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Overview

I Sequential decision making in structured settings

I we are asked to pick a node (or a few nodes) in a graph
I the graph encodes some structural property of the setting
I goal: maximize the sum of the outcomes
I application: recommender systems

I Exploiting smoothness

I fixed graph
I iid outcomes
I neighboring nodes have similar outcomes

I Exploiting side observations

I changing graph
I non-stochastic outcomes
I side observations
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Motivation Movie recommendation

Movie recommendation: (in each time step)
I Recommend movies to a single user.

I Good prediction after a few steps (T�N).

Goal:
I Maximize overall reward (sum of ratings).

Assumptions:
I Unknown reward function f : V (G)→ R.
I Function f is smooth on a graph.
I Neighboring movies ⇒ similar preferences.
I Similar preferences 6⇒ neighboring movies.

The Shaw
shank Redem

ptio
n (1994)

The Godfather
(1972)

The Godfather:
Part II (1974)

The Dark
Knight (2008)

Pulp Ficti
on (1994)

The Good, the Bad and the Ugly (1966)

Schindler’s
List (1993)

12 Angry Men (1957)

The Lord of the Rings: The Return of the King (2003)

Fight Club (1999)

The Lord of the Rings: The Fellowship of the Ring (2001)

Star Wars: Episode V - The Empire Strikes Back (1980)

Inception (2010)

Forrest Gump (1994)

One Flew Over the Cuckoo’s Nest (1975)

The Lord of the Rings: The Two Towers (2002)

Goodfellas (1990)

Star Wars: Episode IV - A New Hope (1977)

The Matrix (1999)

Seven Samurai (1954)
City of God (2002)
Se7en (1995)
The Usual Suspects (1995)The Silence of the Lambs (1991)Once Upon a Time in the West (1968)

It’s a Wonderful Life (1946)
Léon: The Professional (1994)
Casablanca (1942)
Life Is Beautiful (1997)
Raiders of the Lost Ark (1981)

American History X (1998)

Psycho (1960)
Rear Window (1954)

City Lights (1931)

Saving Private Ryan (1998)

Spirited Away (2001)

The Intouchables (2011)

Memento (2000)

Terminator 2: Judgment Day (1991)

Modern Times (1936) 0

1
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Smooth graph functions and graph Laplacian Smooth graph function

Smooth graph function
I Graph G with vertex set V (G) = {1, . . . ,N} and edge set E (G).

I f1, . . . , fN : Values of the function on the vertices of the graph.
I wi,j : Weight of the edge connecting nodes i and j .

Smoothness of the function:

SG (f ) =
1
2
∑

i,j≤N
wi,j(fi − fj)2

Smaller value of SG (f ), smoother the function f is.
Examples:

I Complete graph: Only constant function has smoothness 0.
I Edgeless graph: Every function has smoothness 0.
I Constant function: Smoothness 0 for every graph.
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Smooth graph functions and graph Laplacian Graph Laplacian

Graph Laplacian

I W: N × N matrix of the edge weights wi,j .
I D: Diagonal matrix with the entries di =

∑
j wi,j .

I L = D −W: Graph Laplacian.
I Positive semidefinite matrix.
I Diagonally dominant matrix.

Example:

L =


4 −1 0 −1 −2
−1 8 −3 −4 0

0 −3 5 −2 0
−1 −4 −2 12 −5
−2 0 0 −5 7



1

2 3

4

5

w
1
,2
=
1

w2,3 = 3

w
3,4 =

2

w4,
5
=
5

w1,5 = 2

w1,4
= 1

w
2,4 = 4
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Smooth graph functions and graph Laplacian Smoothness with respect to Laplacian

Smoothness of the function and Laplacian
I f = (f1, . . . , fN)T: Vector of function values.

I Let L = QΛQT be the eigendecomposition of the Laplacian.

I Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
I Columns of Q are eigenvectors of L.
I Columns of Q form a basis.

I α∗: Unique vector such that Qα∗ = f Note: QTf = α∗

SG (f ) = f TLf = f TQΛQTf = α∗TΛα∗ = ‖α∗‖2
Λ =

N∑
i=1

λi (α
∗
i )2

Smoothness and regularization: Small value of

(a) SG (f ) (b) Λ norm of α∗ (c) α∗i for large λi
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Setting Formulation of the problem

Setting

Learning setting for a bandit algorithm π

I In each time t step choose a node π(t).

