
WHERE IS JUSTIN BIEBER ?
OR ONLINE INFLUENCE MAXIMIZATION

 
Michal Valko, SequeL, Inria Lille - Nord Europe

R&DV du Plateau Inria : Graphs in Machine Learning  
le 9 novembre 2017

2016-2017

NIPS 2017 accepted, to appear

2015-2016

AISTAST 2016

4

Centres

Antennas

Saclay
Ile-de-France

Rennes
Bretagne Atlantique

Bordeaux
Sud-Ouest

Lille
Nord Europe

Paris

Nancy
Grand est

Grenoble
Rhône-Alpes

Sophia Antipolis
Méditerranée

Nantes

Pau

Montpellier

Lyon

Strasbourg

Philippe Preux
SequeL, Inria

Rémi Munos  
Google DeepMind

+

10 YEARS

3

SequeL
DatInG Day, March 30th, 2017

Inria project team 2006-2018 (Building A, ground floor)
March 30, 2017 1 / 6

Composition

Permanent sta�

I Romaric Gaudel
I Emilie Kaufmann
I Alessandro Lazaric
I Jérémie Mary
I Odalric-Ambrym Maillard
I Philippe Preux
I Daniil Ryabko
I Michal Valko

On leave of absence:
I Christos Dimitrakakis

(Harvard), Rémi Munos,
Olivier Pietquin, Bilal Piot:
Google/Deepmind

March 30, 2017 2 / 6

… LAST 10 YEARS AND INDUSTRY

4

R. Munos 
O. Pietquin 
B. Piot 
G. Dulac-Arnold  
A. Huang 
M. Azar 
JB. Grill

R. Coulom 
CrazyStone

A. Lazaric 

J. Mary 
M. Abeille 

M. Ghavamzadeh 

M. Davy 

FOCUS ON ONLINE RECOMMENDER SYSTEMS

5

Deep Learning for Recommender systems (Strub, Mary, Gaudel, Preux) 
State-of-art result on Netflix challenge + contracts with companies

 sequential decision making way of thinking solutions for cold-star problem

deep or not: recommender systems are major field of research and applications of SequeL

3 ACTIVE HIGHLIGHTS… LAST 12 MONTHS

6

TrailBlazer - plenary at NIPS 2016 
general sample-efficient planner 
Grill, Munos, Valko

Squeak: Online Graph and Kernel Sparsifiers 
UAI 2016, AISTATS 2017, ICML 2017, NIPS 2017  
Calandriello, Lazaric, Valko

Algorithm parkinson n = 5, 875, d = 20 cpusmall n = 8, 192, d = 12

Avg. Squared Loss #SV Time Avg. Squared Loss #SV Time
FOGD 0.04909 ± 0.00020 30 — 0.02577 ± 0.00050 30 —
NOGD 0.04896 ± 0.00068 30 — 0.02559 ± 0.00024 30 —
PROS-N-KONS 0.05798 ± 0.00136 18 5.16 0.02494 ± 0.00141 20 7.28
CON-KONS 0.05696 ± 0.00129 18 5.21 0.02269 ± 0.00164 20 7.40
B-KONS 0.05795 ± 0.00172 18 5.35 0.02496 ± 0.00177 20 7.37
BATCH 0.04535 ± 0.00002 — — 0.01090 ± 0.00082 —

Algorithm cadata n = 20, 640, d = 8 casp n = 45, 730, d = 9

Avg. Squared Loss #SV Time Avg. Squared Loss #SV Time
FOGD 0.04097 ± 0.00015 30 — 0.08021 ± 0.00031 30 —
NOGD 0.03983 ± 0.00018 30 — 0.07844 ± 0.00008 30 —
PROS-N-KONS 0.03095 ± 0.00110 20 18.59 0.06773 ± 0.00105 21 40.73
CON-KONS 0.02850 ± 0.00174 19 18.45 0.06832 ± 0.00315 20 40.91
B-KONS 0.03095 ± 0.00118 19 18.65 0.06775 ± 0.00067 21 41.13
BATCH 0.02202 ± 0.00002 — — 0.06100 ± 0.00003 — —

Algorithm slice n = 53, 500, d = 385 year n = 463, 715, d = 90

Avg. Squared Loss #SV Time Avg. Squared Loss #SV Time
FOGD 0.00726 ± 0.00019 30 — 0.01427 ± 0.00004 30 —
NOGD 0.02636 ± 0.00460 30 — 0.01427 ± 0.00004 30 —
DUAL-SGD — — — 0.01440 ± 0.00000 100 —
PROS-N-KONS did not complete — — 0.01450 ± 0.00014 149 884.82
CON-KONS did not complete — — 0.01444 ± 0.00017 147 889.42
B-KONS 0.00913 ± 0.00045 100 60 0.01302 ± 0.00006 100 505.36
BATCH 0.00212 ± 0.00001 — — 0.01147 ± 0.00001 — —

