Bandits on Graphs

Exploiting smoothness and side observations

Michal Valko (SequeL INRIA)
joint work with
Shipra Agrawal (MSR India)
Tomáš Kocák (SequeL INRIA)
Branislav Kveton (Technicolor \rightarrow Adobe)
Rémi Munos (SequeL INRIA/Google Deepmind)
Gergely Neu (SequeL INRIA)

Overview

- Sequential decision making in structured settings

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- Exploiting smoothness

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- Exploiting smoothness
- fixed graph

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- Exploiting smoothness
- fixed graph
- iid outcomes

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- Exploiting smoothness
- fixed graph
- iid outcomes
- neighboring nodes have similar outcomes

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- Exploiting smoothness
- fixed graph
- iid outcomes
- neighboring nodes have similar outcomes
- Exploiting side observations

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- Exploiting smoothness
- fixed graph
- iid outcomes
- neighboring nodes have similar outcomes
- Exploiting side observations
- changing graph

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- Exploiting smoothness
- fixed graph
- iid outcomes
- neighboring nodes have similar outcomes
- Exploiting side observations
- changing graph
- non-stochastic outcomes

Overview

- Sequential decision making in structured settings
- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- Exploiting smoothness
- fixed graph
- iid outcomes
- neighboring nodes have similar outcomes
- Exploiting side observations
- changing graph
- non-stochastic outcomes
- side observations

Movie recommendation: (in each time step)

- Recommend movies to a single user.

Movie recommendation: (in each time step)

- Recommend movies to a single user.
- Good prediction after a few steps ($T \ll N$).

Movie recommendation: (in each time step)

- Recommend movies to a single user.
- Good prediction after a few steps ($T \ll N$).

Goal:

- Maximize overall reward (sum of ratings).

Movie recommendation: (in each time step)

- Recommend movies to a single user.
- Good prediction after a few steps ($T \ll N$).

Goal:

- Maximize overall reward (sum of ratings).

Assumptions:

- Unknown reward function $f: V(G) \rightarrow \mathbb{R}$.
- Function f is smooth on a graph.
- Neighboring movies \Rightarrow similar preferences.
- Similar preferences \nRightarrow neighboring movies.

Smooth graph function

- Graph G with vertex set $V(G)=\{1, \ldots, N\}$ and edge set $E(G)$.

Smooth graph function

- Graph G with vertex set $V(G)=\{1, \ldots, N\}$ and edge set $E(G)$.
- f_{1}, \ldots, f_{N} : Values of the function on the vertices of the graph.

Smooth graph function

- Graph G with vertex set $V(G)=\{1, \ldots, N\}$ and edge set $E(G)$.
- f_{1}, \ldots, f_{N} : Values of the function on the vertices of the graph.
- $w_{i, j}$: Weight of the edge connecting nodes i and j.

Smooth graph function

- Graph G with vertex set $V(G)=\{1, \ldots, N\}$ and edge set $E(G)$.
- f_{1}, \ldots, f_{N} : Values of the function on the vertices of the graph.
- $w_{i, j}$: Weight of the edge connecting nodes i and j.

Smooth graph function

- Graph G with vertex set $V(G)=\{1, \ldots, N\}$ and edge set $E(G)$.
- f_{1}, \ldots, f_{N} : Values of the function on the vertices of the graph.
- $w_{i, j}$: Weight of the edge connecting nodes i and j.

Smoothness of the function:

$$
S_{G}(f)=\frac{1}{2} \sum_{i, j \leq N} w_{i, j}\left(f_{i}-f_{j}\right)^{2}
$$

Smaller value of $S_{G}(f)$, smoother the function f is.

Smooth graph function

- Graph G with vertex set $V(G)=\{1, \ldots, N\}$ and edge set $E(G)$.
- f_{1}, \ldots, f_{N} : Values of the function on the vertices of the graph.
- $w_{i, j}$: Weight of the edge connecting nodes i and j.

Smoothness of the function:

$$
S_{G}(f)=\frac{1}{2} \sum_{i, j \leq N} w_{i, j}\left(f_{i}-f_{j}\right)^{2}
$$

Smaller value of $S_{G}(f)$, smoother the function f is. Examples:

- Complete graph: Only constant function has smoothness 0 .
- Edgeless graph: Every function has smoothness 0 .
- Constant function: Smoothness 0 for every graph.

Graph Laplacian

- $\mathcal{W}: N \times N$ matrix of the edge weights $w_{i, j}$.
- \mathcal{D} : Diagonal matrix with the entries $d_{i}=\sum_{j} w_{i, j}$.
- $\mathcal{L}=\mathcal{D}-\mathcal{W}$: Graph Laplacian.
- Positive semidefinite matrix.
- Diagonally dominant matrix.

Example:

$$
\mathcal{L}=\left(\begin{array}{rrrrr}
4 & -1 & 0 & -1 & -2 \\
-1 & 8 & -3 & -4 & 0 \\
0 & -3 & 5 & -2 & 0 \\
-1 & -4 & -2 & 12 & -5 \\
-2 & 0 & 0 & -5 & 7
\end{array}\right)
$$

Smoothness of the function and Laplacian

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top}$: Vector of function values.

Smoothness of the function and Laplacian

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top}$: Vector of function values.
- Let $\mathcal{L}=\mathbf{Q} \Lambda \mathbf{Q}^{\top}$ be the eigendecomposition of the Laplacian.

Smoothness of the function and Laplacian

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top}$: Vector of function values.
- Let $\mathcal{L}=\mathbf{Q} \Lambda \mathbf{Q}^{\top}$ be the eigendecomposition of the Laplacian.
- Diagonal matrix Λ whose diagonal entries are eigenvalues of \mathcal{L}.

Smoothness of the function and Laplacian

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top}$: Vector of function values.
- Let $\mathcal{L}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}$ be the eigendecomposition of the Laplacian.
- Diagonal matrix $\boldsymbol{\Lambda}$ whose diagonal entries are eigenvalues of \mathcal{L}.
- Columns of \mathbf{Q} are eigenvectors of \mathcal{L}.

Smoothness of the function and Laplacian

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top}$: Vector of function values.
- Let $\mathcal{L}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}$ be the eigendecomposition of the Laplacian.
- Diagonal matrix $\boldsymbol{\Lambda}$ whose diagonal entries are eigenvalues of \mathcal{L}.
- Columns of \mathbf{Q} are eigenvectors of \mathcal{L}.
- Columns of \mathbf{Q} form a basis.