I the π(t)-th row xπ(t) of the matrix Q corresponds to the arm π(t).
I Obtain noisy reward rt = xT

π(t)α
∗ + εt . Note: xT

π(t)α
∗ = fπ(t)

I εt is R-sub-Gaussian noise. ∀ξ ∈ R, E[eξεt ] ≤ exp
(
ξ2R2/2

)
I Minimize cumulative regret

RT = T max
a

(xT
aα
∗)−

T∑
t=1

xT
π(t)α

∗.

I Can’t we just use linear bandits?
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I the π(t)-th row xπ(t) of the matrix Q corresponds to the arm π(t).
I Obtain noisy reward rt = xT

π(t)α
∗ + εt . Note: xT

π(t)α
∗ = fπ(t)

I εt is R-sub-Gaussian noise. ∀ξ ∈ R, E[eξεt ] ≤ exp
(
ξ2R2/2

)
I Minimize cumulative regret
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a

(xT
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Setting Solutions

Solutions
I Linear bandit algorithms (Existing solutions)

I LinUCB (Li et al., 2010)
I Regret bound ≈ D

√
T ln T

I LinearTS (Agrawal and Goyal, 2013)
I Regret bound ≈ D

√
T ln N

Note: D is ambient dimension, in our case N, length of xi .
Number of actions, e.g., all possible movies → HUGE!

I Spectral bandit algorithms (Our solutions)
I SpectralUCB (Valko et al., ICML 2014)

I Regret bound ≈ d
√

T ln T

I Operations per step: D2N

I SpectralTS (Kocák et al., AAAI 2014)
I Regret bound ≈ d

√
T ln N

I Operations per step: D2 + DN

Note: d is effective dimension, usually much smaller than D.
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Effective dimension Definition and properties

Effective dimension
I Effective dimension: Largest d such that

(d − 1)λd ≤
T

log(1 + T/λ)
.

I Function of time horizon and graph properties
I λi : i-th smallest eigenvalue of Λ.
I λ: Regularization parameter of the algorithm.

Properties:
I d is small when the coefficients λi grow rapidly above time.
I d is related to the number of “non-negligible” dimensions.
I Usually d is much smaller than D in real world graphs.
I Can be computed beforehand.
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Effective dimension Empirical comparison

Effective dimension vs. Ambient dimension
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SpectralUCB Algorithm

UCB style algorithms: Estimate

1 2 3 4 5 6 7 8 9 10 11

E
x
p
ec
te
d
re
w
ar
d

Michal Valko: Bandits on Graphs CMLA seminar - 12/50



SpectralUCB Algorithm

UCB style algorithms: Sample
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SpectralUCB Algorithm

SpectralUCB

1: Input:
2: N, T , {ΛL,Q}, λ, δ, R, C L
3: Run:
4: Λ← ΛL + λI
5: d ← max{d : (d − 1)λd ≤ T/ ln(1 + T/λ)}
6: for t = 1 to T do
7: Update the basis coefficients α̂:
8: Xt ← [xπ(1), . . . , xπ(t−1)]

T

9: r← [r1, . . . , rt−1]
T

10: Vt ← XtXT
t +Λ

11: α̂t ← V−1
t XT

t r
12: ct ← 2R

√
d ln(1 + t/λ) + 2 ln(1/δ) + C

13: π(t)← arg maxa

(
xT

a α̂+ ct‖xa‖V−1
t

)
14: Observe the reward rt

15: end for
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SpectralUCB Regret bound

SpectralUCB regret bound

I d : Effective dimension.
I λ: Minimal eigenvalue of Λ = ΛL + λI.
I C : Smoothness upper bound, ‖α∗‖Λ ≤ C .
I xT

i α
∗ ∈ [−1, 1] for all i .

The cumulative regret RT of SpectralUCB is with probability 1− δ
bounded as

RT ≤

(
8R
√

d ln λ+ T
λ

+ 2 ln 1
δ

+ 4C + 4
)√

dT ln λ+ T
λ

.

