

Bandits on Graphs

Exploiting smoothness and side observations

Michal Valko (SequeL INRIA)

joint work with Shipra Agrawal (MSR India) Tomáš Kocák (SequeL INRIA) Branislav Kveton (Technicolor → Adobe) Rémi Munos (SequeL INRIA/Google Deepmind) Gergely Neu (SequeL INRIA)

Ínría

Ínría

Ínría

- Sequential decision making in structured settings
 - we are asked to pick a node (or a few nodes) in a graph

- Sequential decision making in structured settings
 - we are asked to pick a node (or a few nodes) in a graph
 - the graph encodes some structural property of the setting

- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes

- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems

- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- Exploiting smoothness

- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- Exploiting smoothness
 - ► fixed graph

- Sequential decision making in structured settings
 - ▶ we are asked to pick a node (or a few nodes) in a graph
 - the graph encodes some structural property of the setting
 - goal: maximize the sum of the outcomes
 - application: recommender systems
- Exploiting smoothness
 - fixed graph
 - iid outcomes

- Sequential decision making in structured settings
 - we are asked to pick a node (or a few nodes) in a graph
 - the graph encodes some structural property of the setting
 - goal: maximize the sum of the outcomes
 - application: recommender systems
- Exploiting smoothness
 - fixed graph
 - iid outcomes
 - neighboring nodes have similar outcomes

nía

- Sequential decision making in structured settings
 - we are asked to pick a node (or a few nodes) in a graph
 - the graph encodes some structural property of the setting
 - goal: maximize the sum of the outcomes
 - application: recommender systems
- Exploiting smoothness
 - fixed graph
 - iid outcomes
 - neighboring nodes have similar outcomes
- Exploiting side observations

- Sequential decision making in structured settings
 - we are asked to pick a node (or a few nodes) in a graph
 - the graph encodes some structural property of the setting
 - goal: maximize the sum of the outcomes
 - application: recommender systems
- Exploiting smoothness
 - fixed graph
 - iid outcomes
 - neighboring nodes have similar outcomes
- Exploiting side observations
 - changing graph

- Sequential decision making in structured settings
 - we are asked to pick a node (or a few nodes) in a graph
 - the graph encodes some structural property of the setting
 - goal: maximize the sum of the outcomes
 - application: recommender systems
- Exploiting smoothness
 - fixed graph
 - iid outcomes
 - neighboring nodes have similar outcomes
- Exploiting side observations
 - changing graph
 - non-stochastic outcomes

- Sequential decision making in structured settings
 - we are asked to pick a node (or a few nodes) in a graph
 - the graph encodes some structural property of the setting
 - goal: maximize the sum of the outcomes
 - application: recommender systems
- Exploiting smoothness
 - fixed graph
 - iid outcomes
 - neighboring nodes have similar outcomes
- Exploiting side observations
 - changing graph
 - non-stochastic outcomes
 - side observations

• Recommend movies to a **single user**.

Ínría

- Recommend movies to a **single user**.
- Good prediction after a few steps ($T \ll N$).

Ínría

- Recommend movies to a **single user**.
- Good prediction after a few steps ($T \ll N$).

Goal:

Maximize overall reward (sum of ratings).

- Recommend movies to a **single user**.
- Good prediction after a few steps ($T \ll N$).

Goal:

Maximize overall reward (sum of ratings).

Assumptions:

- Unknown reward function $f: V(G) \rightarrow \mathbb{R}$.
- Function *f* is **smooth** on a graph.
- Neighboring movies \Rightarrow similar preferences.
- Similar preferences \Rightarrow neighboring movies.

• Graph G with vertex set $V(G) = \{1, \ldots, N\}$ and edge set E(G).

- Graph G with vertex set $V(G) = \{1, \ldots, N\}$ and edge set E(G).
- f_1, \ldots, f_N : Values of the function on the vertices of the graph.

- Graph G with vertex set $V(G) = \{1, \ldots, N\}$ and edge set E(G).
- f_1, \ldots, f_N : Values of the function on the vertices of the graph.
- $w_{i,j}$: Weight of the edge connecting nodes *i* and *j*.

- Graph G with vertex set $V(G) = \{1, \ldots, N\}$ and edge set E(G).
- f_1, \ldots, f_N : Values of the function on the vertices of the graph.
- ▶ *w_{i,j}*: Weight of the edge connecting nodes *i* and *j*.

- Graph G with vertex set $V(G) = \{1, \ldots, N\}$ and edge set E(G).
- f_1, \ldots, f_N : Values of the function on the vertices of the graph.
- $w_{i,j}$: Weight of the edge connecting nodes *i* and *j*.

Smoothness of the function:

$$S_G(f) = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$$

Smaller value of $S_G(f)$, smoother the function f is.

- Graph G with vertex set $V(G) = \{1, \ldots, N\}$ and edge set E(G).
- f_1, \ldots, f_N : Values of the function on the vertices of the graph.
- $w_{i,j}$: Weight of the edge connecting nodes *i* and *j*.

Smoothness of the function:

$$S_G(f) = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$$

Smaller value of $S_G(f)$, smoother the function f is. **Examples:**

- **Complete graph:** Only constant function has smoothness 0.
- Edgeless graph: Every function has smoothness 0.
- **Constant function:** Smoothness 0 for every graph.

Graph Laplacian

- W: $N \times N$ matrix of the edge weights $w_{i,j}$.
- \mathcal{D} : Diagonal matrix with the entries $d_i = \sum_i w_{i,j}$.
- $\mathcal{L} = \mathcal{D} \mathcal{W}$: Graph Laplacian.
 - Positive semidefinite matrix.
 - Diagonally dominant matrix.

Example:

• $\mathbf{f} = (f_1, \ldots, f_N)^{\mathsf{T}}$: Vector of function values.

- $\mathbf{f} = (f_1, \ldots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.

- $\mathbf{f} = (f_1, \dots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of \mathcal{L} .

- $\mathbf{f} = (f_1, \dots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of \mathcal{L} .
 - ► Columns of **Q** are eigenvectors of *L*.

- $\mathbf{f} = (f_1, \dots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of \mathcal{L} .
 - ► Columns of **Q** are eigenvectors of *L*.
 - Columns of **Q** form a basis.

- $\mathbf{f} = (f_1, \dots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of \mathcal{L} .
 - ► Columns of **Q** are eigenvectors of *L*.
 - Columns of Q form a basis.

• α^* : Unique vector such that $\mathbf{Q}\alpha^* = \mathbf{f}$ Note: $\mathbf{Q}^{\mathsf{T}}\mathbf{f} = \alpha^*$

- $\mathbf{f} = (f_1, \dots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of \mathcal{L} .
 - ► Columns of **Q** are eigenvectors of *L*.
 - Columns of Q form a basis.

• α^* : Unique vector such that $\mathbf{Q}\alpha^* = \mathbf{f}$ Note: $\mathbf{Q}^{\mathsf{T}}\mathbf{f} = \alpha^*$

ría

- $\mathbf{f} = (f_1, \dots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of \mathcal{L} .
 - ► Columns of **Q** are eigenvectors of *L*.
 - Columns of Q form a basis.

• α^* : Unique vector such that $\mathbf{Q}\alpha^* = \mathbf{f}$ Note: $\mathbf{Q}^{\mathsf{T}}\mathbf{f} = \alpha^*$

$$S_G(f) = \boldsymbol{f}^{\mathsf{T}} \mathcal{L} \boldsymbol{f} = \boldsymbol{f}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathsf{T}} \boldsymbol{f} = \boldsymbol{\alpha}^{*\mathsf{T}} \boldsymbol{\Lambda} \boldsymbol{\alpha}^* = \|\boldsymbol{\alpha}^*\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i (\alpha_i^*)^2$$

Smoothness and <u>regularization</u>: Small value of (a) $S_G(f)$ (b) Λ norm of α^* (c) α_i^* for large λ_i

Setting

Learning setting for a bandit algorithm $\boldsymbol{\pi}$

ln each time t step choose a node $\pi(t)$.

Setting

Learning setting for a bandit algorithm $\boldsymbol{\pi}$

- In each time t step choose a node $\pi(t)$.
- the $\pi(t)$ -th row $\mathbf{x}_{\pi(t)}$ of the matrix **Q** corresponds to the arm $\pi(t)$.