Table 1: Regression datasets

Regression. All algorithms are trained and evaluated using the squared loss. Notice that whenever344

the budget J
max

is not exceeded, B-KONS and PROS-N-KONS are the same algorithm and obtain345

the same result. On regression datasets (Tab. 1) we set ↵ = 1 and � = 1, which satisfies the346

requirements of Thm. 2. On smaller datasets such as parkinson and cpusmall, where frequent restarts347

greatly interfere with the gradient descent, and even a small non-adaptive embedding can capture348

the geometry of the data, PROS-N-KONS is outperformed by simpler first-order methods. As soon349

as T reaches the order of tens of thousands (cadata, casp) second-order updates and data adaptivity350

becomes relevant and PROS-N-KONS outperform its competitors, both in the number of SVs and351

in the average loss. In this intermediate regime, CON-KONS outperforms PROS-N-KONS and352

B-KONS since it is not as much affected by restarts. Finally, when the number of samples raises to353

hundreds of thousands, the intrinsic effective dimension of the dataset starts playing a larger role. On354

slice, where the effective dimension is too large to run, B-KONS still outperforms NOGD with a355

comparable budget of SVs, showing the advantage of second-order updates.356

Binary classification All algorithms are trained using the hinge loss and they are evaluated using the357

average online error rate. Results are reported in Tab. 2 in App. D. While for regression an arbitrary358

value of � = ↵ = 1 is sufficient to obtain good results, it fails for binary classification. Decreasing359

the two parameters to 0.01 resulted in a 3-fold increase in the number of SVs included and runtime,360

but almost a 2-fold decrease in error rate, placing PROS-N-KONS and B-KONS on par or ahead of361

competitors without the need of any further parameter tuning.362

6 Conclusions363

We presented PROS-N-KONS a novel algorithm for sketched second-order OKL that achieves364

O(d

T

eff log(T)) regret for losses with directional curvature. Our sketching is data-adaptive and,365

when the effective dimension of the dataset is constant, it achieves a constant per-step cost, unlike366

SKETCHED-KONS [1], which was previously proposed for the same setting. We empirically showed367

that PROS-N-KONS is practical, performing on par or better than state-of-the-art methods on368

standard benchmarks using small dictionaries on realistic data.369

8

Large-scale semi-supervised learning with online spectral graph sparsification

Laplacian spectral -sparsifier:

Stable-HFS [2]:

Time O(n^3)

Space O(n^2)

Am. Time O(n)

Time O(n^2 polylog(n))

Space O(n polylog(n))

Am. Time O(polylog(n))

Graph Learning

?

?

Harmonic Function Solution (HFS)

Algorithmic Stability

Theoretical guarantees for stable

transductive algorithms [1]

Time O(n^2 polylog(n))
Space O(n^2)

Am. Time O(polylog(n))

Fast SDD Linear Solver [3] + Stable-HFS

Sparse-HFS

[3] I. Koutis, G. L. Miller, and R. Peng. A nearly-m log n time solver for SDD linear systems. FOCS, 2011

0 2 4 6 8 10

50

60

70

80

90

100

Space complexity (10^7)

100

A
c
c
u

r
a

c
y

0 2 4 6 8 10

50

60

70

80

90

100

Space complexity (10^7)

1000

A
c
c
u

r
a

c
y

Spam Classification (TREC07)

(under assumptions)

daniele.calandriello@inria.fr, alessandro.lazaric@inria.fr, michal.valko@inria.fr

[1] C. Cortes, M. Mohri, D. Pechyony, and A. Rastogi. Stability of transductive regression algorithms. ICML 2008.

Toy example

[2] M. Belkin, I. Matveeva, and P. Niyogi. Regularization and Semi-Supervised Learning on Large Graphs. COLT, 2004

We would like to thank Ioannis Koutis for many useful discussions.

ExtraLearn

Transductive setting

for Semi-Supervised Learning

http://GuessWhat.AI  
deep RL for dialogue in natural language 
Strub, de Vries, Mary, Pietquin, Courville, Larochelle

GUESSWHAT.AI

7

MY RESEARCH: MINIMAL FEEDBACK

8

EXAMPLE 1: SEMI-SUPERVISED LEARNING

9

FACE RECOGNIZER THAT LEARNS ON THE FLY

10

11

FINAL PRODUCT

12

HOW TO RULE THE WORLD?