RT ≈ d
√

T ln T
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Performance of the algorithms Empirical comparison

Synthetic experiment
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Performance of the algorithms Empirical comparison

Real world experiment
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Performance of the algorithms Reduced basis

Improving the running time: reduced eigenbasis

I Reduced basis: We only need first few eigenvectors.
I Getting J eigenvectors: O(Jm log m) time for m edges
I Computationally less expensive, comparable performance.
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SpectralTS Algorithm

How to make it faster?

I UCB-style algorithms need to (re)-compute UCBs every t

I Can be a problem for large set of arms → D2N → N3

I Optimistic (UCB) approach vs. Thompson Sampling

I Play the arm maximizing probability of being the best

I Sample µ̃ from the distribution N (µ̂, v 2B−1)
I Play arm which maximizes bTµ̃ and observe reward

I Compute posterior distribution according to reward received

I Only requires D2 + DN → N2 per step update
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SpectralTS Algorithm

Thomson Sampling: Estimate

α̂

α∗
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SpectralTS Algorithm

Thomson Sampling: Estimate . . .

α̂ α∗
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SpectralTS Algorithm

SpectralTS algorithm

1: Input:
2: N, T , {ΛL,Q}, λ, δ, R, C
3: Initialization:
4: v = R

√
6d log((λ+ T )/δλ) + C

5: α̂ = 0N
6: f = 0N
7: V = ΛL + λIN
8: Run:
9: for t = 1 to T do

10: Sample α̃ ∼ N (α̂, v 2V−1)
11: π(t)← arg maxa xT

a α̃
12: Observe a noisy reward r(t) = xT

π(t)α
∗ + εt

13: f ← f + xπ(t)r(t)
14: Update V← V + xπ(t)xT

π(t)
15: Update α̂← V−1f
16: end for
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SpectralTS Regret bound

SpectralTS regret bound
I d : Effective dimension.
I λ: Minimal eigenvalue of Λ = ΛL + λI.
I C : Smoothness upper bound, ‖α∗‖Λ ≤ C .
I xT

i α
∗ ∈ [−1, 1] for all i .

The cumulative regret RT of SpectralTS is with probability 1− δ
bounded as

RT ≤
11g
p

√
4 + 4λ
λ

dT log
λ+ T
λ

+
1
T

+
g
p

(
11
√
λ

+ 2
)√

2T log
2
δ
,

where p = 1/(4e
√
π) and

g =
√

4 log TN
(

R

√
6d log

(
λ+ T
δλ

)
+ C

)
+ R

√
2d log

(
(λ+ T )T 2

δλ

)
+ C .

RT ≈ d
√

T log N
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Performance of the algorithms Empirical comparison

Synthetic experiment
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Performance of the algorithms Empirical comparison

Real world experiment
MovieLens dataset of 6k users who rated one million movies.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

time t

cu
m

ul
at

iv
e 

re
gr

et

Movielens data N=2019, average of 10 users, T=200, d = 5

 

 

SpectralUCB

LinUCB

SpectralTS

LinearTS

SpectralTS LinearTS SpectralUCB LinUCB
0

500

1000

1500

2000

2500

co
m

pu
ta

tio
na

l t
im

e 
in

 s
ec

on
ds

Michal Valko: Bandits on Graphs CMLA seminar - 23/50



Performance of the algorithms Empirical comparison

Spectral Bandits Summary

I New spectral bandit setting (for smooth graph functions).

I SpectralUCB
I Regret bound ≈ d

√
T ln T

I SpectralTS
I Regret bound ≈ d

√
T ln N

I Computationally more efficient.
I SpectralEliminator

I Regret bound ≈
√

dT ln T
I Side result: LinearEliminator with O(

√
DT ln T ) regret for

(contextual) linear bandits.
I Bounds scale with effective dimension d � D.
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Learning with Side Observations Side Observations in Recommender Systems

Exploiting side observations
Example 1: undirected observations
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Learning with Side Observations Side Observations in Recommender Systems

Example 1: Graph Representation
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Learning with Side Observations Example 2

Example 2: Directed observation
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Learning with Side Observations Example 2

Example 2
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Problem definition Learning setting

Learning setting

In each time step t = 1, . . . ,T

I Environment (adversary):
I Privately assigns losses to actions
I Generates an observation graph