Setting

Learning setting for a bandit algorithm $\boldsymbol{\pi}$

- In each time t step choose a node $\pi(t)$.
- ▶ the $\pi(t)$ -th row $\mathbf{x}_{\pi(t)}$ of the matrix **Q** corresponds to the arm $\pi(t)$.
- ► Obtain noisy reward $r_t = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$. Note: $\mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* = f_{\pi(t)}$
 - ► ε_t is *R*-sub-Gaussian noise. $\forall \xi \in \mathbb{R}, \mathbb{E}[e^{\xi \varepsilon_t}] \le \exp(\xi^2 R^2/2)$
- Minimize cumulative regret

$$R_T = T \max_a (\mathbf{x}_a^{\mathsf{T}} \boldsymbol{lpha}^*) - \sum_{t=1}^T \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{lpha}^*.$$

Solutions

- Linear bandit algorithms
 - ► LinUCB
 - Regret bound $\approx D\sqrt{T \ln T}$
 - ► LinearTS
 - Regret bound $\approx D\sqrt{T \ln N}$

(Existing solutions) (Li et al., 2010)

(Agrawal and Goyal, 2013)

Note: *D* is ambient dimension, in our case *N*, length of x_i . Number of actions, e.g., all possible movies \rightarrow **HUGE!**

nía

Solutions

- Linear bandit algorithms
 - ► LinUCB
 - Regret bound $\approx D\sqrt{T \ln T}$
 - ► LinearTS
 - Regret bound $\approx D\sqrt{T \ln N}$

Note: *D* is ambient dimension, in our case *N*, length of x_i . Number of actions, e.g., all possible movies \rightarrow **HUGE!**

Spectral bandit algorithms

- SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$
- SpectralTS
 - Regret bound $\approx d\sqrt{T \ln N}$

```
(Existing solutions)
(Li et al., 2010)
```

(Agrawal and Goyal, 2013)

(Our solutions) (Valko et al., ICML 2014)

(Kocák et al., AAAI 2014)

Note: d is effective dimension, usually much smaller than D.

Solutions

- Linear bandit algorithms
 - ► LinUCB
 - Regret bound $\approx D\sqrt{T \ln T}$
 - ► LinearTS
 - Regret bound $\approx D\sqrt{T \ln N}$

Note: *D* is ambient dimension, in our case *N*, length of x_i . Number of actions, e.g., all possible movies \rightarrow **HUGE!**

Spectral bandit algorithms

- SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$
 - Operations per step: D²N
- SpectralTS
 - Regret bound $\approx d\sqrt{T \ln N}$
 - Operations per step: $D^2 + DN$

Note: d is effective dimension, usually much smaller than D.

(Existing solutions) (Li et al., 2010)

(Agrawal and Goyal, 2013)

(Our solutions)

(Valko et al., ICML 2014)

(Kocák et al., AAAI 2014)

Effective dimension

Effective dimension: Largest *d* such that

$$(d-1)\lambda_d \leq rac{\mathcal{T}}{\log(1+\mathcal{T}/\lambda)}.$$

- Function of time horizon and graph properties
- λ_i : *i*-th smallest eigenvalue of **A**.
- λ : Regularization parameter of the algorithm.

Properties:

- *d* is small when the coefficients λ_i grow rapidly above time.
- ► *d* is related to the number of "non-negligible" dimensions.
- ▶ Usually *d* is much smaller than D in real world graphs.
- Can be computed beforehand.

Effective dimension Empirical comparison

Effective dimension vs. Ambient dimension

Note: In our setting T < N = D.

UCB style algorithms: Estimate

UCB style algorithms: Sample

UCB style algorithms: Estimate

1: Input: 2: N, T, { $\Lambda_{\mathcal{L}}$, Q}, λ , δ , R, C \mathcal{L} 3: Run: 4. $\mathbf{\Lambda} \leftarrow \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}$ 5: $d \leftarrow \max\{d : (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}$ 6: for t = 1 to T do 7: Update the basis coefficients $\hat{\alpha}$: $\mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^{\mathsf{T}}$ 8: 9: $\mathbf{r} \leftarrow [r_1, \ldots, r_{t-1}]^{\mathsf{T}}$ 10: $\mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^{\mathsf{T}} + \mathbf{\Lambda}$ 11: $\hat{\boldsymbol{\alpha}}_t \leftarrow \boldsymbol{\mathsf{V}}_t^{-1} \boldsymbol{\mathsf{X}}_t^{\mathsf{T}} \boldsymbol{\mathsf{r}}$ 12: $c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C$ $\pi(t) \leftarrow \operatorname{arg\,max}_{a} \left(\mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)$ 13: 14: Observe the reward r_{t} 15: end for

1: Input: 2: N, T, { $\Lambda_{\mathcal{L}}$, Q}, λ , δ , R, C \mathcal{L} 3: Run: 4: $\Lambda \leftarrow \Lambda c + \lambda I$ 5: $d \leftarrow \max\{d : (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}$ 6: for t = 1 to T do 7: Update the basis coefficients $\hat{\alpha}$: $\mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^{\mathsf{T}}$ 8: 9: $\mathbf{r} \leftarrow [r_1, \ldots, r_{t-1}]^{\mathsf{T}}$ 10: $\mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^{\mathsf{T}} + \mathbf{\Lambda}$ 11: $\hat{\boldsymbol{\alpha}}_t \leftarrow \boldsymbol{\mathsf{V}}_t^{-1} \boldsymbol{\mathsf{X}}_t^{\mathsf{T}} \boldsymbol{\mathsf{r}}$ 12: $c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C$ $\pi(t) \leftarrow \operatorname{arg\,max}_{a} \left(\mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)$ 13: 14: Observe the reward r_{t} 15: end for

1: Input: 2: N, T, { $\Lambda_{\mathcal{L}}$, Q}, λ , δ , R, C \mathcal{L} 3: Run: 4. $\Lambda \leftarrow \Lambda c + \lambda I$ 5: $d \leftarrow \max\{d : (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}$ 6: for t = 1 to T do 7: Update the basis coefficients $\hat{\alpha}$: $\mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^{\mathsf{T}}$ 8: 9: $\mathbf{r} \leftarrow [r_1, \ldots, r_{t-1}]^{\mathsf{T}}$ 10: $\mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^{\mathsf{T}} + \mathbf{\Lambda}$ 11: $\hat{\boldsymbol{\alpha}}_t \leftarrow \boldsymbol{\mathsf{V}}_t^{-1} \boldsymbol{\mathsf{X}}_t^{\mathsf{T}} \boldsymbol{\mathsf{r}}$ 12: $c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C$ $\pi(t) \leftarrow \operatorname{arg\,max}_{a} \left(\mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)$ 13: 14: Observe the reward r_{t} 15: end for

1: Input: 2: N, T, { $\Lambda_{\mathcal{L}}$, Q}, λ , δ , R, C \mathcal{L} 3: Run: 4. $\mathbf{\Lambda} \leftarrow \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}$ 5: $d \leftarrow \max\{d : (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}$ 6: for t = 1 to T do 7: Update the basis coefficients $\hat{\alpha}$: $\mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^{\mathsf{T}}$ 8: 9: $\mathbf{r} \leftarrow [r_1, \ldots, r_{t-1}]^{\mathsf{T}}$ 10: $\mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^{\mathsf{T}} + \mathbf{\Lambda}$ 11: $\hat{\boldsymbol{\alpha}}_t \leftarrow \boldsymbol{\mathsf{V}}_t^{-1} \boldsymbol{\mathsf{X}}_t^{\mathsf{T}} \boldsymbol{\mathsf{r}}$ 12: $c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C$ $\pi(t) \leftarrow \arg \max_{a} \left(\mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)$ 13: 14: Observe the reward r_{t} 15: end for

1: Input: 2: N, T, { $\Lambda_{\mathcal{L}}$, Q}, λ , δ , R, C \mathcal{L} 3: Run: 4. $\Lambda \leftarrow \Lambda c + \lambda I$ 5: $d \leftarrow \max\{d : (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}$ 6: for t = 1 to T do 7: Update the basis coefficients $\hat{\alpha}$: $\mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^{\mathsf{T}}$ 8: 9: $\mathbf{r} \leftarrow [r_1, \ldots, r_{t-1}]^{\mathsf{T}}$ 10: $\mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^{\mathsf{T}} + \mathbf{\Lambda}$ 11: $\hat{\boldsymbol{\alpha}}_t \leftarrow \boldsymbol{\mathsf{V}}_t^{-1} \boldsymbol{\mathsf{X}}_t^{\mathsf{T}} \boldsymbol{\mathsf{r}}$ 12: $c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C$ $\pi(t) \leftarrow \arg\max_{a} \left(\mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + \boldsymbol{c}_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}_{a}^{-1}} \right)$ 13: 14: Observe the reward r_{t} 15: end for

1: Input: 2: N, T, { $\Lambda_{\mathcal{L}}$, Q}, λ , δ , R, C \mathcal{L} 3: Run: 4. $\mathbf{\Lambda} \leftarrow \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}$ 5: $d \leftarrow \max\{d : (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}$ 6: for t = 1 to T do 7: Update the basis coefficients $\hat{\alpha}$: $\mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^{\mathsf{T}}$ 8: 9: $\mathbf{r} \leftarrow [r_1, \ldots, r_{t-1}]^{\mathsf{T}}$ 10: $\mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^{\mathsf{T}} + \mathbf{\Lambda}$ 11: $\hat{\boldsymbol{\alpha}}_t \leftarrow \boldsymbol{\mathsf{V}}_t^{-1} \boldsymbol{\mathsf{X}}_t^{\mathsf{T}} \boldsymbol{\mathsf{r}}$ 12: $c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C$ $\pi(t) \leftarrow \arg\max_{a} \left(\mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)$ 13: 14: Observe the reward r_{t} 15: end for

SpectralUCB regret bound

- ► *d*: Effective dimension.
- λ : Minimal eigenvalue of $\mathbf{\Lambda} = \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}$.
- C: Smoothness upper bound, $\|\alpha^*\|_{\Lambda} \leq C$.