13

“IA” EST DÉJÀ LÀ

14

How to rule the world: “AI” is here

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/

1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a_story.html

https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/

Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U

Michal Valko – Graphs in Machine Learning SequeL - 8/41

INSOUMISE OU ENRACINÉE ?

Le "big data" ou la recette secrète du succès d'Emmanuel Macron?

https://www.rts.ch/info/sciences-tech/8580821-le-big-data-ou-la-recette-secrete-du-
succes-d-emmanuel-macron-.html

15

https://www.rts.ch/info/sciences-tech/8580821-le-big-data-ou-la-recette-secrete-du-succes-d-emmanuel-macron-.html

HOW TO RULE THE WORLD?

16

Religion CulturePolitics

Influence the influential!

JULY 18, 2016 March 26, 2017 September 1, 2009

338 ET 200

17slide from Stefanie Jegelka

18

EXAMPLE: INFLUENCE IN SOCIAL NETWORKS  
[KEMPE, KLEINBERG, TARDOS KDD ’03]

 Who should get free cell phones?
 V = {Alice,Bob,Charlie,Dorothy,Eric,Fiona}
 F(A) = Expected number of people influenced when targeting A

0.5

0.3
0.5 0.4

0.2

0.2 0.5

Alice

Bob

Charlie

Dorothy Eric

Fiona

Prob.	
 of 
influencing

MAXIMIZING INFLUENCE

Product placement

dispatch few to sell more

target influential people

Gathering the information?

likes on FB

promotional codes

Unknown graphs

all prior work needed to know the graph

here: provably learning faster without it

19

p
i

j

REVEALING BANDITS FOR LOCAL INFLUENCE

20

p
i

j

pij

i j

Unknown (pij)ij — (symmetric) probability of influences

In each time step t = 1, …., n

learner picks a node kt

environment reveals the set of influenced node Skt

Select influential people = Find the strategy maximising

Alexandra Carpentier, Michal Valko

2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

Why this is a bandit problem?

What are bandits anyway?

Case n < d

PERFORMANCE CRITERION

21

The number of expected influences of node k is by definition

Oracle strategy always selects the best

Expected reward of the oracle strategy

Alexandra Carpentier, Michal Valko

2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

Alexandra Carpentier, Michal Valko

2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

Alexandra Carpentier, Michal Valko

2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

Alexandra Carpentier, Michal Valko

2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

Expected regret of any adaptive strategy unaware of (pij)ij

p
i

j

pij

i j

UPPER CONFIDENCE BOUND BASED ALGOS

22

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

MULTI-ARM BANDITS IN CAFÉ CULTURE

23

Video recorded March 30th, 2015, 13h50,
Université de Lille, Susie & the Piggy Bones Band

UPPER CONFIDENCE BOUND BASED ALGOS

24

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

UPPER CONFIDENCE BOUND BASED ALGOS

25

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

UPPER CONFIDENCE BOUND BASED ALGOS

26

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

EMPIRICAL RESULTS

Manuscript under review by AISTATS 2016

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.80

0 200 400 600 800 1000 1200
0

5

10

15
× 104

BARE
GraphMOSS

bD⇤ = 134, bT⇤ = 36

round t

re
gr

et

Graph: Facebook - Number of runs: 100 - revelation p = 0.80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5
× 106

BARE
GraphMOSS

bD⇤ = 125, bT⇤ = 28

round t

re
gr

et

Graph: Enron - Number of runs: 100 - revelation p = 0.80

1 5000 10000 15000 20000 25000 30000 35000
0

1

2

3

4

5

6

7

8

9
× 107

BARE
GraphMOSS

bD⇤ = 564, bT⇤ = 107

round t

re
gr

et

Graph: Gnutella - Number of runs: 100 - revelation p = 0.80

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

8

9
× 105

BARE
GraphMOSS

bD⇤ = 3916, bT⇤ = 779

Figure 1: Left : Barabási-Albert. Middle left : Facebook. Middle right : Enron. Right : Gnutella.

bD⇤ = 529, bT⇤ = 147 bD⇤ = 230, bT⇤ = 64 bD⇤ = 161, bT⇤ = 50 bD⇤ = 134, bT⇤ = 36 bD⇤ = 133, bT⇤ = 34

Figure 2: Barabási-Albert model with varying p between 0.2 and 1

We first performed an experiment on a graph gen-
erated by 10-out-degree Barabási-Albert model with
d = 1000 nodes. Figure 1 (left) compares BARE with
GraphMOSS. As expected, GraphMOSS su↵ers linear
regret up to time t = d, since there is no sharing of in-
formation and for t  d, GraphMOSS pulls each arm
once. While the regret of GraphMOSS is no longer
linear for t > d and eventually detects the best node,
BARE is able to detect promising nodes much sooner
during its global exploration phase and we can see the
benefit of revealed information already around t = 300.