I Undirected / Directed
I Disclosed / Not disclosed

I Learner:

I Plays action It ∈ [N]
I Obtain loss `t,It of action played

I Observe losses of neighbors of It

I Graph: disclosed

I Performance measure: Total expected regret

RT = max
i∈[N]

E

[ T∑
t=1

(`t,It − `t,i )

]
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Problem definition Full information and Bandit setting

Full Information setting
I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = Õ(

√
T )

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = Õ(

√
NT )
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Problem definition Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know graph
I Clique decomposition (c cliques)

I RT = Õ(
√

cT )

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know graph
I Independence set of α actions
I RT = Õ(

√
αT )
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Problem definition Side observation - Directed case

Side observation (Directed case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
I Exp3-DOM
I Need to know graph
I Need to find dominating set
I RT = Õ(

√
αT )

Our solution: Exp3-IX
I No need to know graph
I RT = Õ(

√
αT )
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√
αT )

A B

C

DE

F

Michal Valko: Bandits on Graphs CMLA seminar - 32/50



Problem definition Side observation - Directed case

Side observation (Directed case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
I Exp3-DOM
I Need to know graph
I Need to find dominating set
I RT = Õ(
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Exp3 Algorithms in general

Exp3 algorithms in general

I Compute weights using loss estimates ˆ̀t,i .

wt,i = exp
(
−η

t−1∑
s=1

ˆ̀s,i

)

I Play action It such that

P(It = i) = pt,i =
wt,i
Wt

=
wt,i∑N
j=1 wt,j

I Update loss estimates (using observability graph)

How the algorithms approach to bias variance tradeoff?
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Bias variance tradeoff Different approaches

Bias variance tradeoff approaches

I Approach of previous algorithms – Mixing
I Bias sampling distribution pt over actions

I p′t = (1− γ)pt + γst – mixed distribution
I st – probability distribution which supports exploration

I Loss estimates ˆ̀t,i are unbiased

I Approach of our algorithm – Implicit eXploration (IX)
I Bias loss estimates ˆ̀t,i

I Biased loss estimates =⇒ biased weights
I Biased weights =⇒ biased probability distribution

I No need for mixing
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Bias variance tradeoff ELP

Mannor and Shamir - ELP algorithm

I E[ˆ̀t,i ] = `t,i – unbiased loss estimates
I p′t,i = (1− γ)pt,i + γst,i – bias by mixing
I st = {st,1, . . . , st,N} – probability distribution over the action set

st = arg max
st

min
j∈[N]

st,j +
∑

k∈Nt,j

st,k

 = arg max
st

[
min
j∈[N]

qt,j

]

I qt,j – probability that loss of j is observed according to st

I Computation of st
I Graph needs to be disclosed
I Solving simple linear program

I Needs to know graph before playing an action
I Graphs can be only undirected
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Bias variance tradeoff Exp3-DOM

Alon, Cesa-Bianchi, Gentile, Mansour - Exp3-DOM

I E[ˆ̀t,i ] = `t,i – unbiased loss estimates
I p′t,i = (1− γ)pt,i + γst,i – bias by mixing
I st = {st,1, . . . , st,N} – probability distribution over the action set

st,i =

{
1
r if i ∈ R; |R| = r
0 otherwise.

I R – dominating set of r elements
I st – uniform distribution over R
I Needs to know graph beforehand
I Graphs can be directed
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Bias variance tradeoff Exp3-IX

Previous algorithms - loss estimates

ˆ̀t,i =

{
`t,i/ot,i if `t,i is observed

0 otherwise.

E[ˆ̀t,i ] =
`t,i
ot,i

ot,i + 0(1− ot,i ) = `t,i

Exp3-IX - loss estimates

ˆ̀t,i =

{
`t,i/(ot,i + γ) if `t,i is observed

0 otherwise.