Smoothness of the function and Laplacian

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top}$: Vector of function values.
- Let $\mathcal{L}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}$ be the eigendecomposition of the Laplacian.
- Diagonal matrix $\boldsymbol{\Lambda}$ whose diagonal entries are eigenvalues of \mathcal{L}.
- Columns of \mathbf{Q} are eigenvectors of \mathcal{L}.
- Columns of \mathbf{Q} form a basis.
- α^{*} : Unique vector such that $\mathbf{Q} \alpha^{*}=\boldsymbol{f} \quad$ Note: $\mathbf{Q}^{\top} \boldsymbol{f}=\boldsymbol{\alpha}^{*}$

Smoothness of the function and Laplacian

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top}$: Vector of function values.
- Let $\mathcal{L}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}$ be the eigendecomposition of the Laplacian.
- Diagonal matrix $\boldsymbol{\Lambda}$ whose diagonal entries are eigenvalues of \mathcal{L}.
- Columns of \mathbf{Q} are eigenvectors of \mathcal{L}.
- Columns of \mathbf{Q} form a basis.
- $\boldsymbol{\alpha}^{*}$: Unique vector such that $\mathbf{Q} \boldsymbol{\alpha}^{*}=\boldsymbol{f} \quad$ Note: $\mathbf{Q}^{\top} \boldsymbol{f}=\boldsymbol{\alpha}^{*}$

Smoothness of the function and Laplacian

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top}$: Vector of function values.
- Let $\mathcal{L}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}$ be the eigendecomposition of the Laplacian.
- Diagonal matrix $\boldsymbol{\Lambda}$ whose diagonal entries are eigenvalues of \mathcal{L}.
- Columns of \mathbf{Q} are eigenvectors of \mathcal{L}.
- Columns of \mathbf{Q} form a basis.
$\boldsymbol{\alpha}^{*}$: Unique vector such that $\mathbf{Q} \boldsymbol{\alpha}^{*}=\boldsymbol{f} \quad$ Note: $\mathbf{Q}^{\top} \boldsymbol{f}=\boldsymbol{\alpha}^{*}$

$$
S_{G}(f)=\boldsymbol{f}^{\top} \mathcal{L} \boldsymbol{f}=\boldsymbol{f}^{\top} \mathbf{Q} \Lambda \mathbf{Q}^{\top} \boldsymbol{f}=\boldsymbol{\alpha}^{* \top} \boldsymbol{\Lambda} \boldsymbol{\alpha}^{*}=\left\|\boldsymbol{\alpha}^{*}\right\|_{\boldsymbol{\Lambda}}^{2}=\sum_{i=1}^{N} \lambda_{i}\left(\alpha_{i}^{*}\right)^{2}
$$

Smoothness and regularization: Small value of
(a) $S_{G}(f)$
(b) $\boldsymbol{\Lambda}$ norm of $\boldsymbol{\alpha}^{*}$
(c) α_{i}^{*} for large λ_{i}

Setting

Learning setting for a bandit algorithm π

- In each time t step choose a node $\pi(t)$.

Setting

Learning setting for a bandit algorithm π

- In each time t step choose a node $\pi(t)$.
- the $\pi(t)$-th row $\mathbf{x}_{\pi(t)}$ of the matrix \mathbf{Q} corresponds to the arm $\pi(t)$.

Setting

Learning setting for a bandit algorithm π

- In each time t step choose a node $\pi(t)$.
- the $\pi(t)$-th row $\mathbf{x}_{\pi(t)}$ of the matrix \mathbf{Q} corresponds to the arm $\pi(t)$.
- Obtain noisy reward $r_{t}=\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}+\varepsilon_{t}$. Note: $\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}=f_{\pi(t)}$
- ε_{t} is R-sub-Gaussian noise. $\quad \forall \xi \in \mathbb{R}, \mathbb{E}\left[e^{\xi_{t}}\right] \leq \exp \left(\xi^{2} R^{2} / 2\right)$
- Minimize cumulative regret

$$
R_{T}=T \max _{a}\left(\mathbf{x}_{a}^{\top} \boldsymbol{\alpha}^{*}\right)-\sum_{t=1}^{T} \mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*} .
$$

- Can't we just use linear bandits?

Solutions

- Linear bandit algorithms
- LinUCB
- Regret bound $\approx D \sqrt{T \ln T}$
- LinearTS
- Regret bound $\approx D \sqrt{T \ln N}$

Note: D is ambient dimension, in our case N, length of x_{i}. Number of actions, e.g., all possible movies \rightarrow HUGE!

Solutions

- Linear bandit algorithms
- LinUCB
- Regret bound $\approx D \sqrt{T \ln T}$
- LinearTS
- Regret bound $\approx D \sqrt{T \ln N}$

Note: D is ambient dimension, in our case N, length of x_{i}.
Number of actions, e.g., all possible movies \rightarrow HUGE!

- Spectral bandit algorithms
- SpectralUCB
- Regret bound $\approx d \sqrt{T \ln T}$
- SpectralTS
(Our solutions)
(Valko et al., ICML 2014)
(Kocák et al., AAAI 2014)
- Regret bound $\approx d \sqrt{T \ln N}$
(Existing solutions)
(Li et al., 2010)
(Agrawal and Goyal, 2013)

Solutions

- Linear bandit algorithms
- LinUCB
(Existing solutions)
- Regret bound $\approx D \sqrt{T \ln T}$
- LinearTS
(Agrawal and Goyal, 2013)
- Regret bound $\approx D \sqrt{T \ln N}$

Note: D is ambient dimension, in our case N, length of x_{i}.
Number of actions, e.g., all possible movies \rightarrow HUGE!

- Spectral bandit algorithms
- SpectralUCB
- Regret bound $\approx d \sqrt{T \ln T}$
- Operations per step: $D^{2} N$
- SpectralTS
(Our solutions)
(Valko et al., ICML 2014)

Regret bound $\approx d \sqrt{T \ln N}$

- Operations per step: $D^{2}+D N$

Note: d is effective dimension, usually much smaller than D.

Effective dimension

- Effective dimension: Largest d such that

$$
(d-1) \lambda_{d} \leq \frac{T}{\log (1+T / \lambda)} .
$$

- Function of time horizon and graph properties
- $\lambda_{i}: i$-th smallest eigenvalue of $\boldsymbol{\Lambda}$.
- λ : Regularization parameter of the algorithm.

Properties:

- d is small when the coefficients λ_{i} grow rapidly above time.
- d is related to the number of "non-negligible" dimensions.
- Usually d is much smaller than D in real world graphs.
- Can be computed beforehand.

Effective dimension vs. Ambient dimension

$$
d \ll D
$$

Note: In our setting $T<N=D$.

UCB style algorithms: Estimate

UCB style algorithms: Sample

UCB style algorithms: Estimate ...

