in a subgraph of Facebook network from [24]. The
subgraph has L = |V| = 327 nodes and |E| = 5038 directed edges. Since the true probability weight
function w is not available, we independently sample w(e)’s from the uniform distribution U(0, 0.1)
and treat them as ground-truth. Note that this range of probabilities is guided by empirical evidence
in [17, 5]. We set n = 5000 and K = 10 in this experiment. For IMLinUCB, we choose d = 10

and generate edge feature x
e

’s as follows: we first use node2vec algorithm [18] to generate a node
feature in <d for each node v 2 V ; then for each edge e, we generate x

e

as the element-wise product
of node features of the two nodes connected to e. Note that the linear generalization in this experiment
is imperfect in the sense that min

✓2<d max

e2E |w(e) � xT

e

✓| > 0. For both CUCB and IMLinUCB,
we choose ORACLE as the state-of-the-art offline IM algorithm proposed in [29]. To compute the
cumulative regret, we compare against a fixed seed set S⇤ obtained by using the true w as input to
the oracle proposed in [29]. We average the empirical cumulative regret over 10 independent runs,
and plot the results in figure 2b. The experimental results show that compared with CUCB, IMLinUCB
can significantly reduce the cumulative regret by exploiting linear generalization across w(e)’s.

6 Related Work

IM semi-bandits were studied recently [23, 11, 32]. First, Lei et al. [23] proposed algorithms for
the same feedback model as ours. The algorithms are not analyzed and cannot solve large-scale
problems because they estimate each edge weight independently. Second, our setting is a special
case of stochastic combinatorial semi-bandit with a submodular reward function and stochastically
observed edges [11]. Chen et al. [11] proposed an algorithm for these problems and bounded its
regret. Their work is the closest related work. Their gap-dependent and gap-free bounds are both
problematic because they depend on the reciprocal of the minimum observation probability p⇤ of an
edge: Consider a line graph with |E| edges where all edge weights are 0.5. Then 1/p⇤ is 2|E|�1. On
the other hand, our derived regret bounds in Theorem 1 are polynomial in all quantities of interest.
A recent paper [33] removes the 1/p⇤ factor in [11] and presents a eO(L

p
|E|Kn+ L|E|3) gap-free

regret bound for the tabular case, where the latter term depends on log n. Though this bound is
asymptotically tighter than our eO(L|E| 32pn) bound (Equation 8) in the worst case, our bound is
tighter in finite time when n =

eO(|E|3). As |E| is expected to be huge in social networks, we believe
that our bound is more practical at realistic operating points. Moreover, both Chen et al. [11] and
Wang and Chen [33] do not consider generalization models across edges or nodes, and therefore
their proposed algorithms are unlikely to be practical for real-world social networks. In contrast, our
proposed algorithm scales to large problems by exploiting linear generalization across edges.

IM bandits for different influence models and settings: Vaswani et al. [32] proposed a learning
algorithm for a different and more challenging feedback model, where the learning agent observes
influenced nodes but not the edges, but they do not give any guarantees. Carpentier and Valko [8] give
a minimax optimal algorithm for IM bandits but only consider a local model of influence with a single
source and a cascade of influences never happens. In related networked bandits [14], the learner
chooses a node and its reward is the sum of the rewards of the chosen node and its neighborhood.
The problem gets more challenging when we allow the influence probabilities to change [4], when
we allow the seed set to be chosen adaptively [31], or when we consider a continuous model [15].
Furthermore, Sigla et al. [28] treats the IM setting with an additional observability constraints, where
we face a restriction on which nodes we can choose at each round. This setting is also related to
the volatile multi-armed bandits where the set of possible arms changes [7]. Vaswani et al. [30]
proposed a diffusion-independent algorithm for IM semi-bandits with a wide range of diffusion

8

and c > 0, both p and log(c) can be estimated by linear regression in the new space. For star graphs
with ! = 0.8 and ! = 0.7, our estimated growth are respectively O(L2.040

) and O(L2.056

), which
are close to the expected eO(L2

). For ray graphs with ! = 0.8 and ! = 0.7, our estimated growth are
respectively O(L2.488

) and O(L2.467

), which are again close to the expected eO(L
9
4
). This shows

that maximum observed relevance C⇤ proposed in Section 4.1 is a reasonable complexity metric for
these two topologies.