▶
$$\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha}^* \in [-1, 1]$$
 for all *i*.

The **cumulative regret** R_T of **SpectralUCB** is with probability $1 - \delta$ bounded as

$$R_{\mathcal{T}} \leq \left(8R\sqrt{d\ln\frac{\lambda+\mathcal{T}}{\lambda}+2\ln\frac{1}{\delta}}+4C+4\right)\sqrt{d\mathcal{T}\ln\frac{\lambda+\mathcal{T}}{\lambda}}.$$

$$R_T \approx d\sqrt{T \ln T}$$

Synthetic experiment

Real world experiment

Improving the running time: reduced eigenbasis

- Reduced basis: We only need first few eigenvectors.
- **Getting** J **eigenvectors:** $\mathcal{O}(Jm \log m)$ time for m edges
- Computationally less expensive, comparable performance.

▶ UCB-style algorithms need to (re)-compute UCBs every t

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^2 N \rightarrow N^3$

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^2 N \rightarrow N^3$
- Optimistic (UCB) approach vs. Thompson Sampling

nía

- ▶ UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^2 N \rightarrow N^3$
- Optimistic (UCB) approach vs. Thompson Sampling
 - Play the arm maximizing probability of being the best

nía

- ▶ UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^2 N \rightarrow N^3$
- ► Optimistic (UCB) approach vs. Thompson Sampling
 - Play the arm maximizing probability of being the best
 - Sample $\tilde{\mu}$ from the distribution $\mathcal{N}(\hat{\mu}, v^2 \mathbf{B}^{-1})$

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^2 N \rightarrow N^3$
- Optimistic (UCB) approach vs. Thompson Sampling
 - Play the arm maximizing probability of being the best
 - Sample $\tilde{\mu}$ from the distribution $\mathcal{N}(\hat{\mu}, v^2 \mathbf{B}^{-1})$
 - Play arm which maximizes $\mathbf{b}^{\mathsf{T}} \tilde{\boldsymbol{\mu}}$ and observe reward

nía

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^2 N \rightarrow N^3$
- Optimistic (UCB) approach vs. Thompson Sampling
 - Play the arm maximizing probability of being the best
 - Sample $\tilde{\mu}$ from the distribution $\mathcal{N}(\hat{\mu}, v^2 \mathbf{B}^{-1})$
 - Play arm which maximizes $\mathbf{b}^{\mathsf{T}} \tilde{\boldsymbol{\mu}}$ and observe reward
 - ► Compute posterior distribution according to reward received

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^2 N \rightarrow N^3$
- Optimistic (UCB) approach vs. Thompson Sampling
 - Play the arm maximizing probability of being the best
 - Sample $\tilde{\mu}$ from the distribution $\mathcal{N}(\hat{\mu}, v^2 \mathbf{B}^{-1})$
 - Play arm which maximizes $\mathbf{b}^{\mathsf{T}} \tilde{\boldsymbol{\mu}}$ and observe reward
 - Compute posterior distribution according to reward received
- Only requires $D^2 + DN \rightarrow N^2$ per step update

Thomson Sampling: Estimate

Thomson Sampling: Sample

Thomson Sampling: Estimate

Thomson Sampling: Sample

Thomson Sampling: Estimate

SpectralTS algorithm

1: Input: N, T, $\{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \delta, R, C$ 2: 3: Initialization: $v = R\sqrt{6d \log((\lambda + T)/\delta\lambda)} + C$ 4: 5: $\hat{\alpha} = 0_N$ 6: $f = 0_N$ 7: $\mathbf{V} = \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}_{\mathcal{N}}$ 8: Run: 9: for t = 1 to T do 10: Sample $\tilde{\boldsymbol{\alpha}} \sim \mathcal{N}(\hat{\boldsymbol{\alpha}}, v^2 \mathbf{V}^{-1})$ $\pi(t) \leftarrow \arg \max_{a} \mathbf{x}_{a}^{\mathsf{T}} \tilde{\boldsymbol{\alpha}}$ 11: 12: Observe a noisy reward $r(t) = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$ 13: $\mathbf{f} \leftarrow \mathbf{f} + \mathbf{x}_{\pi(t)} \mathbf{r}(t)$ Update $\mathbf{V} \leftarrow \mathbf{V} + \mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\mathsf{T}}$ 14: Update $\hat{\boldsymbol{\alpha}} \leftarrow \boldsymbol{\mathsf{V}}^{-1}\boldsymbol{f}$ 15: 16: end for

SpectralTS algorithm

1: Input: N, T, $\{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \delta, R, C$ 2: 3: Initialization: $v = R\sqrt{6d \log((\lambda + T)/\delta\lambda)} + C$ 4: 5: $\hat{\alpha} = 0_N$ 6: $f = 0_N$ 7: $\mathbf{V} = \mathbf{\Lambda}_{c} + \lambda \mathbf{I}_{N}$ 8: Run: 9: for t = 1 to T do 10: Sample $\tilde{\boldsymbol{\alpha}} \sim \mathcal{N}(\hat{\boldsymbol{\alpha}}, v^2 \mathbf{V}^{-1})$ $\pi(t) \leftarrow \arg \max_{a} \mathbf{x}_{a}^{\mathsf{T}} \tilde{\boldsymbol{\alpha}}$ 11: 12: Observe a noisy reward $r(t) = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$ 13: $\mathbf{f} \leftarrow \mathbf{f} + \mathbf{x}_{\pi(t)} \mathbf{r}(t)$ Update $\mathbf{V} \leftarrow \mathbf{V} + \mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\mathsf{T}}$ 14: Update $\hat{\boldsymbol{\alpha}} \leftarrow \boldsymbol{\mathsf{V}}^{-1}\boldsymbol{f}$ 15: 16: end for

SpectralTS algorithm

1: Input: N, T, $\{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \delta, R, C$ 2: 3: Initialization: $v = R\sqrt{6d \log((\lambda + T)/\delta\lambda)} + C$ 4: 5: $\hat{\alpha} = 0_N$ 6: $f = 0_N$ 7: $\mathbf{V} = \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}_{\mathcal{N}}$ 8: Run: 9: for t = 1 to T do Sample $\tilde{\boldsymbol{\alpha}} \sim \mathcal{N}(\hat{\boldsymbol{\alpha}}, v^2 \mathbf{V}^{-1})$ 10: 11: $\pi(t) \leftarrow \arg \max_{a} \mathbf{x}_{a}^{\mathsf{T}} \tilde{\alpha}$ 12: Observe a noisy reward $r(t) = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$ 13: $\mathbf{f} \leftarrow \mathbf{f} + \mathbf{x}_{\pi(t)} \mathbf{r}(t)$ 14: Update $\mathbf{V} \leftarrow \mathbf{V} + \mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\mathsf{T}}$ Update $\hat{\boldsymbol{\alpha}} \leftarrow \boldsymbol{\mathsf{V}}^{-1}\boldsymbol{f}$ 15: 16: end for

SpectralTS algorithm

1: Input: N, T, $\{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \delta, R, C$ 2: 3: Initialization: $v = R\sqrt{6d \log((\lambda + T)/\delta\lambda)} + C$ 4: 5: $\hat{\alpha} = 0_N$ 6: $f = 0_N$ 7: $\mathbf{V} = \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}_{\mathcal{N}}$ 8: Run: 9: for t = 1 to T do 10: Sample $\tilde{\boldsymbol{\alpha}} \sim \mathcal{N}(\hat{\boldsymbol{\alpha}}, v^2 \mathbf{V}^{-1})$ 11: $\pi(t) \leftarrow \arg \max_{a} \mathbf{x}_{a}^{\mathsf{T}} \tilde{\alpha}$ 12: Observe a noisy reward $r(t) = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$ 13: $\mathbf{f} \leftarrow \mathbf{f} + \mathbf{x}_{\pi(t)} \mathbf{r}(t)$ 14: Update $\mathbf{V} \leftarrow \mathbf{V} + \mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\mathsf{T}}$ Update $\hat{\boldsymbol{\alpha}} \leftarrow \boldsymbol{\mathsf{V}}^{-1}\boldsymbol{f}$ 15: 16: end for