SpectralUCB

1: Input:
2: $N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, \subset \mathcal{L}$
3: Run:
4: $\quad \boldsymbol{\Lambda} \leftarrow \boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}$
5: $\quad d \leftarrow \max \left\{d:(d-1) \lambda_{d} \leq T / \ln (1+T / \lambda)\right\}$
6: for $t=1$ to T do
7: Update the basis coefficients $\hat{\boldsymbol{\alpha}}$:
8: $\quad \mathbf{X}_{t} \leftarrow\left[\mathbf{x}_{\pi(1)}, \ldots, \mathbf{x}_{\pi(t-1)}\right]^{\top}$
9: $\quad \mathbf{r} \leftarrow\left[r_{1}, \ldots, r_{t-1}\right]^{\top}$
10: $\quad \mathbf{V}_{t} \leftarrow \mathbf{X}_{t} \mathbf{X}_{t}^{\top}+\boldsymbol{\Lambda}$
11: $\quad \hat{\boldsymbol{\alpha}}_{t} \leftarrow \mathbf{V}_{t}^{-1} \mathbf{X}_{t}^{\top} \mathbf{r}$
12: $\quad c_{t} \leftarrow 2 R \sqrt{d \ln (1+t / \lambda)+2 \ln (1 / \delta)}+C$
13: $\quad \pi(t) \leftarrow \arg \max _{a}\left(\mathbf{x}_{a}^{\top} \hat{\boldsymbol{\alpha}}+c_{t}\left\|\mathbf{x}_{a}\right\|_{\mathbf{v}_{t}^{-1}}\right)$
14: Observe the reward r_{t}
15: end for

SpectralUCB

1: Input:
2: $N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, \subset \mathcal{L}$
3: Run:
4: $\quad \Lambda \leftarrow \Lambda_{\mathcal{L}}+\lambda I$
5: $\quad d \leftarrow \max \left\{d:(d-1) \lambda_{d} \leq T / \ln (1+T / \lambda)\right\}$
6: for $t=1$ to T do
7: Update the basis coefficients $\hat{\boldsymbol{\alpha}}$:
8: $\quad \mathbf{X}_{t} \leftarrow\left[\mathbf{x}_{\pi(1)}, \ldots, \mathbf{x}_{\pi(t-1)}\right]^{\top}$
9: $\quad \mathbf{r} \leftarrow\left[r_{1}, \ldots, r_{t-1}\right]^{\top}$
10: $\quad \mathbf{V}_{t} \leftarrow \mathbf{X}_{t} \mathbf{X}_{t}^{\top}+\boldsymbol{\Lambda}$
11: $\quad \hat{\boldsymbol{\alpha}}_{t} \leftarrow \mathbf{V}_{t}^{-1} \mathbf{X}_{t}^{\top} \mathbf{r}$
12: $\quad c_{t} \leftarrow 2 R \sqrt{d \ln (1+t / \lambda)+2 \ln (1 / \delta)}+C$
13: $\quad \pi(t) \leftarrow \arg \max _{a}\left(\mathbf{x}_{a}^{\top} \hat{\boldsymbol{\alpha}}+c_{t}\left\|\mathbf{x}_{a}\right\|_{\mathbf{v}_{t}^{-1}}\right)$
14: Observe the reward r_{t}
15: end for

SpectralUCB

1: Input:
2: $N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, \subset \mathcal{L}$
3: Run:
4: $\quad \boldsymbol{\Lambda} \leftarrow \boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}$
5: $\quad d \leftarrow \max \left\{d:(d-1) \lambda_{d} \leq T / \ln (1+T / \lambda)\right\}$
6: for $t=1$ to T do
7: Update the basis coefficients $\hat{\boldsymbol{\alpha}}$:
8: $\quad \mathbf{X}_{t} \leftarrow\left[\mathbf{x}_{\pi(1)}, \ldots, \mathbf{x}_{\pi(t-1)}\right]^{\top}$
9: $\quad \mathbf{r} \leftarrow\left[r_{1}, \ldots, r_{t-1}\right]^{\top}$
10: $\quad \mathbf{V}_{t} \leftarrow \mathbf{X}_{t} \mathbf{X}_{t}^{\top}+\boldsymbol{\Lambda}$
11: $\quad \hat{\boldsymbol{\alpha}}_{t} \leftarrow \mathbf{V}_{t}^{-1} \mathbf{X}_{t}^{\top} \mathbf{r}$
12: $\quad c_{t} \leftarrow 2 R \sqrt{d \ln (1+t / \lambda)+2 \ln (1 / \delta)}+C$
13: $\quad \pi(t) \leftarrow \arg \max _{a}\left(\mathbf{x}_{a}^{\top} \hat{\boldsymbol{\alpha}}+c_{t}\left\|\mathbf{x}_{a}\right\|_{\mathbf{v}_{t}^{-1}}\right)$
14: Observe the reward r_{t}
15: end for

SpectralUCB

1: Input:
2: $N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, \subset \mathcal{L}$
3: Run:
4: $\quad \boldsymbol{\Lambda} \leftarrow \boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}$
5: $\quad d \leftarrow \max \left\{d:(d-1) \lambda_{d} \leq T / \ln (1+T / \lambda)\right\}$
6: for $t=1$ to T do
7: Update the basis coefficients $\hat{\boldsymbol{\alpha}}$:
8: $\quad \mathbf{X}_{t} \leftarrow\left[\mathbf{x}_{\pi(1)}, \ldots, \mathbf{x}_{\pi(t-1)}\right]^{\top}$
9: $\quad \mathbf{r} \leftarrow\left[r_{1}, \ldots, r_{t-1}\right]^{\top}$
10: $\quad \mathbf{V}_{t} \leftarrow \mathbf{X}_{t} \mathbf{X}_{t}^{\top}+\boldsymbol{\Lambda}$
11: $\quad \hat{\boldsymbol{\alpha}}_{t} \leftarrow \mathbf{V}_{t}^{-1} \mathbf{X}_{t}^{\top} \mathbf{r}$
12: $\quad c_{t} \leftarrow 2 R \sqrt{d \ln (1+t / \lambda)+2 \ln (1 / \delta)}+C$
13: $\quad \pi(t) \leftarrow \arg \max _{a}\left(\mathbf{x}_{a}^{\top} \hat{\boldsymbol{\alpha}}+c_{t}\left\|\mathbf{x}_{a}\right\|_{\mathbf{v}_{t}^{-1}}\right)$
14: Observe the reward r_{t}
15: end for

SpectralUCB

1: Input:
2: $N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, \subset \mathcal{L}$
3: Run:
4: $\quad \boldsymbol{\Lambda} \leftarrow \boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}$
5: $\quad d \leftarrow \max \left\{d:(d-1) \lambda_{d} \leq T / \ln (1+T / \lambda)\right\}$
6: for $t=1$ to T do
7: Update the basis coefficients $\hat{\boldsymbol{\alpha}}$:
8: $\quad \mathbf{X}_{t} \leftarrow\left[\mathbf{x}_{\pi(1)}, \ldots, \mathbf{x}_{\pi(t-1)}\right]^{\top}$
9: $\quad \mathbf{r} \leftarrow\left[r_{1}, \ldots, r_{t-1}\right]^{\top}$
10: $\quad \mathbf{V}_{t} \leftarrow \mathbf{X}_{t} \mathbf{X}_{t}^{\top}+\boldsymbol{\Lambda}$
11: $\quad \hat{\boldsymbol{\alpha}}_{t} \leftarrow \mathbf{V}_{t}^{-1} \mathbf{X}_{t}^{\top} \mathbf{r}$
12: $\quad c_{t} \leftarrow 2 R \sqrt{d \ln (1+t / \lambda)+2 \ln (1 / \delta)}+C$
13: $\quad \pi(t) \leftarrow \arg \max _{a}\left(\mathbf{x}_{a}^{\top} \hat{\boldsymbol{\alpha}}+c_{t}\left\|\mathbf{x}_{a}\right\|_{\mathbf{v}_{t}^{-1}}\right)$
14: Observe the reward r_{t}
15: end for