In Figure 2, we varied the probability of revelation p
for a Barabási-Albert graph. When p close is to one,
the more of the graph structure is revealed and the
problem becomes easier. On the other hand, with p
close to zero we do not get as much information on the
structure and the performance of BARE and Graph-
MOSS are similar.

We also performed the experiments on Enron mail
graph (Klimt & Yang, 2004) with d = 36692 and the
snapshot of symmetrized version of Gnuttella network
from August 4th, 2002 (Ripeanu et al., 2002) with
d = 10879, obtained from Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014). Further-
more, we evaluated BARE on a subset of Facebook
network with d = 4039 (Viswanath et al., 2009). We
used the same parameters as for the Barabási-Albert
case.

As expected, Figure 1 (middle left, middle right,
right) shows that the performance gains of BARE over
GraphMOSS depends heavily on the structure. In En-
ron and Facebook, the gain of BARE is significant
which suggests that the graphs from these networks

feature a relatively small number of influential nodes.
On the other hand, the gain of BARE in Gnutella was
much smaller which again suggests that this network
is more decentralized.

In all the plots we include also the empirical estimate
of the detectable dimension bD⇤ and the detectable
horizon bT⇤. Notice that the smaller bD⇤, as compared
to d, and the smaller bT⇤ is as compared to n, the sooner
is BARE able to learn the most influential node as
compared to GraphMOSS.

6 Conclusion

We hope that out work on local revelation incites the
extensions on more elaborate propagation models on
graphs (Kempe et al., 2015). One way to directly ex-
tend to more general propagation models is to consider
that a more distant neighbor is a direct neighbor with
contamination probability being the sum of the path
products. Moreover, if we allow for more feedback,
e.g., identity of the influencing paths, our results could
extend more e�ciently.

Note that in our setting, we were completely agnos-
tic to the graph structure. Realistic networks often
exhibit some additional structural properties that are
captured by graph generator models, such as various
stochastic block models (Girvan & Newman, 2002).

In future, we would like to extend our approach to
cases where we can take advantage of the assump-
tions stemming from these models and consider the
subclasses of graph structures where we can further
improve the learning rates.

Enron and Facebook vs. Gnutella (decentralised)

27

BETTER

Revealing graph bandits for maximizing local influence

bD? = 134, bT? = 36 bD? = 125, bT? = 28 bD? = 564, bT? = 107 bD? = 3916, bT? = 779

Figure 1: Left : Barabási-Albert. Middle left : Facebook. Middle right : Enron. Right : Gnutella.

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.20

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

4
× 104

BARE
GraphMOSS

bD? = 529, bT? = 147

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.40

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6
× 104

BARE
GraphMOSS

bD? = 230, bT? = 64

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.60

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8
× 104

BARE
GraphMOSS

bD? = 161, bT? = 50

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.80

0 200 400 600 800 1000 1200
0

5

10

15
× 104

BARE
GraphMOSS

bD? = 134, bT? = 36

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 1.00

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14
× 104

BARE
GraphMOSS

bD? = 133, bT? = 34

Figure 2: Barabási-Albert model with varying p between 0.2 and 1

We first performed an experiment on a graph gen-
erated by 10-out-degree Barabási-Albert model with
d = 1000 nodes. Figure 1 (left) compares BARE with
GraphMOSS. As expected, GraphMOSS su↵ers linear re-
gret up to time t = d, since there is no sharing of
information and for t  d, GraphMOSS pulls each arm
once. While the regret of GraphMOSS is no longer linear
for t > d and eventually detects the best node, BARE is
able to detect promising nodes much sooner during its
global exploration phase and we can see the benefit of
revealed information already around t = 300.

In Figure 2, we varied the probability of revelation p
for a Barabási-Albert graph. When p close is to one,
the more of the graph structure is revealed and the
problem becomes easier. On the other hand, with p
close to zero we do not get as much information
about the structure and the performance of BARE and
GraphMOSS are similar.

