# REIV du Plateau Inria: Graphs in Machine Learning 

## le 9 novembre 2017

# WHERE IS JUSTIN BIEBER? OR ONLINE INFLUENCE MAXIMIZATION 

Michal Valko, SequeL, Inria Lille - Nord Europe

## 2016-2017

NIPS 2017 accepted, to appear


## 10 YEARS



## ... LAST 10 YEARS AND INDUSTRY

criteol.

Ald
M. Ghavamzadeh


## FOCUS ON ONLINE RECOMMENDER SYSTEMS

Deep Learning for Recommender systems (Strub, Mary, Gaudel, Preux) State-of-art result on Netflix challenge + contracts with companies

sequential decision making way of thinking solutions for cold-star problem

deep or not: recommender systems are major field of research and applications of Sequel

## 3 ACTIVE HIGHLIGHTS. . . LAST 12 MONTHS



Squeak: Online Graph and Kernel Sparsifiers UAI 2016, AISTATS 2017, ICML 2017, NIPS 2017 Calandriello, Lazaric, Valko


| Algorith | parkinson $n=5,875, d=20$ |  |  | cpusmall $n=8,192, d=12$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Avg. Squared Loss |  | Time | Avg. Squared Loss |  | Time |
| Fogd | $0.044999 \pm 0.00020$ | ${ }^{30}$ |  | $0.02557 \pm 0.00050$ | ${ }^{30}$ |  |
| nogd | $0.04896 \pm 0.00008$ | 30 | - | $0.02559 \pm \pm 0.0002$ | 30 | - |
| Pros-N-KONS | $0.05798 \pm 0.00136$ | 18 | 5.16 | $0.02494 \pm 0.0041$ | 20 | 7.28 |
| Con-Kons | $0.05696 \pm .00129$ | 18 | 5.21 | $0.02269 \pm \pm .0014$ | 20 | 7.40 |
| B-KONS | $0.05795 \pm 0.0012$ | 18 | 5.35 | $0.02496 \pm 0.0017$ | 20 | 7.37 |
| BATCH | $0.04535 \pm \pm .0 .0002$ | - |  | $0.01090 \pm \pm .00082$ |  |  |
| Algoritm | cadata $n=20,640, d=8$ |  |  | $\operatorname{casp} n=45,730, d=9$ |  |  |
|  | Avg. Squared Loss |  | Time | Avg. Squared Loss |  | Time |
| Fogd | 4097 $\pm$.0.0015 | ${ }^{30}$ |  | . $08021 \pm \pm .00031$ | ${ }^{30}$ |  |
| Nogd | $0.03983 \pm 0.00018$ | 30 | - | $0.07844 \pm 0.00008$ | 30 | - |
| Pros-N-KON | $0.03095 \pm 0.0010$ |  | 18.59 | $0.06773 \pm 0.0005$ |  | 40.73 |
|  | $0.02850 \pm 0.0074$ | 19 | 18.45 | $0.06832 \pm 0.00315$ | 20 | 40.91 |
| B-KONS | $0.33095 \pm 0.0018$ | 19 | 18.65 | $0.06775 \pm 0.0067$ | 21 | 41.13 |
| BATCH | $0.02202 \pm 0.0002$ | - | - | $0.06100 \pm 0.00003$ | - |  |
| Algorith | slice $n=53,500, d=385$ |  |  | year $n=463,715, d=90$ |  |  |
|  | S Squared Loss | \#SV | Time | Avg. Squared Loss | \#sV | Time |
| ${ }_{\text {FOGD }}$ | $0.00726 \pm 0.00019$ |  |  | $0.01427 \pm 0.00004$ |  | - |
| nogd | $0.02636 \pm 0.00460$ | 30 | - | $0.01427 \pm 0.0004$ | 30 | - |
| Dual-Sgd | - | - | - | $0.01440 \pm 0.0000$ | 100 |  |
| ${ }_{\text {Pros-N-KO }}$ | did not complete |  |  | $0.01450 \pm 0.00014$ 0.0144 0.000017 | ${ }_{147}^{149}$ | ${ }_{\text {cki }}^{\substack{884.82 \\ 8892}}$ |
| Con-Kons | did not complete | - | - | $0.01444 \pm 0.00017$ | 147 | 889.42 |
| B-Kons | $0.00913 \pm 0.0045$ | 100 | 60 | $0.01302 \pm \pm .0006$ | 100 | 505.36 |
| BATCH | $0.00212 \pm 0.00001$ | - | - | $0.01147 \pm 0.0001$ | - |  |

## http://GuessWhat.Al

deep RL for dialogue in natural language Strub, de Vries, Mary, Pietquin, Courville, Larochelle