SpectralUCB

1: Input:
2: $N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, \subset \mathcal{L}$
3: Run:
4: $\quad \boldsymbol{\Lambda} \leftarrow \boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}$
5: $\quad d \leftarrow \max \left\{d:(d-1) \lambda_{d} \leq T / \ln (1+T / \lambda)\right\}$
6: for $t=1$ to T do
7: Update the basis coefficients $\hat{\boldsymbol{\alpha}}$:
8: $\quad \mathbf{X}_{t} \leftarrow\left[\mathbf{x}_{\pi(1)}, \ldots, \mathbf{x}_{\pi(t-1)}\right]^{\top}$
9: $\quad \mathbf{r} \leftarrow\left[r_{1}, \ldots, r_{t-1}\right]^{\top}$
10: $\quad \mathbf{V}_{t} \leftarrow \mathbf{X}_{t} \mathbf{X}_{t}^{\top}+\boldsymbol{\Lambda}$
11: $\quad \hat{\boldsymbol{\alpha}}_{t} \leftarrow \mathbf{V}_{t}^{-1} \mathbf{X}_{t}^{\top} \mathbf{r}$
12: $\quad c_{t} \leftarrow 2 R \sqrt{d \ln (1+t / \lambda)+2 \ln (1 / \delta)}+C$
13: $\quad \pi(t) \leftarrow \arg \max _{a}\left(\mathbf{x}_{a}^{\top} \hat{\boldsymbol{\alpha}}+c_{t}\left\|\mathbf{x}_{a}\right\|_{\mathbf{v}_{t}^{-1}}\right)$
14: Observe the reward r_{t}
15: end for

SpectralUCB regret bound

- d: Effective dimension.
- λ : Minimal eigenvalue of $\boldsymbol{\Lambda}=\boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}$.
- C : Smoothness upper bound, $\left\|\alpha^{*}\right\|_{\Lambda} \leq C$.
- $\mathbf{x}_{i}^{\top} \boldsymbol{\alpha}^{*} \in[-1,1]$ for all i.

The cumulative regret R_{T} of SpectralUCB is with probability $1-\delta$ bounded as

$$
R_{T} \leq\left(8 R \sqrt{d \ln \frac{\lambda+T}{\lambda}+2 \ln \frac{1}{\delta}}+4 C+4\right) \sqrt{d T \ln \frac{\lambda+T}{\lambda}} .
$$

$$
R_{T} \approx d \sqrt{T \ln T}
$$

Synthetic experiment

Real world experiment

Movielens: Cumulative regret for randomly sampled users. $T=100$

Flixster: Cumulative regret for randomly sampled users. $T=100$

Improving the running time: reduced eigenbasis

- Reduced basis: We only need first few eigenvectors.
- Getting J eigenvectors: $\mathcal{O}(J m \log m)$ time for m edges
- Computationally less expensive, comparable performance.

How to make it faster?

- UCB-style algorithms need to (re)-compute UCBs every t

How to make it faster?

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^{2} N \rightarrow N^{3}$

How to make it faster?

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^{2} N \rightarrow N^{3}$
- Optimistic (UCB) approach vs. Thompson Sampling

How to make it faster?

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^{2} N \rightarrow N^{3}$
- Optimistic (UCB) approach vs. Thompson Sampling
- Play the arm maximizing probability of being the best

How to make it faster?

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^{2} N \rightarrow N^{3}$
- Optimistic (UCB) approach vs. Thompson Sampling
- Play the arm maximizing probability of being the best
- Sample $\tilde{\mu}$ from the distribution $\mathcal{N}\left(\hat{\mu}, v^{2} \mathbf{B}^{-1}\right)$

How to make it faster?

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^{2} N \rightarrow N^{3}$
- Optimistic (UCB) approach vs. Thompson Sampling
- Play the arm maximizing probability of being the best
- Sample $\tilde{\mu}$ from the distribution $\mathcal{N}\left(\hat{\mu}, v^{2} \mathbf{B}^{-1}\right)$
- Play arm which maximizes $\mathbf{b}^{\top} \tilde{\mu}$ and observe reward

How to make it faster?

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^{2} N \rightarrow N^{3}$
- Optimistic (UCB) approach vs. Thompson Sampling
- Play the arm maximizing probability of being the best
- Sample $\tilde{\mu}$ from the distribution $\mathcal{N}\left(\hat{\mu}, v^{2} \mathbf{B}^{-1}\right)$
- Play arm which maximizes $\mathbf{b}^{\top} \tilde{\boldsymbol{\mu}}$ and observe reward
- Compute posterior distribution according to reward received

How to make it faster?

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^{2} N \rightarrow N^{3}$
- Optimistic (UCB) approach vs. Thompson Sampling
- Play the arm maximizing probability of being the best
- Sample $\tilde{\mu}$ from the distribution $\mathcal{N}\left(\hat{\mu}, v^{2} \mathbf{B}^{-1}\right)$
- Play arm which maximizes $\mathbf{b}^{\top} \tilde{\mu}$ and observe reward
- Compute posterior distribution according to reward received
- Only requires $D^{2}+D N \rightarrow N^{2}$ per step update

Thomson Sampling: Estimate

Thomson Sampling: Sample

Thomson Sampling: Estimate

Thomson Sampling: Sample

Thomson Sampling: Estimate ...

Michal Valko: Bandits on Graphs

SpectralTS algorithm

1: Input:
2: $\quad N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, C$
3: Initialization:
4: $\quad v=R \sqrt{6 d \log ((\lambda+T) / \delta \lambda)}+C$
5: $\quad \hat{\boldsymbol{\alpha}}=0_{N}$
6: $\quad \boldsymbol{f}=0_{N}$
7: $\quad \mathbf{V}=\boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}_{N}$
8: Run:
9: for $t=1$ to T do
10: \quad Sample $\tilde{\boldsymbol{\alpha}} \sim \mathcal{N}\left(\hat{\boldsymbol{\alpha}}, v^{2} \mathbf{V}^{-1}\right)$
11: $\quad \pi(t) \leftarrow \arg \max _{a} x_{a}^{\top} \tilde{\boldsymbol{\alpha}}$
12: \quad Observe a noisy reward $r(t)=\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}+\varepsilon_{t}$
13: $\quad \boldsymbol{f} \leftarrow \boldsymbol{f}+\mathbf{x}_{\pi(t)} r(t)$
14: \quad Update $\mathbf{V} \leftarrow \mathbf{V}+\mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\top}$
15: Update $\hat{\boldsymbol{\alpha}} \leftarrow \mathbf{V}^{-1} \boldsymbol{f}$
16: end for