We also performed the experiments on Enron mail
graph (Klimt & Yang, 2004) with d = 36692 and the
snapshot of symmetrized version of Gnutella network
from August 4th, 2002 (Ripeanu et al., 2002) with
d = 10879, obtained from Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014). Further-
more, we evaluated BARE on a subset of Facebook net-
work with d = 4039 (Viswanath et al., 2009). We used
the same parameters as for the Barabási-Albert case.

As expected, Figure 1 (middle left, middle right,
right) shows that the performance gains of BARE over
GraphMOSS depend heavily on the structure. In Enron
and Facebook, the gain of BARE is significant which
suggests that the graphs from these networks feature
a relatively small number of influential nodes. On the
other hand, the gain of BARE on Gnutella was much
smaller which again suggests that this network is more
decentralized.

In all the plots we include also the empirical estimate
of the detectable dimension bD? and the detectable
horizon bT?. Notice that the smaller bD?, as compared
to d, and the smaller bT? is as compared to n, the sooner
is BARE able to learn the most influential node as com-
pared to GraphMOSS.

6 Conclusion

We hope that out work on local revelation incites the
extensions on more elaborate propagation models on
graphs (Kempe et al., 2015). One way to directly ex-
tend to more general propagation models is to consider
that a more distant neighbor is a direct neighbor with
contamination probability being the sum of the path
products. Moreover, if we allow for more feedback,
e.g., the identity of the influencing paths, our results
could extend more e�ciently. Note that in our setting,
we were completely agnostic to the graph structure.
Realistic networks often exhibit some additional struc-
tural properties that are captured by graph generator
models, such as various stochastic block models (Gir-
van & Newman, 2002). In future, we would like to
extend our approach to cases where we can take advan-
tage of the assumptions stemming from these models
and consider the subclasses of graph structures where
we can further improve the learning rates.

Acknowledgements We thank Alan Mislove for
the Facebook dataset. The research presented in this
paper was supported by French Ministry of Higher
Education and Research, Nord-Pas-de-Calais Regional
Council, French National Research Agency project
ExTra-Learn (n.ANR-14-CE24-0010-01), and by Ger-
man Research Foundation’s Emmy Noether grant
MuSyAD (CA 1488/1-1).

BETTER

Varying a (constant) probability of influence

NEXT: GLOBAL INFLUENCE MODELS

Kempe, Kleinberg, Tárdos, 2003, 2015: Independence Cascades, Linear Threshold models

global and multiple-source models

Different feed-back models

Full bandit (only the number of influenced nodes)

Node-level semi-bandit (identities of influenced nodes)

Edge-level semi-bandit (identities of influenced edges)

http://arxiv.org/abs/1605.06593 (Wen, Kveton, Valko, Vaswani, NIPS 2017)

IMLinUCB with linear parametrization of edge weights

Regret analysis for general graphs

28

http://arxiv.org/abs/1605.06593

CHALLENGES AND SOLUTIONS

Already the offline problem is NP hard

solution: approximation/randomized algorithms

Lots of edges

lots of parameters to learn, if we want to scale, we need to reduce this complexity

solution: linear approximation of probabilities

Combinatorial size of possible seed-sets

Combinatorial Bandits: IMLinUCB

Understanding what’s going on?

known analyses VERY loose (e.g., scaling with 1/pmin, or only assymptotic)

29

full-bandit feedback, where only the number of influenced nodes is observed; (2) a node semi-bandit
feedback, where the identity of influenced nodes is observed; or (3) an edge semi-bandit feedback,
where the identity of influenced edges (edges from influenced nodes) is observed. In all models, the
IM bandits combines two main challenges. First, the number of actions S grows exponentially with
the cardinality constraint on S . Second, we only observe the influenced portion of the network.

Although IM bandits have been studied very recently [23, 11, 32, 27], open challenges remain. One
challenge is to identify reasonable complexity metrics, which should depend on both the structure
(topology) of the network and the activation probabilities of edges to reflect the information-theoretic
complexity of IM bandits, and develop learning algorithms whose performance scales gracefully with
these metrics. Another challenge is to develop efficient learning algorithms for large-scale IM bandits,
which is increasingly important because social networks have millions or even billions of users.