E[ˆ̀t,i ] =
`t,i

ot,i + γ
ot,i + 0(1− ot,i ) = `t,i − `t,i

γ

ot,i + γ
≤ `t,i

I No mixing!
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Exp3 algorithms Analysis

Analysis of Exp3 algorithms in general

I Evolution of Wt+1/Wt

1
η

log Wt+1
Wt

=
1
η

log
(

1− η
N∑

i=1
pt,i ˆ̀t,i +

η2

2

N∑
i=1

pt,i (ˆ̀t,i )
2

)
,

N∑
i=1

pt,i ˆ̀t,i ≤
[

log Wt
η
− log Wt+1

η

]
+
η

2

N∑
i=1

pt,i (ˆ̀t,i )
2

I Taking expectation and summing over time

E

[ T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
−E

[ T∑
t=1

ˆ̀t,k

]
≤ E

[
log N
η

]
+E

[
η

2

T∑
t=1

N∑
i=1

pt,i (ˆ̀t,i )
2

]
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Exp3-IX Regret bound

Regret bound of Exp3-IX

E

[ T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
︸ ︷︷ ︸

A

− E

[ T∑
t=1

ˆ̀t,k

]
︸ ︷︷ ︸

B

≤ E
[

log N
η

]
+ E

[
η

2

T∑
t=1

N∑
i=1

pt,i(ˆ̀t,i)
2

]
︸ ︷︷ ︸

C

Lower bound of A (using definition of loss estimates)

E

[ T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
≥ E

[ T∑
t=1

N∑
i=1

pt,i`t,i

]
− E

[
γ

T∑
t=1

N∑
i=1

pt,i

ot,i + γ

]

Lower bound of B (optimistic loss estimates: E[ˆ̀] < E[`])

−E

[ T∑
t=1

ˆ̀t,k

]
≥ −E

[ T∑
t=1

`t,k

]

Upper bound of C (using definition of loss estimates)

E

[
η

2

T∑
t=1

N∑
i=1

pt,i(ˆ̀t,i)
2

]
≤ E

[
η

2

T∑
t=1

N∑
i=1

pt,i

ot,i + γ

]
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Exp3-IX Regret bound

Regret bound of Exp3-IX

RT ≤
log N
η

+
(η

2 + γ
) T∑

t=1
E

[ N∑
i=1

pt,i
ot,i + γ

]

RT ≈ O


√√√√log N

T∑
t=1

E

[ N∑
i=1

pt,i
ot,i + γ

]
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Graph lemma Statement

Graph lemma

I Graph G with V (G) = {1, . . . , N}
I d−i – in-degree of vertex i
I α – independence set of G
I Turán’s Theorem + induction

N∑
i=1

1
1 + d−i

≤ 2α log
(

1 +
N
α

)
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Graph lemma Application of lemma

Discretization

p1 p̂1 p2 p̂2

0 1

1
M

N∑
i=1

pt,i
ot,i + γ

=
N∑

i=1

pt,i
pt,i +

∑
j∈N−

i
pt,j + γ

≤
N∑

i=1

p̂t,i
p̂t,i +

∑
j∈N−

i
p̂t,j

+ 2

Note: we set M = dN2/γe

N∑
i=1

p̂t,i
p̂t,i +

∑
j∈N−

i
p̂t,j
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Graph lemma Application of lemma

N∑
i=1

M

p̂t,i

M

p̂t,i +
∑

j∈N−
i

M

p̂t,j

=
N∑

i=1

∑
k∈Ci

1
1 + d−k

≤ 2α log
(

1 +
M + N
α

)

Example: let M = 10

0.1 0.2

0.1

0.10.3

0.2

1 2

1

13

2
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Analysis Regret bound

Exp3-IX regret bound

RT ≤
log N
η

+
(η

2 + γ
) T∑

t=1
E
[

2αt log
(

1 +
dN2/γe+ N

αt

)
+ 2
]

RT = Õ
(√

αT log(N)
)

Next step
Generalization of the setting to combinatorial actions
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Combinatorial setting Example

Example

content1 content2

e
1
,1

e
1,2

e
1,3

user1

news feed1 news feed2 news feed3
user1

content2
e1,1 e1,2 e1,3

I Play m out of N nodes (combinatorial structure)
I Obtain losses of all played nodes
I Observe losses of all neighbors of played nodes
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Combinatorial setting Example

A B C

DEF

G H I

JKL

I Play action Vt ∈ S ⊂ {0, 1}N , ‖v‖1 ≤ m fro all v ∈ S
I Obtain losses VT

t `t

I Observe additional losses according to the graph
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FPL-IX Algorithm

