Decision Theory and Network Science: Methods and Applications,

STOR-i Workshop at lancaster University, Sep 18th, 2017

ACTIVE LEARNING ON NETWORKS AND ONLINEWHHREMCHUBXWSIRGIER

Michal Valko, SequeL, Inria Lille - Nord Europe

2015-2016, ASTASI 2016

2016-2017, NPS 2017
hittos://arxivors/abs/1605.06593

10 YEARS

... LAST 10 YEARS AND INDUSTRY

criteol.

Aht
M. Ghavamzadeh

Social MEdia

Erdös number project

Berkeley's floating sensor network

Example of a graph bandit problem

movie recommendation

- recommend movies to a single user
- goal: maximise the sum of the ratings (minimise regret)
- good prediction after just a few steps

$$
T \ll N
$$

- extra information
- ratings are smooth on a graph
- main question: can we learn faster?

GETTING REAL

Let's be lazy and ignore the structure

Multi-armed bandit problem!
Worst case regret (to the best fixed strategy)
Matching lower bound (Auer, Ces-Bianchi, Freund, Schapire 2002)

How big is N? Number of movies on http://www.imdb.com/stats: 4,513,842
Number of active users on FaceBook: https://newsroom.fb.com/company-info/ 2,017,822,735
Problem: Too many actions!

LEARNING FASTER

$R_{T}=\mathcal{O}(\sqrt{N T})$

- Arm independence is too strong and unnecessary
- Replace N with something much smaller
- problem/instance/data dependent
- example: linear bandits N to D
- In this talk: Online Influence Maximization!
- sequential problems where actions are nodes on a graph
- find strategies that replace N with a smaller graph-dependent quantity

GRAPH BANDITS: GENERAL SETUP

Every round t the learner

- picksanode $I_{t} \in[N]$
- incursa loss $\ell_{t, l_{t}}$
- optional feedback

The performance is total expected regret

$$
R_{T}=\max _{i \in[N]} \mathbb{E}\left[\sum_{t=1}^{T}\left(\ell_{t, l_{t}}-\ell_{t, i}\right)\right]
$$

1. loss

Specific problems differ in 2. feedback
3. guarantees

STRUCTURES IN BANDIT PROBLEMS

GRAPHS

KERNELS

POLYMATROIDS

BLACK-BOX FUNCTIONS

STRUCTURES WITHOUT TOPOLOGY

SPECIFIC GRAPH BANDIT SETTINGS

Survey: http://researchers.lille.inria.fr/-valko/hp/publications/valko2016bandits.pdf

Decision Theory and Network Science: Methods and Applications,

STOR-i Workshop at Lancaster University, Sep 18th, 2017

ONLINE INFLUENCE MAXIMIZATION

Michal Valko, SequeL, Inria Lille - Nord Europe

2015-2016, ASTASI 2016

2016-2017, NIPS 2017
hitos://arxivorg/abs/1605.06593

One reason you're seeing this ad is that EDonald J. Trump wants to reach people who are part of an audience called "Likely To Engage in Politics (Liberal)". This is based on your activity on Facebook and other apps and websites, as well as where you connect to the internet.

There may be other reasons you're seeing this ad, including that Donald J. Trump wants to reach people ages 25 and older who live near Boston, Massachusetts. This is information based on your Facebook profile and where you've connected to the internet.

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/ 1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a_story.html
https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/
Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U

INSOUMISE OU ENRACIIÉE ?

Le "big data" ou la recette secrète du succès d'Emmanuel Macron?
https://www.rts.ch/iifoo/sciences-tech/8580821-le-big-data-ou-la-recette-secrete-du-succes-d-emmanuel-macron-html

SPREAD OF \#MACRONLEAKS ON TWITTER

HOW TO RULE THE WORLD?

Influence the influential!

September 1, 2009
Culture

HOW TO RULE THE WORLD?

Influence the influential in England?

Religion

Politics

Culture

HOW TO RULE THE WORLD?

Influence the influential in England!

Religion?

Politics?