In this paper, we suggest to overcome these two challenges in IM bandits in the case of edge semi-
bandit feedback, where we observe for each influenced node the downstream neighbors that this
node influenced (activated). Modern online social networks track activities of their users and these
activation events can often be observed, for instance when the user retweets a tweet of another
user. We refer to our model as an independent cascade semi-bandit (ICSB). We make four main
contributions. First, we propose IMLinUCB, a UCB-like algorithm for ICSBs that permits linear
generalization and is suitable for large-scale problems. Second, we propose a novel complexity
metric, referred to as maximum observed relevance C⇤ for ICSB, which depends on the topology of
the network and is a non-decreasing function of activation probabilities. C⇤ can be upper bounded
based on network topology or number of nodes/ edges in the network, but it is expected to be much
smaller than these upper bounds in real-world social networks due to the relatively low activation
probabilities, which favorably impacts our performance guarantees. Third, we bound the regret of
IMLinUCB. Our regret bounds are polynomial in all quantities of interest; reflect the structure and
activation probabilities of the network through C⇤; and do not depend on inherently large quantities,
such as the reciprocal of the minimum probability of being influenced [11] and the cardinality of the
action set. Finally, we evaluate IMLinUCB on several problems. Our experiment results show that the
regret of IMLinUCB scales as suggested by our topology-dependent regret bounds; and based on linear
generalization, IMLinUCB can significantly reduce regrets for real-world influence maximization
semi-bandit problems.

2 Influence Maximization under Independence Cascade Models

Consider an directed graph G = (V, E) with a set V of L = |V| nodes, a set E of directed edges,
and a binary1 weight function w : E ! {0, 1}. We say that a node v

2

2 V is reachable from a
node v

1

2 V under w if there is a directed path2 p = (e
1

, e
2

, . . . , e
l

) from v
1

to v
2

in G satisfying
w(e

i

) = 1 for all i = 1, 2, . . . , l. For a given source node set S ✓ V and w, we say that node v 2 V
is influenced if v is reachable from at least one source node in S under w; and denote the number of
influenced nodes in G by f(S,w). By definition, the nodes in S are always influenced.

The influence maximization (IM) problem is characterized by a triple (G,K,w), where G is a given
directed graph, K  L is the cardinality of source nodes, and w : E ! [0, 1] is a probability weight
function mapping each edge e 2 E to a real number w(e) 2 [0, 1]. The agent needs to choose a
set of K source nodes S ✓ V based on (G,K,w). Then a binary weight function w is obtained by
independently sampling a Bernoulli random variable w(e) ⇠ Bern (w(e)) for each edge e 2 E . The
agent’s objective is to maximize the expected number of the influenced nodes: maxS: |S|=K

f(S, w),
where f(S, w) �

= Ew [f(S,w)] is the expected number of influenced nodes when the source node set
is S and w is sampled according to w.3 It is well-known that the (offline) IM problem is NP-hard [19],
but can be approximately solved by approximation / randomized algorithms [9]. In this paper, we
refer to such algorithms as oracles to distinguish them from the machine learning algorithms discussed
in following sections. Let Sopt be the optimal solution of this problem, and S⇤

= ORACLE(G,K,w)
be the (possibly random) solution of an oracle ORACLE. For any ↵, � 2 [0, 1], we say that ORACLE

1Notice, that for a binary w there is no randomness in the subsequent definition.
2As is standard in graph theory, a directed path is a sequence of directed edges connecting a sequence of

distinct nodes, under the restriction that all edges are directed in the same direction.
3Notice that the definitions of f(S, w) and f(S,w) are consistent in the sense that if w 2 {0, 1}|E|, then

f(S, w) = f(S,w) with probability 1.

2

seed sizeseed set

APPROXIMATION ORACLE

30

full-bandit feedback, where only the number of influenced nodes is observed; (2) a node semi-bandit
feedback, where the identity of influenced nodes is observed; or (3) an edge semi-bandit feedback,
where the identity of influenced edges (edges from influenced nodes) is observed. In all models, the
IM bandits combines two main challenges. First, the number of actions S grows exponentially with
the cardinality constraint on S . Second, we only observe the influenced portion of the network.

Although IM bandits have been studied very recently [23, 11, 32, 27], open challenges remain. One
challenge is to identify reasonable complexity metrics, which should depend on both the structure
(topology) of the network and the activation probabilities of edges to reflect the information-theoretic
complexity of IM bandits, and develop learning algorithms whose performance scales gracefully with
these metrics. Another challenge is to develop efficient learning algorithms for large-scale IM bandits,
which is increasingly important because social networks have millions or even billions of users.