FPL-IX algorithm

I Draw perturbation Zt,i ∼ Exp(1) for all i ∈ [N]

I Play “the best” action Vt according to total loss estimate L̂t−1
and perturbation Zt

Vt = arg min
v∈S

vT
(
ηt L̂t−1 − Zt

)
I Compute loss estimates

ˆ̀t,i = `t,iKt,i1{`t,i is observed}

I Kt,i : geometric random variable with

E [Kt,i ] =
1

ot,i + (1− ot,i )γ
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FPL-IX Regret bound

FPL-IX - regret bound

RT = Õ

m3/2

√√√√ T∑
t=1

αt

 = Õ
(

m3/2√αT
)
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Conclusion

Side Observation Summary

I Implicit eXploration idea
I New algorithm for simple actions - Exp3-IX

I Using implicit exploration idea
I Same regret bound as previous algorithm
I No need to know graph before an action is played
I Computationally efficient

I New combinatorial setting with side observations
I Algorithm for combinatorial setting - FPL-IX
I Future directions

I No need to know graph after an action is played
I Stochastic side observations
I Random graph models
I Exploiting the communities
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SpectralUCB analysis

Sylvester’s determinant theorem:

|A + xxT| = |A||I + A−1xxT| = |A|(1 + xTA−1x)

Goal:
I Upperbound determinant |A + xxT| for ‖x‖2 ≤ 1
I Upperbound xTA−1x

xTA−1x = xTQΛ−1QTx = yTΛ−1y =
N∑

i=1
λiy2

i

I ‖y‖2 ≤ 1.
I y is a canonical vector.
I x = Qy is an eigenvector of A.
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SpectralUCB analysis

Corollary:
Determinant |VT | of VT = Λ +

∑T
t=1 xtxT

t is maximized when all
xt are aligned with axes.

|VT | ≤ max∑
ti=T

∏
(λi + ti )

ln |VT |
|Λ|

≤ max∑
ti=T

∑
ln
(

1 +
ti
λi

)
ln |VT |
|Λ|

≤
d∑

i=1
ln
(

1 +
T
λ

)
+

N∑
i=d+1

ln
(

1 +
ti

λd+1

)
≤ d ln

(
1 +

T
λ

)
+

T
λd+1

≤ 2d ln
(

1 +
T
λ

)



SpectralUCB analysis

f TLf =
1
2
∑

i ,j≤N
wi ,j(fi − fj)2 = SG(f )

Proof:

f TLf = f TDf − f TWf =
N∑

i=1
di f 2

i −
∑

i,j≤N

wi,j fi fj

=
1
2

 N∑
i=1

di f 2
i − 2

∑
i,j≤N

wi,j fi fj +
N∑

j=1
di f 2

j

 =
1
2
∑

i,j≤N

wi,j(fi − fj)
2



SpectralUCB analysis

SpectralUCB analysis sketch
I Derivation of the confidence ellipsoid for α̂ with probability 1− δ.

I Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

|x T(α̂−α∗)| ≤ ‖x‖V−1
t

(
R

√
2 ln

(
|Vt |1/2

δ|Λ|1/2

)
+ C

)

I Regret in one time step: rt = xT
∗α
∗ − xT

π(t)α
∗ ≤ 2ct‖xπ(t)‖V−1

t

I Cumulative regret:

RT =
T∑

t=1
rt ≤

√√√√T
T∑

t=1
r2
t ≤ 2( cT + 1)

√
2T ln |VT |

|Λ|

I Upperbound for ln(|Vt |/|Λ|)

ln |Vt |
|Λ|
≤ ln |VT |

|Λ|
≤ 2d ln

(
λ+ T
λ

)



SpectralUCB analysis

SpectralUCB analysis sketch
I Derivation of the confidence ellipsoid for α̂ with probability 1− δ.

I Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

|x T(α̂−α∗)| ≤ ‖x‖V−1
t

(
R

√
2 ln

(
|Vt |1/2

δ|Λ|1/2

)
+ C

)

I Regret in one time step: rt = xT
∗α
∗ − xT

π(t)α
∗ ≤ 2ct‖xπ(t)‖V−1

t

I Cumulative regret:

RT =
T∑

t=1
rt ≤

√√√√T
T∑

t=1
r2
t ≤ 2( cT + 1)

√
2T ln |VT |

|Λ|

I Upperbound for ln(|Vt |/|Λ|)

ln |Vt |
|Λ|
≤ ln |VT |

|Λ|
≤ 2d ln

(
λ+ T
λ

)



SpectralUCB analysis

SpectralUCB analysis sketch
I Derivation of the confidence ellipsoid for α̂ with probability 1− δ.

I Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

|x T(α̂−α∗)| ≤ ‖x‖V−1
t

(
R

√
2 ln

(
|Vt |1/2

δ|Λ|1/2

)
+ C

)

I Regret in one time step: rt = xT
∗α
∗ − xT

π(t)α
∗ ≤ 2ct‖xπ(t)‖V−1

t

I Cumulative regret:

RT =
T∑

t=1
rt ≤

√√√√T
T∑

t=1
r2
t ≤ 2( cT + 1)

√
2T ln |VT |

|Λ|

I Upperbound for ln(|Vt |/|Λ|)

ln |Vt |
|Λ|
≤ ln |VT |

|Λ|
≤ 2d ln

(
λ+ T
λ

)



SpectralTS analysis

SpectralTS analysis sketch

Divide arms into two groups

I ∆i = bT
∗µ− bT

i µ ≤ g‖bi‖B−1
t

arm i is unsaturated

I ∆i = bT
∗µ− bT

i µ > g‖bi‖B−1
t

arm i is saturated

Saturated arm
I Small standard deviation → accurate regret estimate.
I High regret on playing the arm → Low probability of picking

Unsaturated arm
I Low regret bounded by a factor of standard deviation
I High probability of picking
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SpectralTS analysis

SpectralTS analysis sketch
I Confidence ellipsoid for estimate µ̂ of µ (with probability 1− δ/T 2)

I Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

|bT
i µ̂− bT

i µ| ≤
(

R

√
2 log

(
|BT |1/2T 2

|Λ|1/2δ

)
+ C

)
‖bi‖B−1

t

= `‖bi‖B−1
t

I Our key result coming from spectral properties of Bt .

log
|Bt |
|Λ|
≤ 2d log

(
1 +

T
λ

)

I Concentration of sample µ̃ around mean µ̂ (with probability 1− 1/T 2)

I Using concentration inequality for Gaussian random variable.

|bT
i µ̃− bT

i µ̂| ≤
(

R

√
6d log

(
λ+ T
δλ

)
+ C

)
‖bi‖B−1

t

√
4 log(TN) = v‖bi‖B−1

t

√
4 log(TN)
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SpectralTS analysis

SpectralTS analysis sketch
Define regret′(t) = regret(t) · 1{|bT

i µ̂(t)− bT
i µ| ≤ `‖bi‖B−1

t
}

regret′(t) ≤ 11g
p ‖ba(t)‖B−1

t
+

1
T 2

Super-martingale (i.e. E[Yt − Yt−1|Ft−1] ≤ 0)

Xt = regret′(t)− 11g
p ‖ba(t)‖B−1

t
− 1

T 2

Yt =
t∑

w=1
Xw .

(Yt ; t = 0, . . . ,T ) is a super-martingale process w.r.t. history Ft .

Azuma-Hoeffding inequality for super-martingale, w. p. 1− δ/2:
T∑

t=1
regret′(t) ≤ 11g

p

T∑
t=1
‖ba(t)‖B−1

t
+

1
T +

g
p

(
11√
λ

+ 2
)√

2T ln 2
δ



SpectralTS analysis

SpectralTS analysis sketch
Define regret′(t) = regret(t) · 1{|bT

i µ̂(t)− bT
i µ| ≤ `‖bi‖B−1

t
}

regret′(t) ≤ 11g
p ‖ba(t)‖B−1

t
+

1
T 2

Super-martingale (i.e. E[Yt − Yt−1|Ft−1] ≤ 0)

Xt = regret′(t)− 11g
p ‖ba(t)‖B−1

t
− 1

T 2

Yt =
t∑

w=1
Xw .

(Yt ; t = 0, . . . ,T ) is a super-martingale process w.r.t. history Ft .