Culture

HOW TO RULE THE WORLD?

Influence the influential in England!

Religion?

Politics?

Culture

EXAMPLE: INFLUENCE IN SOCIAL NETWORKS [KEMPE, KLEINBERG, TARDOS KDD '03]

Who should get free cell phones?
V = \{Alice,Bob,Charlie,Dorothy,Eric,Fiona\}
$\mathrm{F}(\mathrm{A})=$ Expected number of people influenced when targeting A

MAXIMIZING INFLUENCE

Product placement

- dispatch few to sell more
- target influential people

Gathering the information?

- likes on FB
- promotional codes

Unknown graphs

- all prior work needed to know the graph
- here: provably learning faster without it

REVEALING BANDITS FOR LOCAL INFLUENCE

\qquad

Unknown $\left.\left(p_{i j}\right)\right)_{i j}$ - (symmetric) probability of influences In each time step $t=1, \ldots$, , n
learner picks a node k_{t}
environment reveals the set of influenced node $S_{k t}$
Select influential people $=$ Find the strategy maximising

$$
L_{n}=\sum_{t=1}^{n}\left|S_{k_{t}, t}\right|
$$

Why this is a bandit problem?

What are bandits anyway?

PERFORMANCE CRITERION

The number of expected influences of node \boldsymbol{k} is by definition

$$
r_{k}=\mathbb{E}\left[\left|S_{k, t}\right|\right]=\sum_{j \leq d} p_{k, j}
$$

Oracle strategy always selects the best
$k^{\star}=\underset{k}{\arg \max } \mathbb{E}\left[\sum_{t=1}^{n}\left|S_{k, t}\right|\right]=\underset{k}{\arg \max } n r_{k}$
Expected reward of the oracle strategy
$\mathbb{E}\left[L_{n}^{\star}\right]=n r_{\star}$

Expected regret of any adaptive strategy unaware of $\left(\mathrm{pij}_{\mathrm{ij}}\right)_{\mathrm{ij}}$
$\mathbb{E}\left[R_{n}\right]=\mathbb{E}\left[L_{n}^{\star}\right]-\mathbb{E}\left[L_{n}\right]$

UPPER CONFIDENCE BOUND BASED ALGOS

\qquad

multi-ARM bandits in café culture

Video recorded March 30th, 2017, 13h50, Université de Lille, Susie \& the Piggy Bones Band

UPPER CONFIDENCE BOUND BASED ALGOS

UPPER CONFIDENCE BOUND BASED ALGOS

\qquad

UPPER CONFIDENCE BOUND BASED ALGOS

\qquad

- number of nodes we can efficiently extract in less than n rounds
- function D controls number of nodes given a gap
$D(\Delta) \xlongequal{\text { def }}\left|\left\{i \leq d: r_{\star}^{\circ}-r_{i}^{\circ} \leq \Delta\right\}\right|$
- $D(r)=d$ for $r \geq r *$ and $D(0)=$ number of most influenced nodes
- Detectable dimension $\mathrm{D} *=\mathrm{D}\left(\Delta_{*}\right)$
- Detectable gap $\Delta *$ constants coming from the analysis and the Bernstein inequality
$\Delta_{\star} \xlongequal{\text { def }} 16 \sqrt{\frac{r_{\star}^{\circ} d \log (n d)}{T_{\star}}}+\frac{80 d \log (n d)}{T_{\star}}$
- Detectable horizon T_{*}, smallest integer s.t. $T_{\star} r_{\star}^{\circ} \geq \sqrt{D_{\star} n r_{\star}^{\circ}}$
- Equivalently: D* corresponding to smallest $\mathrm{T} *$ such that
$T_{\star} r_{\star}^{\circ} \geq \sqrt{D\left(16 \sqrt{\frac{r_{\star}^{\circ} d \log (n d)}{T_{\star}}}+\frac{80 d \log (n d)}{T_{\star}}\right) n r_{\star}^{\circ}}$
- For (easy, structured) star graphs $D *=1$ even for small n (big gain)
- For (difficult) empty graphs $D \approx=$ d even for large n (no gain)
- In general: D * roughly decreases with n and it is small when D decreases quickly
- For n large enough $\mathrm{D} *$ is the number of the most influences nodes
- Example: D* for Barabási-Albert model \& Enron graph as a function of n