5.2 Subgraph of Facebook network

In the second experiment, we demonstrate the potential performance gain of IMLinUCB in real-
world influence maximization semi-bandit problems by exploiting linear generalization across edges.
Specifically, we compare IMLinUCB with CUCB in a subgraph of Facebook network from [24]. The
subgraph has L = |V| = 327 nodes and |E| = 5038 directed edges. Since the true probability weight
function w is not available, we independently sample w(e)’s from the uniform distribution U(0, 0.1)
and treat them as ground-truth. Note that this range of probabilities is guided by empirical evidence
in [17, 5]. We set n = 5000 and K = 10 in this experiment. For IMLinUCB, we choose d = 10

and generate edge feature x
e

’s as follows: we first use node2vec algorithm [18] to generate a node
feature in <d for each node v 2 V ; then for each edge e, we generate x

e

as the element-wise product
of node features of the two nodes connected to e. Note that the linear generalization in this experiment
is imperfect in the sense that min

✓2<d

max

e2E |w(e) � xT

e

✓| > 0. For both CUCB and IMLinUCB,
we choose ORACLE as the state-of-the-art offline IM algorithm proposed in [29]. To compute the
cumulative regret, we compare against a fixed seed set S⇤ obtained by using the true w as input to
the oracle proposed in [29]. We average the empirical cumulative regret over 10 independent runs,
and plot the results in figure 2b. The experimental results show that compared with CUCB, IMLinUCB
can significantly reduce the cumulative regret by exploiting linear generalization across w(e)’s.

6 Related Work

IM semi-bandits were studied recently [23, 11, 32]. First, Lei et al. [23] proposed algorithms for
the same feedback model as ours. The algorithms are not analyzed and cannot solve large-scale
problems because they estimate each edge weight independently. Second, our setting is a special
case of stochastic combinatorial semi-bandit with a submodular reward function and stochastically
observed edges [11]. Chen et al. [11] proposed an algorithm for these problems and bounded its
regret. Their work is the closest related work. Their gap-dependent and gap-free bounds are both
problematic because they depend on the reciprocal of the minimum observation probability p⇤ of an
edge: Consider a line graph with |E| edges where all edge weights are 0.5. Then 1/p⇤ is 2|E|�1. On
the other hand, our derived regret bounds in Theorem 1 are polynomial in all quantities of interest.
A recent paper [33] removes the 1/p⇤ factor in [11] and presents a eO(L

p
|E|Kn+ L|E|3) gap-free

regret bound for the tabular case, where the latter term depends on log n. Though this bound is
asymptotically tighter than our eO(L|E| 32pn) bound (Equation 8) in the worst case, our bound is
tighter in finite time when n =

eO(|E|3). As |E| is expected to be huge in social networks, we believe
that our bound is more practical at realistic operating points. Moreover, both Chen et al. [11] and
Wang and Chen [33] do not consider generalization models across edges or nodes, and therefore
their proposed algorithms are unlikely to be practical for real-world social networks. In contrast, our
proposed algorithm scales to large problems by exploiting linear generalization across edges.

IM bandits for different influence models and settings: Vaswani et al. [32] proposed a learning
algorithm for a different and more challenging feedback model, where the learning agent observes
influenced nodes but not the edges, but they do not give any guarantees. Carpentier and Valko [8] give
a minimax optimal algorithm for IM bandits but only consider a local model of influence with a single
source and a cascade of influences never happens. In related networked bandits [14], the learner
chooses a node and its reward is the sum of the rewards of the chosen node and its neighborhood.
The problem gets more challenging when we allow the influence probabilities to change [4], when
we allow the seed set to be chosen adaptively [31], or when we consider a continuous model [15].
Furthermore, Sigla et al. [28] treats the IM setting with an additional observability constraints, where
we face a restriction on which nodes we can choose at each round. This setting is also related to
the volatile multi-armed bandits where the set of possible arms changes [7]. Vaswani et al. [30]
proposed a diffusion-independent algorithm for IM semi-bandits with a wide range of diffusion

8

and c > 0, both p and log(c) can be estimated by linear regression in the new space. For star graphs
with ! = 0.8 and ! = 0.7, our estimated growth are respectively O(L2.040

) and O(L2.056

), which
are close to the expected eO(L2

). For ray graphs with ! = 0.8 and ! = 0.7, our estimated growth are
respectively O(L2.488

) and O(L2.467

), which are again close to the expected eO(L
9
4
). This shows

that maximum observed relevance C⇤ proposed in Section 4.1 is a reasonable complexity metric for
these two topologies.