SpectralTS algorithm

1: Input:
2: $\quad N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, C$
3: Initialization:
4: $\quad v=R \sqrt{6 d \log ((\lambda+T) / \delta \lambda)}+C$
5: $\quad \hat{\boldsymbol{\alpha}}=0_{N}$
6: $\quad \boldsymbol{f}=0_{N}$
7: $\quad \mathbf{V}=\boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}_{N}$
8: Run:
9: for $t=1$ to T do
10: \quad Sample $\tilde{\boldsymbol{\alpha}} \sim \mathcal{N}\left(\hat{\boldsymbol{\alpha}}, v^{2} \mathbf{V}^{-1}\right)$
11: $\quad \pi(t) \leftarrow \arg \max _{\mathrm{a}} \mathbf{x}_{\mathrm{a}}^{\top} \tilde{\boldsymbol{\alpha}}$
12: \quad Observe a noisy reward $r(t)=\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}+\varepsilon_{t}$
13: $\quad \boldsymbol{f} \leftarrow \boldsymbol{f}+\mathbf{x}_{\pi(t)} r(t)$
14: \quad Update $\mathbf{V} \leftarrow \mathbf{V}+\mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\top}$
15: Update $\hat{\boldsymbol{\alpha}} \leftarrow \mathbf{V}^{-1} \boldsymbol{f}$
16: end for

SpectralTS algorithm

1: Input:
2: $\quad N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, C$
3: Initialization:
4: $\quad v=R \sqrt{6 d \log ((\lambda+T) / \delta \lambda)}+C$
5: $\quad \hat{\boldsymbol{\alpha}}=0_{N}$
6: $\quad \boldsymbol{f}=0_{N}$
7: $\quad \mathbf{V}=\boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}_{N}$
8: Run:
9: for $t=1$ to T do
10: \quad Sample $\tilde{\boldsymbol{\alpha}} \sim \mathcal{N}\left(\hat{\alpha}, v^{2} \mathbf{V}^{-1}\right)$
11: $\quad \pi(t) \leftarrow \arg \max _{\mathrm{a}} \mathbf{x}_{a}^{\top} \tilde{\boldsymbol{\alpha}}$
12: \quad Observe a noisy reward $r(t)=\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}+\varepsilon_{t}$
13: $\quad \boldsymbol{f} \leftarrow \boldsymbol{f}+\mathbf{x}_{\pi(t)} r(t)$
14: \quad Update $\mathbf{V} \leftarrow \mathbf{V}+\mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\top}$
15: Update $\hat{\boldsymbol{\alpha}} \leftarrow \mathbf{V}^{-1} \boldsymbol{f}$
16: end for

SpectralTS algorithm

1: Input:
2: $\quad N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, C$
3: Initialization:
4: $\quad v=R \sqrt{6 d \log ((\lambda+T) / \delta \lambda)}+C$
5: $\quad \hat{\boldsymbol{\alpha}}=0_{N}$
6: $\quad \boldsymbol{f}=0_{N}$
7: $\quad \mathbf{V}=\boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}_{N}$
8: Run:
9: for $t=1$ to T do
10: \quad Sample $\tilde{\boldsymbol{\alpha}} \sim \mathcal{N}\left(\hat{\boldsymbol{\alpha}}, v^{2} \mathbf{V}^{-1}\right)$
11: $\quad \pi(t) \leftarrow \arg \max _{a} x_{a}^{\top} \tilde{\boldsymbol{\alpha}}$
12: Observe a noisy reward $r(t)=\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}+\varepsilon_{t}$
13: $\quad \boldsymbol{f} \leftarrow \boldsymbol{f}+\mathbf{x}_{\pi(t)} r(t)$
14: \quad Update $\mathbf{V} \leftarrow \mathbf{V}+\mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\top}$
15: Update $\hat{\boldsymbol{\alpha}} \leftarrow \mathbf{V}^{-1} \boldsymbol{f}$
16: end for

SpectralTS algorithm

1: Input:
2: $\quad N, T,\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, C$
3: Initialization:
4: $\quad v=R \sqrt{6 d \log ((\lambda+T) / \delta \lambda)}+C$
5: $\quad \hat{\boldsymbol{\alpha}}=0_{N}$
6: $\quad \boldsymbol{f}=0_{N}$
7: $\quad \mathbf{V}=\boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}_{N}$
8: Run:
9: for $t=1$ to T do
10: \quad Sample $\tilde{\boldsymbol{\alpha}} \sim \mathcal{N}\left(\hat{\boldsymbol{\alpha}}, v^{2} \mathbf{V}^{-1}\right)$
11: $\quad \pi(t) \leftarrow \arg \max _{\mathrm{a}} \mathbf{x}_{\mathrm{a}}^{\top} \tilde{\boldsymbol{\alpha}}$
12: \quad Observe a noisy reward $r(t)=\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}+\varepsilon_{t}$
13: $\quad \boldsymbol{f} \leftarrow \boldsymbol{f}+\mathbf{x}_{\pi(t)} r(t)$
14: \quad Update $\mathbf{V} \leftarrow \mathbf{V}+\mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\top}$
15: Update $\hat{\boldsymbol{\alpha}} \leftarrow \mathbf{V}^{-1} \boldsymbol{f}$
16: end for

SpectralTS regret bound

- d: Effective dimension.
- λ : Minimal eigenvalue of $\boldsymbol{\Lambda}=\boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}$.
- C : Smoothness upper bound, $\left\|\boldsymbol{\alpha}^{*}\right\|_{\Lambda} \leq C$.
- $\mathbf{x}_{i}^{\top} \boldsymbol{\alpha}^{*} \in[-1,1]$ for all i.

The cumulative regret R_{T} of SpectralTS is with probability $1-\delta$ bounded as

$$
\mathcal{R}_{T} \leq \frac{11 g}{p} \sqrt{\frac{4+4 \lambda}{\lambda} d T \log \frac{\lambda+T}{\lambda}}+\frac{1}{T}+\frac{g}{p}\left(\frac{11}{\sqrt{\lambda}}+2\right) \sqrt{2 T \log \frac{2}{\delta}},
$$

where $p=1 /(4 e \sqrt{\pi})$ and

$$
g=\sqrt{4 \log T N}\left(R \sqrt{6 d \log \left(\frac{\lambda+T}{\delta \lambda}\right)}+C\right)+R \sqrt{2 d \log \left(\frac{(\lambda+T) T^{2}}{\delta \lambda}\right)}+C
$$

$$
R_{T} \approx d \sqrt{T \log N}
$$

Synthetic experiment

Synthetic experiment

Real world experiment

MovieLens dataset of 6 k users who rated one million movies.

Spectral Bandits Summary

- New spectral bandit setting (for smooth graph functions).

Spectral Bandits Summary

- New spectral bandit setting (for smooth graph functions).
- SpectralUCB
- Regret bound $\approx d \sqrt{T \ln T}$

Spectral Bandits Summary

- New spectral bandit setting (for smooth graph functions).
- SpectralUCB
- Regret bound $\approx d \sqrt{T \ln T}$
- SpectralTS
- Regret bound $\approx d \sqrt{T \ln N}$
- Computationally more efficient.

Spectral Bandits Summary

- New spectral bandit setting (for smooth graph functions).
- SpectralUCB
- Regret bound $\approx d \sqrt{T \ln T}$
- SpectralTS
- Regret bound $\approx d \sqrt{T \ln N}$
- Computationally more efficient.
- SpectralEliminator
- Regret bound $\approx \sqrt{d T \ln T}$
- Side result: LinearEliminator with $\mathcal{O}(\sqrt{D T} \ln T)$ regret for (contextual) linear bandits.