BARE - BAndit REvelator

Input

d : the number of nodes
n : time horizon

Initialization

$$
\begin{aligned}
& \frac{T_{k, t}}{r_{k, t}^{\circ}} \leftarrow 0, \text { for } \forall k \leq d \\
& t \leftarrow 1, \text { for } \forall k \leq d \\
& \widehat{T}_{\star} \leftarrow 0, \widehat{D}_{\star, t} \leftarrow d, \widehat{\sigma}_{\star, 1} \leftarrow d
\end{aligned}
$$

Global exploration phase

while $t\left(\widehat{\sigma}_{\star, t}-4 \sqrt{d \log (d n) / t}\right) \leq \sqrt{\widehat{D}_{\star, t} n}$ do
Influence a node at random (choose k_{t} uniformly at random) and get $S_{k_{t}, t}$ from this node
$\widehat{r_{k, t+1}^{\circ}} \leftarrow \frac{t}{t+1} \widehat{r_{k, t}^{\circ}}+\frac{d}{t+1} S_{k_{t}, t}(k)$
$\widehat{\sigma}_{\star, t+1} \leftarrow \max _{k^{\prime}} \sqrt{r_{k^{\prime}, t+1}^{\circ}}+8 d \log (n d) /(t+1)$
$w_{\star, t+1} \leftarrow 8 \widehat{\sigma}_{\star, t+1} \sqrt{\frac{d \log (n d)}{t+1}}+\frac{24 d \log (n d)}{t+1}$
$\widehat{D}_{\star, t+1} \leftarrow\left|\left\{k: \max _{k^{\prime}} \widehat{r_{k^{\prime}, t+1}^{\circ}}-\widehat{r_{k, t+1}^{\circ}} \leq w_{\star, t+1}\right\}\right|$
$t \leftarrow t+1$
end while
$\widehat{T}_{\star} \leftarrow t$.

Bandit phase

Run minimax-optimal bandit algorithm on the $\widehat{D}_{\star, \widehat{T}_{\star}}$ chosen nodes (e.g., Algorithm 1)

EMPIRICAL RESULTS

Figure 1: Left: Barabási-Alber
Middle left: Facebook. Middle right: Enren. Right: Gnutella.
Enron and Facebook vs. Gnutella (decentralised)

Varying a (constant) probability of influence

REVEALING BANDITS: WHAT DO YOU MEAN?

- Ignoring the structure?
- BAndit Revelator: 2-phase algorithm
- global exploration phase
$\mathcal{O}\left(\sqrt{r_{\star} n d}\right)$
- super-efficient exploration
- linear regret - needs to be short!
- extracts D*nodes
- bandit phase
- uses a minimax-optimal bandit algorithm (GraphMOSS)
- has a "square root" regret on D* nodes
- D : realizes the optimal trade-off!
- different from exploration/exploitation tradeoff

Regret of BARE
 $\mathcal{O}\left(\sqrt{r_{\star} n D_{\star}}\right)$

- D* - detectable dimension (depends on n and the structure)
- good case: star-shaped graph can have $\mathrm{D}^{*}=1$
- bad case: a graph with many small cliques.
- the worst case: all nodes are disconnected except 2

NEXT: GLOBAL INFLUENCE MODELS

- Kempe, Kleinberg, Tárdos, 2003, 2015: Independence Cascades, Linear Threshold models
- global and multiple-source models
- Different feed-back models
- Full bandit (only the number of influenced nodes)
- Node-level semi-bandit (identities of influenced nodes)
- Edge-level semi-bandit (identities of influenced edges)
- Wen, Kveton, Valko, Vaswani, to appear at NIPS 2017
- preprint: https://arxiv.org/abs/1605.06593
- IMLinUCB with linear parametrization of edge weights
- Regret analysis for general graphs, cascading model, and multiple-sources

Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback

Zheng Wen
Adobe Research
San Jose, CA 95110
zwen@adobe.com

Michal Valko
Inria Lille-Nord Europe
59650 Villeneuve d'Ascq, France
michal.valko@inria.fr

Branislav Kveton
Adobe Research
San Jose, CA 95110
kveton@adobe.com

Sharan Vaswani
University of British Columbia
Vancouver, B.C., Canada
sharanv@cs.ubc.ca

Abstract

We study the stochastic online problem of learning to influence in a social network with semi-bandit feedback, where we observe how users influence each other. The problem combines challenges of limited feedback, because the learning agent only observes the influenced portion of the network, and combinatorial number of actions, because the cardinality of the feasible set is exponential in the maximum number of influencers. We propose a computationally efficient UCB-like algorithm, IMLinUCB, and analyze it. Our regret bounds are polynomial in all quantities of interest; reflect the structure of the network and the probabilities of influence. Moreover, they do not depend on inherently large quantities, such as the cardinality of the action set. To the best of our knowledge, these are the first such results. IMLinUCB permits linear generalization and therefore is suitable for large-scale problems. Our experiments show that the regret of IMLinUCB scales as suggested by our upper bounds in several representative graph topologies; and based on linear generalization, IMLinUCB can significantly reduce regret of real-world influence maximization semi-bandits.

CHALLENGES AND SOLUTIONS

- Already the offline problem is NP hard
- solution: approximation/randomized algorithms
- Lots of edges $\max _{\mathcal{S}}:|\mathcal{S}|=K$.
- lots of parameters to learn, if we want to scale, we need to reduce this complexity
- solution: linear approximation of probabilities
- Combinatorial size of possible seed-sets
- Combinatorial Bandits: IMLinUCB
- Understanding what's going on?
- known analyses VERY loose (e.g., scaling with 1/pmin, or only assymptotic)

APPROXIMATION ORACLE

- the optimal offline solution

$$
\max _{\mathcal{S}}:|\mathcal{S}|=K f(\mathcal{S}, \bar{w})
$$

- the oracle solution that is γ-optimal with probability at least α

$$
\mathcal{S}^{*}=\operatorname{ORACLE}(\mathcal{G}, K, \bar{w})
$$

- γ-optimal

$$
f\left(\mathcal{S}^{*}, \bar{w}\right) \geq \gamma f\left(\mathcal{S}^{\mathrm{opt}}, \bar{w}\right)
$$

- γ-optimal with probability at least α

$$
\mathbb{E}\left[f\left(\mathcal{S}^{*}, \bar{w}\right)\right] \geq \alpha \gamma f\left(\mathcal{S}^{\circ \mathrm{opt}}, \bar{w}\right)
$$

- Our problem is a triple:
$(\mathcal{G}, K, \bar{w})$

LINEAR GENERALIZATION

- learning the only network (weights) is VERY impractical

linear approximation
- by choosing the dimension (size of θ^{*}) we can reduce this complexity
- if we do not want to lose generality we set dto the number of edges

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB

Input: graph \mathcal{G}, source node set cardinality K, oracle ORACLE, feature vector x_{e} 's, and algorithm parameters $\sigma, c>0$,
Initialization: $B_{0} \leftarrow 0 \in \Re^{d}, \mathbf{M}_{0} \leftarrow I \in \Re^{d \times d}$
for $t=1,2, \ldots, n$ do