SpectralTS algorithm

1: Input: N, T, $\{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \delta, R, C$ 2: 3: Initialization: $v = R\sqrt{6d \log((\lambda + T)/\delta\lambda)} + C$ 4: 5: $\hat{\alpha} = 0_N$ 6: $f = 0_N$ 7: $\mathbf{V} = \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}_{\mathcal{N}}$ 8: Run: 9: for t = 1 to T do 10: Sample $\tilde{\boldsymbol{\alpha}} \sim \mathcal{N}(\hat{\boldsymbol{\alpha}}, v^2 \mathbf{V}^{-1})$ $\pi(t) \leftarrow \arg \max_{a} \mathbf{x}_{a}^{\mathsf{T}} \tilde{\boldsymbol{\alpha}}$ 11: 12: Observe a noisy reward $r(t) = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$ 13: $\mathbf{f} \leftarrow \mathbf{f} + \mathbf{x}_{\pi(t)} \mathbf{r}(t)$ 14: Update $\mathbf{V} \leftarrow \mathbf{V} + \mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\mathsf{T}}$ 15: Update $\hat{oldsymbol{lpha}} \leftarrow oldsymbol{V}^{-1}oldsymbol{f}$ 16: end for

SpectralTS regret bound

- ► *d*: Effective dimension.
- λ : Minimal eigenvalue of $\mathbf{\Lambda} = \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}$.
- C: Smoothness upper bound, $\|\alpha^*\|_{\Lambda} \leq C$.
- ► $\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha}^* \in [-1, 1]$ for all *i*.

The **cumulative regret** R_T of **SpectralTS** is with probability $1 - \delta$ bounded as

$$\mathcal{R}_{T} \leq \frac{11g}{p} \sqrt{\frac{4+4\lambda}{\lambda}} dT \log \frac{\lambda+T}{\lambda} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \log \frac{2}{\delta}},$$

where $p = 1/(4e\sqrt{\pi})$ and
 $g = \sqrt{4\log TN} \left(R \sqrt{6d \log \left(\frac{\lambda+T}{\delta\lambda}\right)} + C \right) + R \sqrt{2d \log \left(\frac{(\lambda+T)T^{2}}{\delta\lambda}\right)} + C.$

$$R_T \approx d\sqrt{T \log N}$$

Synthetic experiment

Synthetic experiment

Real world experiment

MovieLens dataset of 6k users who rated one million movies.

New spectral bandit setting (for smooth graph functions).

- New spectral bandit setting (for smooth graph functions).
- SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$

- New spectral bandit setting (for smooth graph functions).
- SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$
- SpectralTS
 - Regret bound $\approx d\sqrt{T \ln N}$
 - Computationally more efficient.

- New spectral bandit setting (for smooth graph functions).
- SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$
- SpectralTS
 - Regret bound $\approx d\sqrt{T \ln N}$
 - Computationally more efficient.
- SpectralEliminator
 - Regret bound $\approx \sqrt{dT \ln T}$
 - ► Side result: LinearEliminator with O(√DT ln T) regret for (contextual) linear bandits.

- New spectral bandit setting (for smooth graph functions).
- SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$

SpectralTS

- Regret bound $\approx d\sqrt{T \ln N}$
- Computationally more efficient.
- SpectralEliminator
 - Regret bound $\approx \sqrt{dT \ln T}$
 - ► Side result: LinearEliminator with O(√DT ln T) regret for (contextual) linear bandits.
- Bounds scale with effective dimension $d \ll D$.

- New spectral bandit setting (for smooth graph functions).
- SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$

SpectralTS

- Regret bound $\approx d\sqrt{T \ln N}$
- Computationally more efficient.
- SpectralEliminator
 - Regret bound $\approx \sqrt{dT \ln T}$
 - ► Side result: LinearEliminator with O(√DT ln T) regret for (contextual) linear bandits.
- Bounds scale with effective dimension $d \ll D$.

Exploiting side observations

Example 1: undirected observations

Exploiting side observations

Example 1: undirected observations

Exploiting side observations

Example 1: undirected observations

rín

Example 1: Graph Representation

Ínría

Example 2: Directed observation

Example 2: Directed observation

nría

Example 2: Directed observation

nría

Learning with Side Observations Example 2

Example 2

Ínría

In each time step $t = 1, \ldots, T$

Environment (adversary):

- Privately assigns losses to actions
- Generates an observation graph

In each time step $t = 1, \ldots, T$

Environment (adversary):

- Privately assigns losses to actions
- Generates an observation graph
 - Undirected / Directed

In each time step $t = 1, \ldots, T$

Environment (adversary):

- Privately assigns losses to actions
- Generates an observation graph
 - Undirected / Directed
 - Disclosed / Not disclosed

In each time step $t = 1, \ldots, T$

Environment (adversary):

- Privately assigns losses to actions
- Generates an observation graph
 - Undirected / Directed
 - Disclosed / Not disclosed

Learner:

- Plays action $I_t \in [N]$
- Obtain loss ℓ_{t,I_t} of action played
- Observe losses of neighbors of I_t

nía

In each time step $t = 1, \ldots, T$

Environment (adversary):

- Privately assigns losses to actions
- Generates an observation graph
 - Undirected / Directed
 - Disclosed / Not disclosed

Learner:

- Plays action $I_t \in [N]$
- Obtain loss ℓ_{t,I_t} of action played
- Observe losses of neighbors of I_t
 - Graph: disclosed

In each time step $t = 1, \ldots, T$

Environment (adversary):

- Privately assigns losses to actions
- Generates an observation graph
 - Undirected / Directed
 - Disclosed / Not disclosed

Learner:

- Plays action $I_t \in [N]$
- Obtain loss ℓ_{t,I_t} of action played
- Observe losses of neighbors of I_t
 - Graph: disclosed
- ► Performance measure: Total expected regret

$$R_T = \max_{i \in [N]} \mathbb{E} \left[\sum_{t=1}^T (\ell_{t,l_t} - \ell_{t,i}) \right]$$

Full Information setting

- Pick an action (e.g. action A)
- Observe losses of all actions
- $\blacktriangleright \ R_T = \widetilde{\mathcal{O}}(\sqrt{T})$

Bandit setting

- Pick an action (e.g. action A)
- Observe loss of a chosen action
- $R_T = \widetilde{\mathcal{O}}(\sqrt{NT})$

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Mannor and Shamir (ELP algorithm)

- Need to know graph
- Clique decomposition (*c* cliques)

•
$$R_T = \widetilde{\mathcal{O}}(\sqrt{cT})$$

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Mannor and Shamir (ELP algorithm)

- Need to know graph
- Clique decomposition (c cliques)
- $R_T = \widetilde{\mathcal{O}}(\sqrt{cT})$

Alon, Cesa-Bianchi, Gentile, Mansour

- No need to know graph
- Independence set of α actions

• $R_T = \widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour

- Exp3-DOM
- Need to know graph
- Need to find dominating set

•
$$R_T = \widetilde{\mathcal{O}}(\sqrt{\alpha T})$$

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour

- Exp3-DOM
- Need to know graph
- Need to find dominating set
- $\blacktriangleright R_T = \widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Our solution: Exp3-IX

No need to know graph

•
$$R_T = \widetilde{\mathcal{O}}(\sqrt{\alpha T})$$

Exp3 algorithms in general

• Compute weights using loss estimates $\hat{\ell}_{t,i}$.

$$w_{t,i} = \exp\left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s,i}\right)$$

Play action *I_t* such that

$$\mathbb{P}(I_t = i) = p_{t,i} = \frac{w_{t,i}}{W_t} = \frac{w_{t,i}}{\sum_{j=1}^N w_{t,j}}$$

Update loss estimates (using observability graph)

Exp3 algorithms in general

• Compute weights using loss estimates $\hat{\ell}_{t,i}$.

$$w_{t,i} = \exp\left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s,i}\right)$$

Play action I_t such that

$$\mathbb{P}(I_t = i) = p_{t,i} = \frac{w_{t,i}}{W_t} = \frac{w_{t,i}}{\sum_{j=1}^N w_{t,j}}$$

Update loss estimates (using observability graph)

How the algorithms approach to bias variance tradeoff?