Spectral Bandits Summary

- New spectral bandit setting (for smooth graph functions).
- SpectralUCB
- Regret bound $\approx d \sqrt{T \ln T}$
- SpectralTS
- Regret bound $\approx d \sqrt{T \ln N}$
- Computationally more efficient.
- SpectralEliminator
- Regret bound $\approx \sqrt{d T \ln T}$
- Side result: LinearEliminator with $\mathcal{O}(\sqrt{D T} \ln T)$ regret for (contextual) linear bandits.
- Bounds scale with effective dimension $d \ll D$.

Spectral Bandits Summary

- New spectral bandit setting (for smooth graph functions).
- SpectralUCB
- Regret bound $\approx d \sqrt{T \ln T}$
- SpectralTS
- Regret bound $\approx d \sqrt{T \ln N}$
- Computationally more efficient.
- SpectralEliminator
- Regret bound $\approx \sqrt{d T \ln T}$
- Side result: LinearEliminator with $\mathcal{O}(\sqrt{D T} \ln T)$ regret for (contextual) linear bandits.
- Bounds scale with effective dimension $d \ll D$.

Exploiting side observations

Example 1: undirected observations

Exploiting side observations

Example 1: undirected observations

Exploiting side observations

Example 1: undirected observations

Example 1: Graph Representation

Example 2: Directed observation

Example 2: Directed observation

Example 2: Directed observation

Example 2

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed
- Disclosed / Not disclosed

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed
- Disclosed / Not disclosed
- Learner:
- Plays action $I_{t} \in[N]$
- Obtain loss $\ell_{t, l_{t}}$ of action played
- Observe losses of neighbors of I_{t}

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed
- Disclosed / Not disclosed
- Learner:
- Plays action $I_{t} \in[N]$
- Obtain loss $\ell_{t, l_{t}}$ of action played
- Observe losses of neighbors of I_{t}
- Graph: disclosed

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed
- Disclosed / Not disclosed
- Learner:
- Plays action $I_{t} \in[N]$
- Obtain loss $\ell_{t, l_{t}}$ of action played
- Observe losses of neighbors of I_{t}
- Graph: disclosed
- Performance measure: Total expected regret

$$
R_{T}=\max _{i \in[N]} \mathbb{E}\left[\sum_{t=1}^{T}\left(\ell_{t, l_{t}}-\ell_{t, i}\right)\right]
$$

Full Information setting

- Pick an action (e.g. action A)
- Observe losses of all actions
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{T})$

Bandit setting

- Pick an action (e.g. action A)
- Observe loss of a chosen action
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{N T})$
(E)

(A)
(B)

F

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Mannor and Shamir (ELP algorithm)

- Need to know graph
- Clique decomposition (c cliques)
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{c T})$

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Mannor and Shamir (ELP algorithm)

- Need to know graph
- Clique decomposition (c cliques)
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{c T})$

Alon, Cesa-Bianchi, Gentile, Mansour

- No need to know graph
- Independence set of α actions
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour

- Exp3-DOM
- Need to know graph
- Need to find dominating set
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour

- Exp3-DOM
- Need to know graph
- Need to find dominating set
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Our solution: Exp3-IX

- No need to know graph
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Exp3 algorithms in general

- Compute weights using loss estimates $\hat{\ell}_{t, i}$.

$$
w_{t, i}=\exp \left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s, i}\right)
$$

- Play action I_{t} such that

$$
\mathbb{P}\left(I_{t}=i\right)=p_{t, i}=\frac{w_{t, i}}{W_{t}}=\frac{w_{t, i}}{\sum_{j=1}^{N} w_{t, j}}
$$

- Update loss estimates (using observability graph)

Exp3 algorithms in general

- Compute weights using loss estimates $\hat{\ell}_{t, i}$.

$$
w_{t, i}=\exp \left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s, i}\right)
$$

- Play action I_{t} such that

$$
\mathbb{P}\left(I_{t}=i\right)=p_{t, i}=\frac{w_{t, i}}{W_{t}}=\frac{w_{t, i}}{\sum_{j=1}^{N} w_{t, j}}
$$

- Update loss estimates (using observability graph)

How the algorithms approach to bias variance tradeoff?

Bias variance tradeoff approaches

- Approach of previous algorithms - Mixing
- Bias sampling distribution \mathbf{p}_{t} over actions
- $\mathbf{p}_{t}^{\prime}=(1-\gamma) \mathbf{p}_{t}+\gamma \mathbf{s}_{t}$ - mixed distribution
- \mathbf{s}_{t} - probability distribution which supports exploration
- Loss estimates $\hat{\ell}_{t, i}$ are unbiased
- Approach of our algorithm - Implicit eXploration (IX)
- Bias loss estimates $\hat{\ell}_{t, i}$
- Biased loss estimates \Longrightarrow biased weights
- Biased weights \Longrightarrow biased probability distribution
- No need for mixing

Mannor and Shamir - ELP algorithm

- $\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\ell_{t, i}$ - unbiased loss estimates
- $p_{t, i}^{\prime}=(1-\gamma) p_{t, i}+\gamma s_{t, i}-$ bias by mixing
- $\mathbf{s}_{t}=\left\{s_{t, 1}, \ldots, s_{t, N}\right\}-$ probability distribution over the action set

$$
\mathbf{s}_{t}=\underset{\mathbf{s}_{t}}{\arg \max }\left[\min _{j \in[N]}\left(s_{t, j}+\sum_{k \in N_{t, j}} s_{t, k}\right)\right]=\arg \max _{\mathbf{s}_{t}}\left[\min _{j \in[N]} q_{t, j}\right]
$$

- $q_{t, j}$ - probability that loss of j is observed according to \mathbf{s}_{t}

Mannor and Shamir - ELP algorithm

- $\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\ell_{t, i}$ - unbiased loss estimates
- $p_{t, i}^{\prime}=(1-\gamma) p_{t, i}+\gamma s_{t, i}$ - bias by mixing
- $\mathbf{s}_{t}=\left\{s_{t, 1}, \ldots, s_{t, N}\right\}-$ probability distribution over the action set

$$
\mathbf{s}_{t}=\underset{\mathbf{s}_{t}}{\arg \max }\left[\min _{j \in[N]}\left(s_{t, j}+\sum_{k \in N_{t, j}} s_{t, k}\right)\right]=\underset{\mathbf{s}_{t}}{\arg \max }\left[\min _{j \in[N]} q_{t, j}\right]
$$

- $q_{t, j}$ - probability that loss of j is observed according to \mathbf{s}_{t}
- Computation of s_{t}
- Graph needs to be disclosed
- Solving simple linear program
- Needs to know graph before playing an action
- Graphs can be only undirected

Alon, Cesa-Bianchi, Gentile, Mansour - Exp3-DOM

- $\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\ell_{t, i}$ - unbiased loss estimates
- $p_{t, i}^{\prime}=(1-\gamma) p_{t, i}+\gamma s_{t, i}$ - bias by mixing
- $\mathbf{s}_{t}=\left\{s_{t, 1}, \ldots, s_{t, N}\right\}-$ probability distribution over the action set

$$
s_{t, i}= \begin{cases}\frac{1}{r} & \text { if } i \in R ;|R|=r \\ 0 & \text { otherwise }\end{cases}
$$