## di) Datasent

- 155,280 played games
- 821,889 questions+answers
- 66,537 images
- 134,073 objects

TrailBlazer - plenary at NIPS 2016 general sample-efficient planner Grill, Munos, Valko

路


## GUESSWHAT.AI



## MY RESEARCH: MINIMAL FEEDBACK



## EXAMPLE 1: SEMI-SUPERVISED LEARNING



SUPERVISED


SEMI-SUPERVISED

## FACE RECOGNIZER THAT LEARNS ON THE FLY



- One person moves among various indoor locations
- 4 labeled examples of a person in the cubicle



Online HFS outperforms OSSB (even when the weak learners are chosen using future data)

Online HFS yields better results than a commercial solution at $20 \%$ of the computational cost




One reason you're seeing this ad is that EDonald J. Trump wants to reach people who are part of an audience called "Likely To Engage in Politics (Liberal)". This is based on your activity on Facebook and other apps and websites, as well as where you connect to the internet.

There may be other reasons you're seeing this ad, including that Donald J. Trump wants to reach people ages 25 and older who live near Boston, Massachusetts. This is information based on your Facebook profile and where you've connected to the internet.


https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/ 1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a_story.html
https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/
Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U

## INSOUMISE OU ENRACIIÉE ?

Le "big data" ou la recette secrète du succès d'Emmanuel Macron?
https://www.rts.ch/iifoo/sciences-tech/8580821-le-big-data-ou-la-recette-secrete-du-succes-d-emmanuel-macron-html

## SPREAD OF \#MACRONLEAKS ON T WITTER



## HOW TO RULE THE WORLD?

Influence the influential!


Religion


Politics


September 1, 2009
Culture


# EXAMPLE: INFLUENCE IN SOCIAL NETWORKS [KEMPE, KLEINBERG, TARDOS KDD '03] 



Who should get free cell phones?
V = \{Alice,Bob,Charlie,Dorothy,Eric,Fiona\}
$\mathrm{F}(\mathrm{A})=$ Expected number of people influenced when targeting A

## MAXIMIZING INFLUENCE

# Product placement 

- dispatch few to sell more
- target influential people


## Gathering the information?

- likes on FB
- promotional codes


## Unknown graphs

- all prior work needed to know the graph
- here: provably learning faster without it


## REVEALING BANDITS FOR LOCAL INFLUENCE

$\qquad$


Unknown $\left.\left(p_{i j}\right)\right)_{i j}$ - (symmetric) probability of influences In each time step $t=1, \ldots$, , $n$
learner picks a node $k_{t}$
environment reveals the set of influenced node $S_{k t}$
Select influential people $=$ Find the strategy maximising

$$
L_{n}=\sum_{t=1}^{n}\left|S_{k_{t}, t}\right|
$$

## Why this is a bandit problem?

What are bandits anyway?

## PERFORMANCE CRITERION

The number of expected influences of node $\boldsymbol{k}$ is by definition
$r_{k}=\mathbb{E}\left[\left|S_{k, t}\right|\right]=\sum_{j \leq d} p_{k, j}$
Oracle strategy always selects the best
$k^{\star}=\underset{k}{\arg \max } \mathbb{E}\left[\sum_{t=1}^{n}\left|S_{k, t}\right|\right]=\underset{k}{\arg \max } n r_{k}$
Expected reward of the oracle strategy
$\mathbb{E}\left[L_{n}^{\star}\right]=n r_{\star}$

Expected regret of any adaptive strategy unaware of $\left(\mathrm{pij}_{\mathrm{ij}}\right)_{\mathrm{ij}}$
$\mathbb{E}\left[R_{n}\right]=\mathbb{E}\left[L_{n}^{\star}\right]-\mathbb{E}\left[L_{n}\right]$

## UPPER CONFIDENCE BOUND BASED ALGOS

$\qquad$


## multi-ARM bandits in café culture



Video recorded March 30th, 2015, 13h50, Université de Lille, Susie \& the Piggy Bones Band


## UPPER CONFIDENCE BOUND BASED ALGOS

$\qquad$


## UPPER CONFIDENCE BOUND BASED ALGOS



## UPPER CONFIDENCE BOUND BASED ALGOS



## EMPIRICAL RESULTS



Figure 1: Left: Barabási-Alber
Middle left: Facebook. Middle right: Enren. Right: Gnutella.
Enron and Facebook vs. Gnutella (decentralised)