Bias variance tradeoff approaches

- Approach of previous algorithms Mixing
 - Bias sampling distribution **p**_t over actions
 - $\mathbf{p}'_t = (1 \gamma)\mathbf{p}_t + \gamma \mathbf{s}_t$ mixed distribution
 - s_t probability distribution which supports exploration
 - Loss estimates $\hat{\ell}_{t,i}$ are unbiased
- Approach of our algorithm Implicit eXploration (IX)
 - - Biased loss estimates \implies biased weights
 - Biased weights \implies biased probability distribution
 - No need for mixing

Mannor and Shamir - ELP algorithm

- $\mathbb{E}[\hat{\ell}_{t,i}] = \ell_{t,i}$ unbiased loss estimates
- $p'_{t,i} = (1 \gamma)p_{t,i} + \gamma s_{t,i}$ bias by mixing
- ▶ $\mathbf{s}_t = \{s_{t,1}, \, \ldots, \, s_{t,N}\}$ probability distribution over the action set

$$\mathbf{s}_{t} = \arg\max_{\mathbf{s}_{t}} \left[\min_{j \in [N]} \left(s_{t,j} + \sum_{k \in N_{t,j}} s_{t,k} \right) \right] = \arg\max_{\mathbf{s}_{t}} \left[\min_{j \in [N]} q_{t,j} \right]$$

• $q_{t,j}$ – probability that loss of j is observed according to \mathbf{s}_t

Mannor and Shamir - ELP algorithm

- $\mathbb{E}[\hat{\ell}_{t,i}] = \ell_{t,i}$ unbiased loss estimates
- $p'_{t,i} = (1 \gamma)p_{t,i} + \gamma s_{t,i}$ bias by mixing
- ▶ $\mathbf{s}_t = \{s_{t,1}, \ldots, s_{t,N}\}$ probability distribution over the action set

$$\mathbf{s}_{t} = \arg\max_{\mathbf{s}_{t}} \left[\min_{j \in [N]} \left(s_{t,j} + \sum_{k \in N_{t,j}} s_{t,k} \right) \right] = \arg\max_{\mathbf{s}_{t}} \left[\min_{j \in [N]} q_{t,j} \right]$$

• $q_{t,j}$ – probability that loss of j is observed according to \mathbf{s}_t

Computation of s_t

- Graph needs to be disclosed
- Solving simple linear program
- Needs to know graph before playing an action
- Graphs can be only undirected

Alon, Cesa-Bianchi, Gentile, Mansour - Exp3-DOM

•
$$\mathbb{E}[\hat{\ell}_{t,i}] = \ell_{t,i}$$
 – unbiased loss estimates

•
$$p'_{t,i} = (1 - \gamma)p_{t,i} + \gamma s_{t,i}$$
 – bias by mixing

▶ $\mathbf{s}_t = {s_{t,1}, ..., s_{t,N}}$ – probability distribution over the action set

$$s_{t,i} = \begin{cases} \frac{1}{r} & \text{if } i \in R; \ |R| = r \\ 0 & \text{otherwise.} \end{cases}$$

- R dominating set of r elements
- **s**_t uniform distribution over R
- Needs to know graph beforehand
- Graphs can be directed

Previous algorithms - loss estimates

 $\hat{\ell}_{t,i} = \begin{cases} \ell_{t,i} / o_{t,i} \\ 0 \end{cases}$

if $\ell_{t,i}$ is observed otherwise.

$$\mathbb{E}[\hat{\ell}_{t,i}] = \frac{\ell_{t,i}}{o_{t,i}} o_{t,i} + 0(1 - o_{t,i}) = \ell_{t,i}$$

Previous algorithms - loss estimates

 $\hat{\ell}_{t,i} = \begin{cases} \ell_{t,i} / o_{t,i} & \text{if } \ell_{t,i} \text{ is observed} \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbb{E}[\hat{\ell}_{t,i}] = rac{\ell_{t,i}}{o_{t,i}} o_{t,i} + 0(1 - o_{t,i}) = \ell_{t,i}$$

Exp3-IX - loss estimates

$$\hat{\ell}_{t,i} = \begin{cases} \ell_{t,i} / (o_{t,i} + \gamma) & \text{if } \ell_{t,i} \text{ is observed} \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbb{E}[\hat{\ell}_{t,i}] = \frac{\ell_{t,i}}{o_{t,i} + \gamma} o_{t,i} + 0(1 - o_{t,i}) = \ell_{t,i} - \ell_{t,i} \frac{\gamma}{o_{t,i} + \gamma} \leq \ell_{t,i}$$

No mixing!

Analysis of Exp3 algorithms in general

• Evolution of
$$W_{t+1}/W_t$$

$$\frac{1}{\eta} \log \frac{W_{t+1}}{W_t} = \frac{1}{\eta} \log \left(1 - \eta \sum_{i=1}^N p_{t,i} \hat{\ell}_{t,i} + \frac{\eta^2}{2} \sum_{i=1}^N p_{t,i} (\hat{\ell}_{t,i})^2 \right),$$

$$\sum_{i=1}^{N} p_{t,i} \hat{\ell}_{t,i} \leq \left[\frac{\log W_t}{\eta} - \frac{\log W_{t+1}}{\eta} \right] + \frac{\eta}{2} \sum_{i=1}^{N} p_{t,i} (\hat{\ell}_{t,i})^2$$

Taking expectation and summing over time

$$\mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{N}p_{t,i}\hat{\ell}_{t,i}\right] - \mathbb{E}\left[\sum_{t=1}^{T}\hat{\ell}_{t,k}\right] \leq \mathbb{E}\left[\frac{\log N}{\eta}\right] + \mathbb{E}\left[\frac{\eta}{2}\sum_{t=1}^{T}\sum_{i=1}^{N}p_{t,i}(\hat{\ell}_{t,i})^{2}\right]$$

Regret bound of Exp3-IX

$$\underbrace{\mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{N}p_{t,i}\hat{\ell}_{t,i}\right]}_{A} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{T}\hat{\ell}_{t,k}\right]}_{B} \leq \mathbb{E}\left[\frac{\log N}{\eta}\right] + \underbrace{\mathbb{E}\left[\frac{\eta}{2}\sum_{t=1}^{T}\sum_{i=1}^{N}p_{t,i}(\hat{\ell}_{t,i})^{2}\right]}_{C}$$

Lower bound of A (using definition of loss estimates)

$$\mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{N}p_{t,i}\hat{\ell}_{t,i}\right] \geq \mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{N}p_{t,i}\ell_{t,i}\right] - \mathbb{E}\left[\gamma\sum_{t=1}^{T}\sum_{i=1}^{N}\frac{p_{t,i}}{o_{t,i}+\gamma}\right]$$

Lower bound of B (optimistic loss estimates: $\mathbb{E}[\hat{\ell}] < \mathbb{E}[\ell]$)

$$-\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t,k}\right] \ge -\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t,k}\right]$$

Upper bound of C (using definition of loss estimates)

$$\mathbb{E}\left[\frac{\eta}{2}\sum_{t=1}^{T}\sum_{i=1}^{N}\boldsymbol{p}_{t,i}(\hat{\ell}_{t,i})^{2}\right] \leq \mathbb{E}\left[\frac{\eta}{2}\sum_{t=1}^{T}\sum_{i=1}^{N}\frac{\boldsymbol{p}_{t,i}}{\boldsymbol{o}_{t,i}+\gamma}\right]$$

Exp3-IX Regret bound

Regret bound of Exp3-IX

$$R_{T} \leq \frac{\log N}{\eta} + \left(\frac{\eta}{2} + \gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t,i}}{o_{t,i} + \gamma}\right]$$

$$R_{T} \approx \mathcal{O}\left(\sqrt{\log N \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t,i}}{o_{t,i} + \gamma}\right]}\right)$$

Exp3-IX Regret bound

Regret bound of Exp3-IX

$$R_{T} \leq \frac{\log N}{\eta} + \left(\frac{\eta}{2} + \gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t,i}}{o_{t,i} + \gamma}\right]$$

$$R_{T} \approx \mathcal{O}\left(\sqrt{\log N \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t,i}}{o_{t,i} + \gamma}\right]}\right)$$

Graph lemma

- Graph G with $V(G) = \{1, \ldots, N\}$
- d_i^- in-degree of vertex *i*
- α independence set of *G*
- Turán's Theorem + induction

$$\sum_{i=1}^{N} \frac{1}{1+d_i^-} \leq 2\alpha \log\left(1+\frac{\textit{N}}{\alpha}\right)$$

Discretization

$$\sum_{i=1}^{N} \frac{p_{t,i}}{o_{t,i} + \gamma} = \sum_{i=1}^{N} \frac{p_{t,i}}{p_{t,i} + \sum_{j \in N_i^-} p_{t,j} + \gamma} \le \sum_{i=1}^{N} \frac{\hat{p}_{t,i}}{\hat{p}_{t,i} + \sum_{j \in N_i^-} \hat{p}_{t,j}} + 2$$

Discretization

$$\sum_{i=1}^{N} \frac{p_{t,i}}{o_{t,i} + \gamma} = \sum_{i=1}^{N} \frac{p_{t,i}}{p_{t,i} + \sum_{j \in N_i^-} p_{t,j} + \gamma} \le \sum_{i=1}^{N} \frac{\hat{p}_{t,i}}{\hat{p}_{t,i} + \sum_{j \in N_i^-} \hat{p}_{t,j}} + 2$$