- R-dominating set of r elements
- \mathbf{s}_{t} - uniform distribution over R
- Needs to know graph beforehand
- Graphs can be directed

Previous algorithms - loss estimates

$$
\hat{\ell}_{t, i}= \begin{cases}\ell_{t, i} / o_{t, i} & \text { if } \ell_{t, i} \text { is observed } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}
$$

Previous algorithms - loss estimates

$$
\hat{\ell}_{t, i}= \begin{cases}\ell_{t, i} / o_{t, i} & \text { if } \ell_{t, i} \text { is observed } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}
$$

Exp3-IX - loss estimates
$\hat{\ell}_{t, i}= \begin{cases}\ell_{t, i} /\left(o_{t, i}+\gamma\right) & \text { if } \ell_{t, i} \text { is observed } \\ 0 & \text { otherwise } .\end{cases}$

$$
\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}+\gamma} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}-\ell_{t, i} \frac{\gamma}{o_{t, i}+\gamma} \leq \ell_{t, i}
$$

- No mixing!

Analysis of Exp3 algorithms in general

- Evolution of W_{t+1} / W_{t}

$$
\frac{1}{\eta} \log \frac{W_{t+1}}{W_{t}}=\frac{1}{\eta} \log \left(1-\eta \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}+\frac{\eta^{2}}{2} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right),
$$

$$
\sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i} \leq\left[\frac{\log W_{t}}{\eta}-\frac{\log W_{t+1}}{\eta}\right]+\frac{\eta}{2} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}
$$

- Taking expectation and summing over time

$$
\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}\right]-\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t, k}\right] \leq \mathbb{E}\left[\frac{\log N}{\eta}\right]+\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right]
$$

Regret bound of Exp3-IX

$$
\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}\right]}_{A}-\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t, k}\right]}_{B} \leq \mathbb{E}\left[\frac{\log N}{\eta}\right]+\underbrace{\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right]}_{C}
$$

Lower bound of \mathbf{A} (using definition of loss estimates)

$$
\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}\right] \geq \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \ell_{t, i}\right]-\mathbb{E}\left[\gamma \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

Lower bound of B (optimistic loss estimates: $\mathbb{E}[\hat{\ell}]<\mathbb{E}[\ell]$)

$$
-\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t, k}\right] \geq-\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t, k}\right]
$$

Upper bound of C (using definition of loss estimates)

$$
\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right] \leq \mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

Regret bound of Exp3-IX

$$
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

$$
R_{T} \approx \mathcal{O}\left(\sqrt{\log N \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]}\right)
$$

Regret bound of Exp3-IX

$$
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

$$
R_{T} \approx \mathcal{O}\left(\sqrt{\log N \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]}\right)
$$

Graph lemma

- Graph G with $V(G)=\{1, \ldots, N\}$
- d_{i}^{-}- in-degree of vertex i
- α - independence set of G
- Turán's Theorem + induction

$$
\sum_{i=1}^{N} \frac{1}{1+d_{i}^{-}} \leq 2 \alpha \log \left(1+\frac{N}{\alpha}\right)
$$

Discretization

$$
\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}=\sum_{i=1}^{N} \frac{p_{t, i}}{p_{t, i}+\sum_{j \in N_{i}^{-}} p_{t, j}+\gamma} \leq \sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}+2
$$

Discretization

$$
\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}=\sum_{i=1}^{N} \frac{p_{t, i}}{p_{t, i}+\sum_{j \in N_{i}^{-}} p_{t, j}+\gamma} \leq \sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}+2
$$

Note: we set $M=\left\lceil N^{2} / \gamma\right\rceil$

Discretization

$$
\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}=\sum_{i=1}^{N} \frac{p_{t, i}}{p_{t, i}+\sum_{j \in N_{i}^{-}} p_{t, j}+\gamma} \leq \sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}+2
$$

Note: we set $M=\left\lceil N^{2} / \gamma\right\rceil$

$$
\sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}
$$

$$
\sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}}} \hat{p}_{t, j}
$$

Example: let $M=10$

$$
\sum_{i=1}^{N} \frac{M \hat{p}_{t, i}}{M \hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} M \hat{p}_{t, j}}
$$

Example: let $M=10$

$$
\sum_{i=1}^{N} \frac{M \hat{p}_{t, i}}{M \hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} M \hat{p}_{t, j}}=\sum_{i=1}^{N} \sum_{k \in C_{i}} \frac{1}{1+d_{k}^{-}}
$$

Example: let $M=10$

$$
\sum_{i=1}^{N} \frac{M \hat{p}_{t, i}}{M \hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} M \hat{p}_{t, j}}=\sum_{i=1}^{N} \sum_{k \in C_{i}} \frac{1}{1+d_{k}^{-}} \leq 2 \alpha \log \left(1+\frac{M+N}{\alpha}\right)
$$

Example: let $M=10$

Exp3-IX regret bound

$$
\begin{gathered}
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[2 \alpha_{t} \log \left(1+\frac{\left\lceil N^{2} / \gamma\right\rceil+N}{\alpha_{t}}\right)+2\right] \\
R_{T}=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T \log (N)})
\end{gathered}
$$

Exp3-IX regret bound

$$
\begin{gathered}
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[2 \alpha_{t} \log \left(1+\frac{\left\lceil N^{2} / \gamma\right\rceil+N}{\alpha_{t}}\right)+2\right] \\
R_{T}=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T \log (N)})
\end{gathered}
$$

Next step

Exp3-IX regret bound

$$
\begin{gathered}
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[2 \alpha_{t} \log \left(1+\frac{\left\lceil N^{2} / \gamma\right\rceil+N}{\alpha_{t}}\right)+2\right] \\
R_{T}=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T \log (N)})
\end{gathered}
$$

Next step

Generalization of the setting to combinatorial actions

Example

Example

Example

Example

Example

- Play m out of N nodes (combinatorial structure)
- Obtain losses of all played nodes
- Observe losses of all neighbors of played nodes

- Play action $\mathbf{V}_{t} \in S \subset\{0,1\}^{N},\|\mathbf{v}\|_{1} \leq m$ fro all $\mathbf{v} \in S$
- Obtain losses $\mathbf{V}_{t}^{\top} \ell_{t}$
- Observe additional losses according to the graph

FPL-IX algorithm

- Draw perturbation $Z_{t, i} \sim \operatorname{Exp}(1)$ for all $i \in[N]$
- Play "the best" action \mathbf{V}_{t} according to total loss estimate $\widehat{\mathbf{L}}_{t-1}$ and perturbation \mathbf{Z}_{t}

$$
\mathbf{V}_{t}=\underset{\mathbf{v} \in \mathcal{S}}{\arg \min } \mathbf{v}^{\top}\left(\eta_{t} \widehat{\mathbf{L}}_{t-1}-\mathbf{Z}_{t}\right)
$$