5.2 Subgraph of Facebook network

In the second experiment, we demonstrate the potential performance gain of IMLinUCB in real-
world influence maximization semi-bandit problems by exploiting linear generalization across edges.
Specifically, we compare IMLinUCB with CUCB in a subgraph of Facebook network from [24]. The
subgraph has L = |V| = 327 nodes and |E| = 5038 directed edges. Since the true probability weight
function w is not available, we independently sample w(e)’s from the uniform distribution U(0, 0.1)
and treat them as ground-truth. Note that this range of probabilities is guided by empirical evidence
in [17, 5]. We set n = 5000 and K = 10 in this experiment. For IMLinUCB, we choose d = 10

and generate edge feature x
e

’s as follows: we first use node2vec algorithm [18] to generate a node
feature in <d for each node v 2 V ; then for each edge e, we generate x

e

as the element-wise product
of node features of the two nodes connected to e. Note that the linear generalization in this experiment
is imperfect in the sense that min

✓2<d max

e2E |w(e) � xT

e

✓| > 0. For both CUCB and IMLinUCB,
we choose ORACLE as the state-of-the-art offline IM algorithm proposed in [29]. To compute the
cumulative regret, we compare against a fixed seed set S⇤ obtained by using the true w as input to
the oracle proposed in [29]. We average the empirical cumulative regret over 10 independent runs,
and plot the results in figure 2b. The experimental results show that compared with CUCB, IMLinUCB
can significantly reduce the cumulative regret by exploiting linear generalization across w(e)’s.

6 Related Work

IM semi-bandits were studied recently [23, 11, 32]. First, Lei et al. [23] proposed algorithms for
the same feedback model as ours. The algorithms are not analyzed and cannot solve large-scale
problems because they estimate each edge weight independently. Second, our setting is a special
case of stochastic combinatorial semi-bandit with a submodular reward function and stochastically
observed edges [11]. Chen et al. [11] proposed an algorithm for these problems and bounded its
regret. Their work is the closest related work. Their gap-dependent and gap-free bounds are both
problematic because they depend on the reciprocal of the minimum observation probability p⇤ of an
edge: Consider a line graph with |E| edges where all edge weights are 0.5. Then 1/p⇤ is 2|E|�1. On
the other hand, our derived regret bounds in Theorem 1 are polynomial in all quantities of interest.
A recent paper [33] removes the 1/p⇤ factor in [11] and presents a eO(L

p
|E|Kn+ L|E|3) gap-free

regret bound for the tabular case, where the latter term depends on log n. Though this bound is
asymptotically tighter than our eO(L|E| 32pn) bound (Equation 8) in the worst case, our bound is
tighter in finite time when n =

eO(|E|3). As |E| is expected to be huge in social networks, we believe
that our bound is more practical at realistic operating points. Moreover, both Chen et al. [11] and
Wang and Chen [33] do not consider generalization models across edges or nodes, and therefore
their proposed algorithms are unlikely to be practical for real-world social networks. In contrast, our
proposed algorithm scales to large problems by exploiting linear generalization across edges.

IM bandits for different influence models and settings: Vaswani et al. [32] proposed a learning
algorithm for a different and more challenging feedback model, where the learning agent observes
influenced nodes but not the edges, but they do not give any guarantees. Carpentier and Valko [8] give
a minimax optimal algorithm for IM bandits but only consider a local model of influence with a single
source and a cascade of influences never happens. In related networked bandits [14], the learner
chooses a node and its reward is the sum of the rewards of the chosen node and its neighborhood.
The problem gets more challenging when we allow the influence probabilities to change [4], when
we allow the seed set to be chosen adaptively [31], or when we consider a continuous model [15].
Furthermore, Sigla et al. [28] treats the IM setting with an additional observability constraints, where
we face a restriction on which nodes we can choose at each round. This setting is also related to
the volatile multi-armed bandits where the set of possible arms changes [7]. Vaswani et al. [30]
proposed a diffusion-independent algorithm for IM semi-bandits with a wide range of diffusion

8

Star

Ray

vs.

vs.

FACEBOOK EXPERIMENT

49

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
eg

re
t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)| c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧ t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

] P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e) U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

] E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v)
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8 L 32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

real Facebook (a small subgraph)

weights from U(0,0.1)

nodetovec with d=10

imperfect

K = 10

CUCB with no linear generalisation

CONCLUSION AND NEXT STEPS

Active learning on graphs

learning the graph while acting on it optimal

difficulty of the problem and scaling with it

online influence maximization

local model (minimax optimal algorithm)

global cascading model

What is next?

dynamic/evolving graphs

realistic accessibility constraints

50

 Michal Valko, SequeL, Inria Lille - Nord Europe, michal.valko@inria.fr  
http://researchers.lille.inria.fr/~valko/hp/  ExtraLearn

mailto:michal.valko@inria.fr
http://researchers.lille.inria.fr/~valko/hp/