Note: we set $M = \lceil N^2 / \gamma \rceil$

Discretization

$$\sum_{i=1}^{N} \frac{p_{t,i}}{o_{t,i} + \gamma} = \sum_{i=1}^{N} \frac{p_{t,i}}{p_{t,i} + \sum_{j \in N_i^-} p_{t,j} + \gamma} \le \sum_{i=1}^{N} \frac{\hat{p}_{t,i}}{\hat{p}_{t,i} + \sum_{j \in N_i^-} \hat{p}_{t,j}} + 2$$

Note: we set $M = \lceil N^2 / \gamma \rceil$

$$\sum_{i=1}^{N}rac{\hat{p}_{t,i}}{\hat{p}_{t,i}+\sum_{j\in oldsymbol{N}_{i}^{-}}\hat{p}_{t,j}}$$

$$\sum_{i=1}^{N} \frac{\hat{p}_{t,i}}{\hat{p}_{t,i} + \sum_{j \in N_i^-} \hat{p}_{t,j}}$$

$$\sum_{i=1}^{N} \frac{M\hat{p}_{t,i}}{M\hat{p}_{t,i} + \sum_{j \in N_i^-} M\hat{p}_{t,j}}$$

Ínría

Michal Valko: Bandits on Graphs

$$\sum_{i=1}^{N} \frac{M\hat{p}_{t,i}}{M\hat{p}_{t,i} + \sum_{j \in N_i^-} M\hat{p}_{t,j}} = \sum_{i=1}^{N} \sum_{k \in C_i} \frac{1}{1 + d_k^-}$$

Ínría

$$\sum_{i=1}^{N} \frac{M\hat{p}_{t,i}}{M\hat{p}_{t,i} + \sum_{j \in N_i^-} M\hat{p}_{t,j}} = \sum_{i=1}^{N} \sum_{k \in C_i} \frac{1}{1 + d_k^-} \le 2\alpha \log\left(1 + \frac{M+N}{\alpha}\right)$$

Exp3-IX regret bound

$$R_{T} \leq \frac{\log N}{\eta} + \left(\frac{\eta}{2} + \gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[2\alpha_{t} \log\left(1 + \frac{\lceil N^{2}/\gamma \rceil + N}{\alpha_{t}}\right) + 2\right]$$

$$R_{T} = \widetilde{\mathcal{O}}\left(\sqrt{\overline{\alpha} T \log(N)}\right)$$

Exp3-IX regret bound

$$R_{T} \leq \frac{\log N}{\eta} + \left(\frac{\eta}{2} + \gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[2\alpha_{t} \log\left(1 + \frac{\lceil N^{2}/\gamma \rceil + N}{\alpha_{t}}\right) + 2\right]$$

$$R_{T} = \widetilde{\mathcal{O}}\left(\sqrt{\overline{\alpha} T \log(N)}\right)$$

Next step

Exp3-IX regret bound

$$R_{T} \leq \frac{\log N}{\eta} + \left(\frac{\eta}{2} + \gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[2\alpha_{t} \log\left(1 + \frac{\lceil N^{2}/\gamma \rceil + N}{\alpha_{t}}\right) + 2\right]$$

$$R_{T} = \widetilde{\mathcal{O}}\left(\sqrt{\overline{\alpha} T \log(N)}\right)$$

Next step Generalization of the setting to combinatorial actions

- Play m out of N nodes (combinatorial structure)
- Obtain losses of all played nodes
- Observe losses of all neighbors of played nodes

- ▶ Play action $\mathbf{V}_t \in S \subset \{0,1\}^N$, $\|\mathbf{v}\|_1 \leq m$ fro all $\mathbf{v} \in S$
- Obtain losses $\mathbf{V}_t^{\mathsf{T}} \boldsymbol{\ell}_t$
- Observe additional losses according to the graph

FPL-IX algorithm

- Draw perturbation $Z_{t,i} \sim \text{Exp}(1)$ for all $i \in [N]$
- Play "the best" action V_t according to total loss estimate L
 _{t-1} and perturbation Z_t

$$\mathbf{V}_t = rgmin_{\mathbf{v}\in\mathcal{S}} \mathbf{v}^{\scriptscriptstyle op} \left(\eta_t \widehat{\mathbf{L}}_{t-1} - \mathbf{Z}_t
ight)$$

Compute loss estimates

$$\hat{\ell}_{t,i} = \ell_{t,i} K_{t,i} \mathbb{1}\{\ell_{t,i} \text{ is observed}\}$$

$$\mathbb{E}\left[\mathcal{K}_{t,i}
ight] = rac{1}{o_{t,i} + (1 - o_{t,i})\gamma}$$

FPL-IX - regret bound

$$R_{T} = \widetilde{\mathcal{O}}\left(m^{3/2}\sqrt{\sum_{t=1}^{T}\alpha_{t}}\right) = \widetilde{\mathcal{O}}\left(m^{3/2}\sqrt{\overline{\alpha}T}\right)$$

Side Observation Summary

- Implicit eXploration idea
- New algorithm for simple actions Exp3-IX
 - Using implicit exploration idea
 - Same regret bound as previous algorithm
 - No need to know graph before an action is played
 - Computationally efficient
- New combinatorial setting with side observations
- Algorithm for combinatorial setting FPL-IX
- Future directions
 - No need to know graph after an action is played
 - Stochastic side observations
 - Random graph models
 - Exploiting the communities

Michal Valko michal.valko@inria.fr sequel.lille.inria.fr Sylvester's determinant theorem:

$$|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}||\mathbf{I} + \mathbf{A}^{-1}\mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}|(1 + \mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})$$

Goal:

- Upperbound determinant $|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}|$ for $\|\mathbf{x}\|_2 \leq 1$
- ► Upperbound **x**^T**A**⁻¹**x**

Sylvester's determinant theorem:

$$|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}||\mathbf{I} + \mathbf{A}^{-1}\mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}|(1 + \mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})$$

Goal:

- ▶ Upperbound determinant $|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}|$ for $\|\mathbf{x}\|_2 \leq 1$
- ► Upperbound **x**^T**A**⁻¹**x**

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{\Lambda}^{-1}\mathbf{Q}^{\mathsf{T}}\mathbf{x} = \mathbf{y}^{\mathsf{T}}\mathbf{\Lambda}^{-1}\mathbf{y} = \sum_{i=1}^{N} \lambda_{i}y_{i}^{2}$$

Sylvester's determinant theorem:

$$|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}||\mathbf{I} + \mathbf{A}^{-1}\mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}|(1 + \mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})$$

Goal:

- \blacktriangleright Upperbound determinant $|\mathbf{A} + \mathbf{x}\mathbf{x}^{\scriptscriptstyle \mathsf{T}}|$ for $\|\mathbf{x}\|_2 \leq 1$
- ▶ Upperbound x^TA⁻¹x

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{\Lambda}^{-1}\mathbf{Q}^{\mathsf{T}}\mathbf{x} = \mathbf{y}^{\mathsf{T}}\mathbf{\Lambda}^{-1}\mathbf{y} = \sum_{i=1}^{N} \lambda_{i}y_{i}^{2}$$

▶ $\|\mathbf{y}\|_2 \le 1.$

- **y** is a canonical vector.
- $\mathbf{x} = \mathbf{Q}\mathbf{y}$ is an eigenvector of \mathbf{A} .