Azuma-Hoeffding inequality for super-martingale, w. p. 1− δ/2:
T∑

t=1
regret′(t) ≤ 11g

p

T∑
t=1
‖ba(t)‖B−1

t
+

1
T +

g
p

(
11√
λ

+ 2
)√

2T ln 2
δ



SpectralTS analysis

SpectralTS analysis sketch
Define regret′(t) = regret(t) · 1{|bT

i µ̂(t)− bT
i µ| ≤ `‖bi‖B−1

t
}

regret′(t) ≤ 11g
p ‖ba(t)‖B−1

t
+

1
T 2

Super-martingale (i.e. E[Yt − Yt−1|Ft−1] ≤ 0)

Xt = regret′(t)− 11g
p ‖ba(t)‖B−1

t
− 1

T 2

Yt =
t∑

w=1
Xw .

(Yt ; t = 0, . . . ,T ) is a super-martingale process w.r.t. history Ft .

Azuma-Hoeffding inequality for super-martingale, w. p. 1− δ/2:
T∑

t=1
regret′(t) ≤ 11g

p

T∑
t=1
‖ba(t)‖B−1

t
+

1
T +

g
p

(
11√
λ

+ 2
)√

2T ln 2
δ
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SpectralEliminator

Backup: SpectralEliminator pseudocode
Input:

N : the number of nodes, T : the number of pulls
{ΛL,Q} spectral basis of L
λ : regularization parameter
β, {tj}J

j parameters of the elimination and phases
A1 ← {x1, . . . , xK}.
for j = 1 to J do

Vtj ← γΛL + λI
for t = tj to min(tj+1 − 1,T ) do

Play xt ∈ Aj with the largest width to observe rt :
xt ← arg maxx∈Aj ‖x‖V−1

t
Vt+1 ← Vt + xtxT

t
end for
Eliminate the arms that are not promising:
α̂t ← V−1

t [xtj , . . . , xt ][rtj , . . . , rt ]T

Aj+1 ←
{

x ∈ Aj , 〈α̂t , x〉+‖x‖V−1
t
β ≥ maxx∈Aj

[
〈α̂t , x〉−‖x‖V−1

t
β
]}

end for



SpectralEliminator

Backup: SpectralEliminator analysis

SpectralEliminator
I Divide time into sets (t1 = 1 ≤ t2 ≤ . . . ) to introduce

independence for Azuma-Hoeffding inequality and observe
RT ≤

∑J
j=0(tj+1 − tj)

[
〈x∗ − xt , α̂j〉+ (‖x∗‖V−1

j
+ ‖xt‖V−1

j
)β
]

I Bound 〈x∗ − xt , α̂j〉 for each phase
I No bad arms: 〈x∗ − xt , α̂j〉 ≤ (‖x∗‖V−1

j
+ ‖xt‖V−1

j
)β

I By algorithm: ‖x‖2
V−1

j
≤ 1

tj−tj−1

∑tj
s=tj−1+1 ‖xs‖2

V−1
s−1

I
∑tj

s=tj−1+1 min
(

1, ‖xs‖2
V−1

s−1

)
≤ log |Vj |

|Λ|


	Motivation
	Movie recommendation

	Smooth graph functions and graph Laplacian
	Smooth graph function
	Graph Laplacian
	Smoothness with respect to Laplacian

	Setting
	Formulation of the problem
	Solutions

	Effective dimension
	Definition and properties
	Empirical comparison

	SpectralUCB
	Algorithm
	Regret bound

	Performance of the algorithms
	Empirical comparison
	Reduced basis

	SpectralTS
	Algorithm
	Regret bound

	Performance of the algorithms
	Empirical comparison

	Learning with Side Observations
	Side Observations in Recommender Systems
	Example 2

	Problem definition
	Learning setting
	Full information and Bandit setting
	Side observation - Undirected case
	Side observation - Directed case

	Exp3
	Algorithms in general

	Bias variance tradeoff
	Different approaches
	ELP
	Exp3-DOM
	Exp3-IX

	Exp3 algorithms
	Analysis

	Exp3-IX
	Regret bound

	Graph lemma
	Statement
	Application of lemma

	Analysis
	Regret bound

	Combinatorial setting
	Example

	FPL-IX
	Algorithm
	Regret bound

	Conclusion
	SpectralUCB analysis

	SpectralTS analysis 
	SpectralEliminator