1. set $\bar{\theta}_{t-1} \leftarrow \sigma^{-2} \mathbf{M}_{t-1}^{-1} B_{t-1}$ and the UCBs as $U_{t}(e) \leftarrow \operatorname{Proj}_{[0,1]}\left(x_{e}^{\top} \bar{\theta}_{t-1}+c \sqrt{x_{e}^{\top} \mathbf{M}_{t-1}^{-1} x_{e}}\right)$ for all $e \in \mathcal{E}$
2. choose $\mathcal{S}_{t} \in \operatorname{ORACLE}\left(\mathcal{G}, K, U_{t}\right)$, and observe the edge-level semi-bandit feedback
3. update statistics:
(a) initialize $\mathbf{M}_{t} \leftarrow \mathbf{M}_{t-1}$ and $B_{t} \leftarrow B_{t-1}$
(b) for all observed edges $e \in \mathcal{E}$, update $\mathbf{M}_{t} \leftarrow \mathbf{M}_{t}+\sigma^{-2} x_{e} x_{e}^{\top}$ and $B_{t} \leftarrow B_{t}+x_{e} \mathbf{w}_{t}(e)$

$$
\begin{aligned}
R^{\eta}(n) & =\sum_{t=1}^{n} \mathbb{E}\left[R_{t}^{\eta}\right] \\
R_{t}^{\eta} & =f\left(\mathcal{S}^{\mathrm{opt}}, \mathbf{w}_{t}\right)-\frac{1}{\eta} f\left(\mathcal{S}_{t}, \mathbf{w}_{t}\right)
\end{aligned}
$$

MAXIMUM OBSERVED RELEVANCE

$N_{\mathcal{S}, e} \triangleq \sum_{v \in \mathcal{V} \backslash \mathcal{S}} \mathbf{1}\{e$ is relevant to v under $\mathcal{S}\} \quad$ and $\quad P_{\mathcal{S}, e} \triangleq \mathbb{P}(e$ is observed $\mid \mathcal{S})$
only depends on topology
depends on both

$$
C_{*} \triangleq \max _{\mathcal{S}:|\mathcal{S}|=K} \sqrt{\sum_{e \in \mathcal{E}} N_{\mathcal{S}, e}^{2} P_{\mathcal{S}, e}}
$$

max (over) 2-norm of N weighted by P

- Worst-case upper bound:
$C_{*} \leq C_{\mathcal{G}} \triangleq \max _{\mathcal{S}:|\mathcal{S}|=K} \sqrt{\sum_{e \in \mathcal{E}} N_{\mathcal{S}, e}^{2}} \leq(L-K) \sqrt{\mid \mathcal{E}} \mid=\mathcal{O}(L \sqrt{|\mathcal{E}|})=\mathcal{O}\left(L^{2}\right)$

(a)

(b)

(c)

(d)

topology	$C_{\mathcal{G}}$ (worst-case $\left.C_{*}\right)$	$R^{\alpha \gamma}(n)$ for general X	$R^{\alpha \gamma}(n)$ for X $=\mathbf{I}$
bar graph	$\mathcal{O}(\sqrt{K})$	$\widetilde{\mathcal{O}}(d K \sqrt{n} /(\alpha \gamma))$	$\widetilde{\mathcal{O}}(L \sqrt{K n} /(\alpha \gamma))$
star graph	$\mathcal{O}(L \sqrt{K})$	$\widetilde{\mathcal{O}}\left(d L^{\frac{3}{2}} \sqrt{K n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{2} \sqrt{K n} /(\alpha \gamma)\right)$
ray graph	$\mathcal{O}\left(L^{\frac{5}{4}} \sqrt{K}\right)$	$\widetilde{\mathcal{O}}\left(d L^{\frac{7}{4}} \sqrt{K n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{\frac{9}{4}} \sqrt{K n} /(\alpha \gamma)\right)$
tree graph	$\mathcal{O}\left(L^{\frac{3}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d L^{2} \sqrt{n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{\frac{5}{2}} \sqrt{n} /(\alpha \gamma)\right)$
grid graph	$\mathcal{O}\left(L^{\frac{3}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d L^{2} \sqrt{n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{\frac{5}{2}} \sqrt{n} /(\alpha \gamma)\right)$
complete graph	$\mathcal{O}\left(L^{2}\right)$	$\widetilde{\mathcal{O}}\left(d L^{3} \sqrt{n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{4} \sqrt{n} /(\alpha \gamma)\right)$