Corollary:

Determinant $|\mathbf{V}_{\mathcal{T}}|$ of $\mathbf{V}_{\mathcal{T}} = \mathbf{\Lambda} + \sum_{t=1}^{T} \mathbf{x}_t \mathbf{x}_t^{\mathsf{T}}$ is maximized when all \mathbf{x}_t are aligned with axes.

$$\begin{split} |\mathbf{V}_{\mathcal{T}}| &\leq \max_{\sum t_i = \mathcal{T}} \prod (\lambda_i + t_i) \\ \ln \frac{|\mathbf{V}_{\mathcal{T}}|}{|\mathbf{\Lambda}|} &\leq \max_{\sum t_i = \mathcal{T}} \sum \ln \left(1 + \frac{t_i}{\lambda_i}\right) \\ \ln \frac{|\mathbf{V}_{\mathcal{T}}|}{|\mathbf{\Lambda}|} &\leq \sum_{i=1}^d \ln \left(1 + \frac{T}{\lambda}\right) + \sum_{i=d+1}^N \ln \left(1 + \frac{t_i}{\lambda_{d+1}}\right) \\ &\leq d \ln \left(1 + \frac{T}{\lambda}\right) + \frac{T}{\lambda_{d+1}} \\ &\leq 2d \ln \left(1 + \frac{T}{\lambda}\right) \end{split}$$

SpectralUCB analysis

$$\boldsymbol{f}^{\mathsf{T}} \mathcal{L} \boldsymbol{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2 = S_G(f)$$

Proof:

$$f^{\mathsf{T}}\mathcal{L}f = f^{\mathsf{T}}\mathcal{D}f - f^{\mathsf{T}}\mathcal{W}f = \sum_{i=1}^{N} d_i f_i^2 - \sum_{i,j \le N} w_{i,j} f_i f_j$$

= $\frac{1}{2} \left(\sum_{i=1}^{N} d_i f_i^2 - 2 \sum_{i,j \le N} w_{i,j} f_i f_j + \sum_{j=1}^{N} d_j f_j^2 \right) = \frac{1}{2} \sum_{i,j \le N} w_{i,j} (f_i - f_j)^2$
- Derivation of the confidence ellipsoid for $\hat{\alpha}$ with probability 1δ .
 - Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$|x^{\mathsf{T}}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)| \leq ||x||_{\mathbf{V}_t^{-1}} \left(R \sqrt{2 \ln\left(\frac{|V_t|^{1/2}}{\delta |\mathbf{\Lambda}|^{1/2}}\right)} + C \right)$$

- ► Regret in one time step: $r_t = \mathbf{x}_*^{\mathsf{T}} \boldsymbol{\alpha}^* \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* \leq 2c_t \|\mathbf{x}_{\pi(t)}\|_{\mathbf{V}_t^{-1}}$
- Cumulative regret:

$$R_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} r_t \leq \sqrt{\mathcal{T} \sum_{t=1}^{\mathcal{T}} r_t^2} \leq 2(c_{\mathcal{T}} + 1) \sqrt{2\mathcal{T} \ln \frac{|\mathbf{V}_{\mathcal{T}}|}{|\mathbf{\Lambda}|}}$$

- Derivation of the confidence ellipsoid for $\hat{\alpha}$ with probability 1δ .
 - Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$|x^{\mathsf{T}}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)| \leq ||x||_{\mathbf{V}_t^{-1}} \left(R \sqrt{2 \ln \left(\frac{|\boldsymbol{V}_t|^{1/2}}{\delta |\boldsymbol{\Lambda}|^{1/2}} \right)} + C \right)$$

- Regret in one time step: $r_t = \mathbf{x}_*^{\mathsf{T}} \boldsymbol{\alpha}^* \mathbf{x}_{\pi}^{\mathsf{T}} \mathbf{\alpha}^* \leq 2c_t \|\mathbf{x}_{\pi(t)}\|_{\mathbf{V}_t^{-1}}$ Cumulative regret:
- Cumulative regret:

$$R_{T} = \sum_{t=1}^{T} r_{t} \leq \sqrt{T \sum_{t=1}^{T} r_{t}^{2}} \leq 2(r_{T} + 1) \sqrt{2T \ln \frac{|\mathbf{V}_{T}|}{|\mathbf{\Lambda}|}}$$

- Derivation of the confidence ellipsoid for $\hat{\alpha}$ with probability 1δ .
 - Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$|x^{\mathsf{T}}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)| \leq ||x||_{\mathbf{V}_t^{-1}} \left(R \sqrt{2 \ln \left(\frac{|\boldsymbol{V}_t|^{1/2}}{\delta |\boldsymbol{\Lambda}|^{1/2}} \right)} + C \right)$$

- Regret in one time step: $r_t = \mathbf{x}_*^{\mathsf{T}} \boldsymbol{\alpha}^* \mathbf{x}_{\pi}^{\mathsf{T}} \mathbf{\alpha}^* \leq 2c_t \|\mathbf{x}_{\pi(t)}\|_{\mathbf{V}_t^{-1}}$
- Cumulative regret:

$$R_{T} = \sum_{t=1}^{T} r_{t} \leq \sqrt{T \sum_{t=1}^{T} r_{t}^{2}} \leq 2(\frac{r}{c_{T}} + 1) \sqrt{2T \ln \frac{|\mathbf{V}_{T}|}{|\mathbf{\Lambda}|}}$$

• Upperbound for $\ln(|\mathbf{V}_t|/|\Lambda|)$

$$\ln \frac{|\mathbf{V}_t|}{|\mathbf{\Lambda}|} \le \ln \frac{|\mathbf{V}_{\mathcal{T}}|}{|\mathbf{\Lambda}|} \le 2d \ln \left(\frac{\lambda + \mathcal{T}}{\lambda}\right)$$

SpectralTS analysis sketch

Divide arms into two groups

$$\Delta_i = \mathbf{b}_*^{\mathsf{T}} \boldsymbol{\mu} - \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu} \le g \| \mathbf{b}_i \|_{\mathbf{B}_*^{-1}}$$

$$\blacktriangleright \Delta_i = \mathbf{b}_*^{\mathsf{T}} \boldsymbol{\mu} - \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu} > g \| \mathbf{b}_i \|_{\mathbf{B}_t^{-1}}$$

arm *i* is **unsaturated**

arm *i* is **saturated**

SpectralTS analysis sketch

Divide arms into two groups

- $\Delta_i = \mathbf{b}_*^{\mathsf{T}} \boldsymbol{\mu} \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu} \leq g \| \mathbf{b}_i \|_{\mathbf{B}_*^{-1}}$
- $\Delta_i = \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu} \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu} > g \| \mathbf{b}_i \|_{\mathbf{B}_t^{-1}}$
- arm *i* is **unsaturated**
 - arm *i* is **saturated**

Saturated arm

- Small standard deviation \rightarrow accurate regret estimate.
- ▶ High regret on playing the arm → Low probability of picking

Divide arms into two groups

$$\Delta_i = \mathbf{b}_*^{\mathsf{T}} \boldsymbol{\mu} - \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu} \leq g \| \mathbf{b}_i \|_{\mathbf{B}_*^{-1}}$$

- $\Delta_i = \mathbf{b}_*^{\mathsf{T}} \boldsymbol{\mu} \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu} > g \| \mathbf{b}_i \|_{\mathbf{B}_t^{-1}}$
- arm *i* is **unsaturated**
 - arm *i* is **saturated**

Saturated arm

- Small standard deviation \rightarrow accurate regret estimate.
- \blacktriangleright High regret on playing the arm \rightarrow Low probability of picking

Unsaturated arm

- Low regret bounded by a factor of standard deviation
- High probability of picking

- ▶ Confidence ellipsoid for estimate $\hat{\mu}$ of μ (with probability $1 \delta/T^2$)
 - Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$|\mathbf{b}_i^{\mathsf{T}} \hat{\boldsymbol{\mu}} - \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu}| \le \left(R \sqrt{2 \log \left(\frac{|\mathbf{B}_T|^{1/2} \mathcal{T}^2}{|\mathbf{\Lambda}|^{1/2} \delta} \right)} + C \right) \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$$

- ▶ Confidence ellipsoid for estimate $\hat{\mu}$ of μ (with probability $1 \delta/T^2$)
 - Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$|\mathbf{b}_i^{\mathsf{T}} \hat{\boldsymbol{\mu}} - \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu}| \leq \left(R \sqrt{2 \log \left(\frac{|\mathbf{B}_{\mathcal{T}}|^{1/2} \mathcal{T}^2}{|\mathbf{\Lambda}|^{1/2} \delta} \right)} + C \right) \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$$

• Our key result coming from spectral properties of \mathbf{B}_t .

$$\log rac{|\mathbf{B}_t|}{|\mathbf{\Lambda}|} \leq 2d \log \left(1 + rac{T}{\lambda}
ight)$$

- ▶ Confidence ellipsoid for estimate $\hat{\mu}$ of μ (with probability $1 \delta/T^2$)
 - Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$|\mathbf{b}_i^{\mathsf{T}}\hat{\boldsymbol{\mu}} - \mathbf{b}_i^{\mathsf{T}}\boldsymbol{\mu}| \le \left(R\sqrt{2\,d\log\left(\frac{(\lambda+T)\,T^2}{\delta\lambda}\right)} + C\right) \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}} = \ell \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$$

• Our key result coming from spectral properties of \mathbf{B}_t .

$$\log rac{|\mathbf{B}_t|}{|\mathbf{\Lambda}|} \leq 2d \log \left(1 + rac{\mathcal{T}}{\lambda}
ight)$$

- ▶ Confidence ellipsoid for estimate $\hat{\mu}$ of μ (with probability $1 \delta/T^2$)
 - Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$|\mathbf{b}_i^{\mathsf{T}}\hat{\boldsymbol{\mu}} - \mathbf{b}_i^{\mathsf{T}}\boldsymbol{\mu}| \le \left(R\sqrt{2\,d\log\left(\frac{(\lambda+T)\,T^2}{\delta\lambda}\right)} + C\right) \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}} = \ell \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$$