Varying a (constant) probability of influence

## NEXT: GLOBAL INFLUENCE MODELS

- Kempe, Kleinberg, Tárdos, 2003, 2015: Independence Cascades, Linear Threshold models
- global and multiple-source models
- Different feed-back models
- Full bandit (only the number of influenced nodes)
- Node-level semi-bandit (identities of influenced nodes)
- Edge-level semi-bandit (identities of influenced edges)
- http://arxiv.org/abs/1605.06593 (Wen, Kveton, Valko, Vaswani, NIPS 2017)
- IMLinUCB with linear parametrization of edge weights
- Regret analysis for general graphs


## CHALLENGES AND SOLUTIONS

- Already the offline problem is NP hard
- solution: approximation/randomized algorithms
- Lots of edges $\max _{\mathcal{S}}:|\mathcal{S}|=K$.
- lots of parameters to learn, if we want to scale, we need to reduce this complexity
- solution: linear approximation of probabilities
- Combinatorial size of possible seed-sets
- Combinatorial Bandits: IMLinUCB
- Understanding what's going on?
- known analyses VERY loose (e.g., scaling with 1/pmin, or only assymptotic)


## APPROXIMATION ORACLE

- the optimal offline solution

$$
\max _{\mathcal{S}}:|\mathcal{S}|=K f(\mathcal{S}, \bar{w})
$$

- the oracle solution that is $\gamma$-optimal with probability at least $\alpha$

$$
\mathcal{S}^{*}=\operatorname{ORACLE}(\mathcal{G}, K, \bar{w})
$$

- $\gamma$-optimal

$$
f\left(\mathcal{S}^{*}, \bar{w}\right) \geq \gamma f\left(\mathcal{S}^{\mathrm{opt}}, \bar{w}\right)
$$



- $\gamma$-optimal with probability at least $\alpha$

$$
\mathbb{E}\left[f\left(\mathcal{S}^{*}, \bar{w}\right)\right] \geq \alpha \gamma f\left(\mathcal{S}^{\circ \mathrm{opt}}, \bar{w}\right)
$$

- Our problem is a triple:
$(\mathcal{G}, K, \bar{w})$


## LINEAR GENERALIZATION

- learning the only network (weights) is VERY impractical

linear approximation
- by choosing the dimension (size of $\theta^{*}$ ) we can reduce this complexity
- if we do not want to lose generality we set d to the number of edges


## Algorithm 1 IMLinUCB: Influence Maximization Linear UCB

Input: graph $\mathcal{G}$, source node set cardinality $K$, oracle ORACLE, feature vector $x_{e}$ 's, and algorithm parameters $\sigma, c>0$,
Initialization: $B_{0} \leftarrow 0 \in \Re^{d}, \mathbf{M}_{0} \leftarrow I \in \Re^{d \times d}$
for $t=1,2, \ldots, n$ do

1. set $\bar{\theta}_{t-1} \leftarrow \sigma^{-2} \mathbf{M}_{t-1}^{-1} B_{t-1}$ and the UCBs as $U_{t}(e) \leftarrow \operatorname{Proj}_{[0,1]}\left(x_{e}^{\top} \bar{\theta}_{t-1}+c \sqrt{x_{e}^{\top} \mathbf{M}_{t-1}^{-1} x_{e}}\right)$ for all $e \in \mathcal{E}$
2. choose $\mathcal{S}_{t} \in \operatorname{ORACLE}\left(\mathcal{G}, K, U_{t}\right)$, and observe the edge-level semi-bandit feedback
3. update statistics:
(a) initialize $\mathbf{M}_{t} \leftarrow \mathbf{M}_{t-1}$ and $B_{t} \leftarrow B_{t-1}$
(b) for all observed edges $e \in \mathcal{E}$, update $\mathbf{M}_{t} \leftarrow \mathbf{M}_{t}+\sigma^{-2} x_{e} x_{e}^{\top}$ and $B_{t} \leftarrow B_{t}+x_{e} \mathbf{w}_{t}(e)$

$$
\begin{aligned}
R^{\eta}(n) & =\sum_{t=1}^{n} \mathbb{E}\left[R_{t}^{\eta}\right] \\
R_{t}^{\eta} & =f\left(\mathcal{S}^{\mathrm{opt}}, \mathbf{w}_{t}\right)-\frac{1}{\eta} f\left(\mathcal{S}_{t}, \mathbf{w}_{t}\right)
\end{aligned}
$$

## FACEBOOK EXPERIMENT



## What is next?

## MAIS OÙ SE CACHE-TIL?


photo(c) Julia@SequeL


Michal Valko, Sequel, Inria Lille - Nord Europe, michal.valko@inria.fr http://Iresearchers.ille.incia.ff/ valko/hp/