In this paper, we suggest to overcome these two challenges in IM bandits in the case of edge semi-
bandit feedback, where we observe for each influenced node the downstream neighbors that this
node influenced (activated). Modern online social networks track activities of their users and these
activation events can often be observed, for instance when the user retweets a tweet of another
user. We refer to our model as an independent cascade semi-bandit (ICSB). We make four main
contributions. First, we propose IMLinUCB, a UCB-like algorithm for ICSBs that permits linear
generalization and is suitable for large-scale problems. Second, we propose a novel complexity
metric, referred to as maximum observed relevance C⇤ for ICSB, which depends on the topology of
the network and is a non-decreasing function of activation probabilities. C⇤ can be upper bounded
based on network topology or number of nodes/ edges in the network, but it is expected to be much
smaller than these upper bounds in real-world social networks due to the relatively low activation
probabilities, which favorably impacts our performance guarantees. Third, we bound the regret of
IMLinUCB. Our regret bounds are polynomial in all quantities of interest; reflect the structure and
activation probabilities of the network through C⇤; and do not depend on inherently large quantities,
such as the reciprocal of the minimum probability of being influenced [11] and the cardinality of the
action set. Finally, we evaluate IMLinUCB on several problems. Our experiment results show that the
regret of IMLinUCB scales as suggested by our topology-dependent regret bounds; and based on linear
generalization, IMLinUCB can significantly reduce regrets for real-world influence maximization
semi-bandit problems.

2 Influence Maximization under Independence Cascade Models

Consider an directed graph G = (V, E) with a set V of L = |V| nodes, a set E of directed edges,
and a binary1 weight function w : E ! {0, 1}. We say that a node v

2

2 V is reachable from a
node v

1

2 V under w if there is a directed path2 p = (e
1

, e
2

, . . . , e
l

) from v
1

to v
2

in G satisfying
w(e

i

) = 1 for all i = 1, 2, . . . , l. For a given source node set S ✓ V and w, we say that node v 2 V
is influenced if v is reachable from at least one source node in S under w; and denote the number of
influenced nodes in G by f(S,w). By definition, the nodes in S are always influenced.

The influence maximization (IM) problem is characterized by a triple (G,K,w), where G is a given
directed graph, K  L is the cardinality of source nodes, and w : E ! [0, 1] is a probability weight
function mapping each edge e 2 E to a real number w(e) 2 [0, 1]. The agent needs to choose a
set of K source nodes S ✓ V based on (G,K,w). Then a binary weight function w is obtained by
independently sampling a Bernoulli random variable w(e) ⇠ Bern (w(e)) for each edge e 2 E . The
agent’s objective is to maximize the expected number of the influenced nodes: maxS: |S|=K

f(S, w),
where f(S, w) �

= Ew [f(S,w)] is the expected number of influenced nodes when the source node set
is S and w is sampled according to w.3 It is well-known that the (offline) IM problem is NP-hard [19],
but can be approximately solved by approximation / randomized algorithms [9]. In this paper, we
refer to such algorithms as oracles to distinguish them from the machine learning algorithms discussed
in following sections. Let Sopt be the optimal solution of this problem, and S⇤

= ORACLE(G,K,w)
be the (possibly random) solution of an oracle ORACLE. For any ↵, � 2 [0, 1], we say that ORACLE

1Notice, that for a binary w there is no randomness in the subsequent definition.
2As is standard in graph theory, a directed path is a sequence of directed edges connecting a sequence of

distinct nodes, under the restriction that all edges are directed in the same direction.
3Notice that the definitions of f(S, w) and f(S,w) are consistent in the sense that if w 2 {0, 1}|E|, then

f(S, w) = f(S,w) with probability 1.

2

the oracle solution that is 𝛾-optimal with probability at least 𝛼

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

𝛾-optimal

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

𝛾-optimal with probability at least 𝛼

full-bandit feedback, where only the number of influenced nodes is observed; (2) a node semi-bandit
feedback, where the identity of influenced nodes is observed; or (3) an edge semi-bandit feedback,
where the identity of influenced edges (edges from influenced nodes) is observed. In all models, the
IM bandits combines two main challenges. First, the number of actions S grows exponentially with
the cardinality constraint on S . Second, we only observe the influenced portion of the network.

Although IM bandits have been studied very recently [23, 11, 32, 27], open challenges remain. One
challenge is to identify reasonable complexity metrics, which should depend on both the structure
(topology) of the network and the activation probabilities of edges to reflect the information-theoretic
complexity of IM bandits, and develop learning algorithms whose performance scales gracefully with
these metrics. Another challenge is to develop efficient learning algorithms for large-scale IM bandits,
which is increasingly important because social networks have millions or even billions of users.