Table 1: $C_{\mathcal{G}}$ and worst-case regret bounds for different graph topologies

$$
\begin{aligned}
R^{\alpha \gamma}(n) & \leq \frac{2 c C_{*}}{\alpha \gamma} \sqrt{d n|\mathcal{E}| \log _{2}\left(1+\frac{n|\mathcal{E}|}{d}\right)}+1=\widetilde{\mathcal{O}}\left(d C_{*} \sqrt{|\mathcal{E}| n} /(\alpha \gamma)\right) \\
& \leq \widetilde{\mathcal{O}}(d(L-K)|\mathcal{E}| \sqrt{n} /(\alpha \gamma)) .
\end{aligned}
$$

How good (tight) is this?

- comparison with linear bandits
- comparison with general combinatorial bandits
- (L-K) factor
- How good is C $*$?
- when are our upper bounds on the estimates right?

$$
\xi_{t-1}=\left\{\left|x_{e}^{\top}\left(\bar{\theta}_{\tau-1}-\theta^{*}\right)\right| \leq c \sqrt{x_{e}^{\top} \mathbf{M}_{\tau-1}^{-1} x_{e}}, \forall e \in \mathcal{E}, \forall \tau \leq t\right\}
$$

- decomposes the regret at round t

$$
\mathbb{E}\left[R_{t}^{\alpha \gamma}\right] \leq \mathbb{P}\left(\xi_{t-1}\right) \mathbb{E}\left[R_{t}^{\alpha \gamma} \mid \xi_{t-1}\right]+\mathbb{P}\left(\bar{\xi}_{t-1}\right)[L-K]
$$

- monotonicity of f

$$
\mathbb{E}\left[R_{t}^{\alpha \gamma} \mid \xi_{t-1}\right] \leq \mathbb{E}\left[f\left(\mathcal{S}_{t}, U_{t}\right)-f\left(\mathcal{S}_{t}, \bar{w}\right) \mid \xi_{t-1}\right] /(\alpha \gamma)
$$

- studying second-order derivatives of f
- monotonicity and concavity of f wrt w
- sub-modularity of f wrt newly added edge

$$
f\left(\mathcal{S}_{t}, U_{t}, v\right)-f\left(\mathcal{S}_{t}, \bar{w}, v\right) \leq \sum_{e \in \mathcal{E}_{\mathcal{S}_{t}, v}} \mathbb{E}\left[\mathbf{1}\left\{O_{t}(e)\right\}\left[U_{t}(e)-\bar{w}(e)\right] \mid \mathcal{H}_{t-1}, \mathcal{S}_{t}\right]
$$

EXPERIMENTS

- Objective: "Check" how good is our C*
- Tabular case, $K=1$, exact comparison possible, all weights are same $=\omega$

Star $\quad \widetilde{\mathcal{O}}\left(L^{2}\right)$ vs. $\mathcal{O}\left(L^{2.040}\right)$ and $\mathcal{O}\left(L^{2.056}\right)$
Ray $\quad \widetilde{\mathcal{O}}\left(L^{\frac{9}{4}}\right)$ vs. $\mathcal{O}\left(L^{2.488}\right)$ and $\mathcal{O}\left(L^{2.467}\right)$

- Conclusion: evidence that our C* is a reasonable complexity measure

FACEBOOK EXPERIMENT

- real Facebook (a small subgraph)
- weights from $\mathrm{U}(0,0.1)$
- nodetovec with $\mathrm{d}=10$
- imperfect
- $K=10$
- CUCB with no linear generalisation

CONCLUSION AND NEXT STEPS

- Active learning on graphs
- learning the graph while acting on it optimal
- difficulty of the problem and scaling with it
- online influence maximization
- local model (minimax optimal algorithm)
- global cascading model
- What is next?
- dynamic/evolving graphs
- realistic accessibility constraints

Michal Valko, Sequel, Inria Lille - Nord Europe, michal.valko@inria.fr http://Iresearchers.ille.incia.ff/ valko/hp/