• Our key result coming from spectral properties of \mathbf{B}_t .

$$\log rac{|\mathbf{B}_t|}{|\mathbf{\Lambda}|} \leq 2d \log \left(1 + rac{T}{\lambda}
ight)$$

- \blacktriangleright Concentration of sample $ilde{\mu}$ around mean $\hat{\mu}$ (with probability $1-1/T^2)$
 - Using concentration inequality for Gaussian random variable.

$$|\mathbf{b}_{i}^{\mathsf{T}}\tilde{\boldsymbol{\mu}} - \mathbf{b}_{i}^{\mathsf{T}}\hat{\boldsymbol{\mu}}| \leq \left(R\sqrt{6d\log\left(\frac{\lambda+\mathcal{T}}{\delta\lambda}\right)} + C\right) \|\mathbf{b}_{i}\|_{\mathbf{B}_{t}^{-1}}\sqrt{4\log(\mathcal{T}N)} = \nu \|\mathbf{b}_{i}\|_{\mathbf{B}_{t}^{-1}}\sqrt{4\log(\mathcal{T}N)}$$

SpectralTS analysis sketch

Define regret'(t) = regret(t) $\cdot \mathbb{1}\{|\mathbf{b}_i^{\mathsf{T}}\hat{\boldsymbol{\mu}}(t) - \mathbf{b}_i^{\mathsf{T}}\boldsymbol{\mu}| \le \ell \|\mathbf{b}_i\|_{\mathbf{B}_{\star}^{-1}}\}$

$$\mathsf{regret}'(t) \leq \frac{11g}{p} \|\mathbf{b}_{a(t)}\|_{\mathbf{B}_t^{-1}} + \frac{1}{T^2}$$

SpectralTS analysis sketch

Define regret'(t) = regret(t) $\cdot \mathbb{1}\{|\mathbf{b}_i^{\mathsf{T}}\hat{\boldsymbol{\mu}}(t) - \mathbf{b}_i^{\mathsf{T}}\boldsymbol{\mu}| \le \ell \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}\}$

$$\mathsf{regret}'(t) \leq \frac{11g}{p} \|\mathbf{b}_{\boldsymbol{a}(t)}\|_{\mathbf{B}_t^{-1}} + \frac{1}{\mathcal{T}^2}$$

Super-martingale (i.e. $\mathbb{E}[Y_t - Y_{t-1}|\mathcal{F}_{t-1}] \leq 0$)

$$X_t = \operatorname{regret}'(t) - \frac{11g}{p} \|\mathbf{b}_{a(t)}\|_{\mathbf{B}_t^{-1}} - \frac{1}{T^2}$$
$$Y_t = \sum_{w=1}^t X_w.$$

 $(Y_t; t = 0, ..., T)$ is a super-martingale process w.r.t. history \mathcal{F}_t .

SpectralTS analysis sketch

Define regret'(t) = regret(t) $\cdot \mathbb{1}\{|\mathbf{b}_i^{\mathsf{T}}\hat{\boldsymbol{\mu}}(t) - \mathbf{b}_i^{\mathsf{T}}\boldsymbol{\mu}| \le \ell \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}\}$

$$\mathsf{regret}'(t) \leq \frac{11g}{p} \|\mathbf{b}_{\boldsymbol{a}(t)}\|_{\mathbf{B}_t^{-1}} + \frac{1}{\mathcal{T}^2}$$

Super-martingale (i.e. $\mathbb{E}[Y_t - Y_{t-1}|\mathcal{F}_{t-1}] \leq 0$)

$$\begin{aligned} X_t &= \operatorname{regret}'(t) - \frac{11g}{p} \| \mathbf{b}_{\boldsymbol{a}(t)} \|_{\mathbf{B}_t^{-1}} - \frac{1}{T^2} \\ Y_t &= \sum_{w=1}^t X_w. \end{aligned}$$

 $(Y_t; t = 0, ..., T)$ is a super-martingale process w.r.t. history \mathcal{F}_t .

Azuma-Hoeffding inequality for super-martingale, w. p. $1-\delta/2$:

$$\sum_{t=1}^{T} \operatorname{regret}'(t) \leq \frac{11g}{p} \sum_{t=1}^{T} \|\mathbf{b}_{\mathsf{a}(t)}\|_{\mathbf{B}_{t}^{-1}} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \ln \frac{2}{\delta}}$$

SpectralTS analysis sketch

Define regret'(t) = regret(t) $\cdot \mathbb{1}\{|\mathbf{b}_i^{\mathsf{T}}\hat{\boldsymbol{\mu}}(t) - \mathbf{b}_i^{\mathsf{T}}\boldsymbol{\mu}| \le \ell \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}\}$

$$\mathsf{regret}'(t) \leq \frac{11g}{p} \|\mathbf{b}_{\boldsymbol{a}(t)}\|_{\mathbf{B}_t^{-1}} + \frac{1}{\mathcal{T}^2}$$

Super-martingale (i.e. $\mathbb{E}[Y_t - Y_{t-1}|\mathcal{F}_{t-1}] \leq 0$)

$$\begin{aligned} X_t &= \operatorname{regret}'(t) - \frac{11g}{p} \| \mathbf{b}_{\boldsymbol{a}(t)} \|_{\mathbf{B}_t^{-1}} - \frac{1}{T^2} \\ Y_t &= \sum_{w=1}^t X_w. \end{aligned}$$

 $(Y_t; t = 0, ..., T)$ is a super-martingale process w.r.t. history \mathcal{F}_t .

Azuma-Hoeffding inequality for super-martingale, w. p. $1-\delta/2$:

$$\sum_{t=1}^{T} \operatorname{regret}'(t) \leq \frac{11g}{p} \sum_{t=1}^{T} \|\mathbf{b}_{\boldsymbol{a}(t)}\|_{\mathbf{B}_{t}^{-1}} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \ln \frac{2}{\delta}}$$

Backup: SpectralEliminator pseudocode

Input:

N : the number of nodes, T : the number of pulls $\{\Lambda_{\mathcal{L}}, \mathbf{Q}\}$ spectral basis of \mathcal{L} λ : regularization parameter β , $\{t_i\}_i^J$ parameters of the elimination and phases $A_1 \leftarrow \{\mathbf{x}_1, \ldots, \mathbf{x}_K\}.$ for i = 1 to J do $\mathbf{V}_{t_i} \leftarrow \gamma \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}$ for $t = t_i$ to min $(t_{i+1} - 1, T)$ do Play $\mathbf{x}_t \in A_i$ with the largest width to observe r_t : $\mathbf{x}_t \leftarrow \arg \max_{\mathbf{x} \in A_i} \|\mathbf{x}\|_{\mathbf{V}^{-1}}$ $\mathbf{V}_{t+1} \leftarrow \mathbf{V}_t + \mathbf{x}_t \mathbf{x}_t^{\mathsf{T}}$ end for Eliminate the arms that are not promising: $\hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_i}, \dots, \mathbf{x}_t][r_{t_i}, \dots, r_t]^{\mathsf{T}}$ $A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \hat{\boldsymbol{\alpha}}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{V^{-1}} \beta \ge \max_{\mathbf{x} \in A_j} \left| \langle \hat{\boldsymbol{\alpha}}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{V^{-1}} \beta \right| \right\}$ end for

Backup: SpectralEliminator analysis

SpectralEliminator

Divide time into sets (t₁ = 1 ≤ t₂ ≤ ...) to introduce independence for Azuma-Hoeffding inequality and observe R_T ≤ ∑_{j=0}^J(t_{j+1} − t_j)[⟨**x**^{*} − **x**_t, â_j⟩ + (||**x**^{*}||_{V_j⁻¹} + ||**x**_t||_{V_j⁻¹})β]

• Bound
$$\langle \mathbf{x}^* - \mathbf{x}_t, \hat{oldsymbol{lpha}}_j
angle$$
 for each phase

- $\blacktriangleright \text{ No bad arms: } \langle \mathbf{x}^* \mathbf{x}_t, \hat{\alpha}_j \rangle \leq (\|\mathbf{x}^*\|_{\mathbf{V}_j^{-1}} + \|\mathbf{x}_t\|_{\mathbf{V}_j^{-1}})\beta$
- By algorithm: $\|\mathbf{x}\|_{\mathbf{V}_{j}^{-1}}^{2} \leq \frac{1}{t_{j}-t_{j-1}} \sum_{s=t_{j-1}+1}^{t_{j}} \|\mathbf{x}_{s}\|_{\mathbf{V}_{s-1}^{-1}}^{2}$

$$\blacktriangleright \sum_{s=t_{j-1}+1}^{t_j} \min\left(1, \|\mathbf{x}_s\|_{\mathbf{V}_{s-1}^{-1}}^2\right) \le \log \frac{|\mathbf{V}_j|}{|\Lambda|}$$