In this paper, we suggest to overcome these two challenges in IM bandits in the case of edge semi-
bandit feedback, where we observe for each influenced node the downstream neighbors that this
node influenced (activated). Modern online social networks track activities of their users and these
activation events can often be observed, for instance when the user retweets a tweet of another
user. We refer to our model as an independent cascade semi-bandit (ICSB). We make four main
contributions. First, we propose IMLinUCB, a UCB-like algorithm for ICSBs that permits linear
generalization and is suitable for large-scale problems. Second, we propose a novel complexity
metric, referred to as maximum observed relevance C⇤ for ICSB, which depends on the topology of
the network and is a non-decreasing function of activation probabilities. C⇤ can be upper bounded
based on network topology or number of nodes/ edges in the network, but it is expected to be much
smaller than these upper bounds in real-world social networks due to the relatively low activation
probabilities, which favorably impacts our performance guarantees. Third, we bound the regret of
IMLinUCB. Our regret bounds are polynomial in all quantities of interest; reflect the structure and
activation probabilities of the network through C⇤; and do not depend on inherently large quantities,
such as the reciprocal of the minimum probability of being influenced [11] and the cardinality of the
action set. Finally, we evaluate IMLinUCB on several problems. Our experiment results show that the
regret of IMLinUCB scales as suggested by our topology-dependent regret bounds; and based on linear
generalization, IMLinUCB can significantly reduce regrets for real-world influence maximization
semi-bandit problems.

2 Influence Maximization under Independence Cascade Models

Consider an directed graph G = (V, E) with a set V of L = |V| nodes, a set E of directed edges,
and a binary1 weight function w : E ! {0, 1}. We say that a node v

2

2 V is reachable from a
node v

1

2 V under w if there is a directed path2 p = (e
1

, e
2

, . . . , e
l

) from v
1

to v
2

in G satisfying
w(e

i

) = 1 for all i = 1, 2, . . . , l. For a given source node set S ✓ V and w, we say that node v 2 V
is influenced if v is reachable from at least one source node in S under w; and denote the number of
influenced nodes in G by f(S,w). By definition, the nodes in S are always influenced.

The influence maximization (IM) problem is characterized by a triple (G,K,w), where G is a given
directed graph, K  L is the cardinality of source nodes, and w : E ! [0, 1] is a probability weight
function mapping each edge e 2 E to a real number w(e) 2 [0, 1]. The agent needs to choose a
set of K source nodes S ✓ V based on (G,K,w). Then a binary weight function w is obtained by
independently sampling a Bernoulli random variable w(e) ⇠ Bern (w(e)) for each edge e 2 E . The
agent’s objective is to maximize the expected number of the influenced nodes: maxS: |S|=K

f(S, w),
where f(S, w) �

= Ew [f(S,w)] is the expected number of influenced nodes when the source node set
is S and w is sampled according to w.3 It is well-known that the (offline) IM problem is NP-hard [19],
but can be approximately solved by approximation / randomized algorithms [9]. In this paper, we
refer to such algorithms as oracles to distinguish them from the machine learning algorithms discussed
in following sections. Let Sopt be the optimal solution of this problem, and S⇤

= ORACLE(G,K,w)
be the (possibly random) solution of an oracle ORACLE. For any ↵, � 2 [0, 1], we say that ORACLE

1Notice, that for a binary w there is no randomness in the subsequent definition.
2As is standard in graph theory, a directed path is a sequence of directed edges connecting a sequence of

distinct nodes, under the restriction that all edges are directed in the same direction.
3Notice that the definitions of f(S, w) and f(S,w) are consistent in the sense that if w 2 {0, 1}|E|, then

f(S, w) = f(S,w) with probability 1.

2

the optimal offline solution seed size

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

unknown to the agentOur problem is a triple:

seed sizetopology

LINEAR GENERALIZATION

31

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

— learning the only network (weights) is VERY impractical

true weights

linear approximation

this is small

— by choosing the dimension (size of 𝜃*) we can reduce this complexity

— if we do not want to lose generality we set d to the number of edges

ALGORITHM AND PERFORMANCE MEASURE

32

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

FACEBOOK EXPERIMENT

33

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
eg

re
t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t  n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)|  c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧  t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

]  P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e)  U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

]  E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v) 
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8  L  32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

real Facebook (a small subgraph)

weights from U(0,0.1)

nodetovec with d=10

imperfect

K = 10

CUCB with no linear generalisation

What is next?

MAIS OÙ SE CACHE-T-IL ?

34photo(c) Julia@SequeL

 Michal Valko, SequeL, Inria Lille - Nord Europe, michal.valko@inria.fr  
http://researchers.lille.inria.fr/~valko/hp/  ExtraLearn

mailto:michal.valko@inria.fr
http://researchers.lille.inria.fr/~valko/hp/