- Compute loss estimates

$$
\hat{\ell}_{t, i}=\ell_{t, i} K_{t, i} \mathbb{1}\left\{\ell_{t, i} \text { is observed }\right\}
$$

- $K_{t, i}$: geometric random variable with

$$
\mathbb{E}\left[K_{t, i}\right]=\frac{1}{o_{t, i}+\left(1-o_{t, i}\right) \gamma}
$$

FPL-IX - regret bound

$$
R_{T}=\widetilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\sum_{t=1}^{T} \alpha_{t}}\right)=\widetilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\bar{\alpha} T}\right)
$$

Side Observation Summary

- Implicit eXploration idea
- New algorithm for simple actions - Exp3-IX
- Using implicit exploration idea
- Same regret bound as previous algorithm
- No need to know graph before an action is played
- Computationally efficient
- New combinatorial setting with side observations
- Algorithm for combinatorial setting - FPL-IX
- Future directions
- No need to know graph after an action is played
- Stochastic side observations
- Random graph models
- Exploiting the communities

Michal Valko
 michal.valko@inria.fr
 sequel.lille.inria.fr

Sylvester's determinant theorem:

$$
\left|\mathbf{A}+\mathbf{x x}^{\top}\right|=|\mathbf{A}|\left|\mathbf{I}+\mathbf{A}^{-1} \mathbf{x x}^{\top}\right|=|\mathbf{A}|\left(1+\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}\right)
$$

Goal:

- Upperbound determinant $\left|\mathbf{A}+\mathbf{x x}^{\top}\right|$ for $\|\mathbf{x}\|_{2} \leq 1$
- Upperbound $\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}$

Sylvester's determinant theorem:

$$
\left|\mathbf{A}+\mathbf{x x}^{\top}\right|=|\mathbf{A}|\left|\mathbf{I}+\mathbf{A}^{-1} \mathbf{x x}^{\top}\right|=|\mathbf{A}|\left(1+\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}\right)
$$

Goal:

- Upperbound determinant $\left|\mathbf{A}+\mathbf{x x}^{\top}\right|$ for $\|\mathbf{x}\|_{2} \leq 1$
- Upperbound $\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}$

$$
\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}=\mathbf{x}^{\top} \mathbf{Q} \boldsymbol{\Lambda}^{-1} \mathbf{Q}^{\top} \mathbf{x}=\mathbf{y}^{\top} \boldsymbol{\Lambda}^{-1} \mathbf{y}=\sum_{i=1}^{N} \lambda_{i} y_{i}^{2}
$$

Sylvester's determinant theorem:

$$
\left|\mathbf{A}+\mathbf{x x}^{\top}\right|=|\mathbf{A}|\left|\mathbf{I}+\mathbf{A}^{-1} \mathbf{x x}^{\top}\right|=|\mathbf{A}|\left(1+\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}\right)
$$

Goal:

- Upperbound determinant $\left|\mathbf{A}+\mathbf{x x}^{\top}\right|$ for $\|\mathbf{x}\|_{2} \leq 1$
- Upperbound $\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}$

$$
\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}=\mathbf{x}^{\top} \mathbf{Q} \boldsymbol{\Lambda}^{-1} \mathbf{Q}^{\top} \mathbf{x}=\mathbf{y}^{\top} \boldsymbol{\Lambda}^{-1} \mathbf{y}=\sum_{i=1}^{N} \lambda_{i} y_{i}^{2}
$$

- $\|\mathbf{y}\|_{2} \leq 1$.
- \mathbf{y} is a canonical vector.
- $\mathbf{x}=\mathbf{Q y}$ is an eigenvector of \mathbf{A}.

Corollary:

Determinant $\left|\mathbf{V}_{T}\right|$ of $\mathbf{V}_{T}=\boldsymbol{\Lambda}+\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\top}$ is maximized when all \mathbf{x}_{t} are aligned with axes.

$$
\begin{aligned}
\left|\mathbf{V}_{T}\right| & \leq \max _{\sum t_{i}=T} \prod\left(\lambda_{i}+t_{i}\right) \\
\ln \frac{\left|\mathbf{V}_{T}\right|}{|\boldsymbol{\Lambda}|} & \leq \max _{\sum_{t_{i}=T}} \sum \ln \left(1+\frac{t_{i}}{\lambda_{i}}\right) \\
\ln \frac{\left|\mathbf{V}_{T}\right|}{|\boldsymbol{\Lambda}|} & \leq \sum_{i=1}^{d} \ln \left(1+\frac{T}{\lambda}\right)+\sum_{i=d+1}^{N} \ln \left(1+\frac{t_{i}}{\lambda_{d+1}}\right) \\
& \leq d \ln \left(1+\frac{T}{\lambda}\right)+\frac{T}{\lambda_{d+1}} \\
& \leq 2 d \ln \left(1+\frac{T}{\lambda}\right)
\end{aligned}
$$

$$
\boldsymbol{f}^{\top} \mathcal{L} \boldsymbol{f}=\frac{1}{2} \sum_{i, j \leq N} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=S_{G}(f)
$$

Proof:

$$
\begin{aligned}
\boldsymbol{f}^{\top} \mathcal{L} \boldsymbol{f} & =\boldsymbol{f}^{\top} \mathcal{D} \boldsymbol{f}-\boldsymbol{f}^{\top} \mathcal{W} \boldsymbol{f}=\sum_{i=1}^{N} d_{i} f_{i}^{2}-\sum_{i, j \leq N} w_{i, j} f_{i} f_{j} \\
& =\frac{1}{2}\left(\sum_{i=1}^{N} d_{i} f_{i}^{2}-2 \sum_{i, j \leq N} w_{i, j} f_{i} f_{j}+\sum_{j=1}^{N} d_{i} f_{j}^{2}\right)=\frac{1}{2} \sum_{i, j \leq N} w_{i, j}\left(f_{i}-f_{j}\right)^{2}
\end{aligned}
$$

SpectralUCB analysis sketch

- Derivation of the confidence ellipsoid for $\hat{\boldsymbol{\alpha}}$ with probability $1-\delta$.
- Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$
\left|x^{\top}\left(\hat{\boldsymbol{\alpha}}-\boldsymbol{\alpha}^{*}\right)\right| \leq\|x\|_{\mathbf{v}_{t}^{-1}}\left(R \sqrt{2 \ln \left(\frac{\left|V_{t}\right|^{1 / 2}}{\delta|\boldsymbol{\Lambda}|^{1 / 2}}\right)}+C\right)
$$

- Regret in one time step: $r_{t}=\mathbf{x}_{*}^{\top} \boldsymbol{\alpha}^{*}-\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*} \leq 2 c_{t}\left\|\mathbf{x}_{\pi(t)}\right\|_{\mathbf{v}_{t}^{-1}}$
- Cumulative regret:

$$
R_{T}=\sum_{t=1}^{T} r_{t} \leq \sqrt{T \sum_{t=1}^{T} r_{t}^{2}} \leq 2\left(c_{T}+1\right) \sqrt{2 T \ln \frac{\left|\mathbf{V}_{T}\right|}{|\boldsymbol{\Lambda}|}}
$$

SpectralUCB analysis sketch

- Derivation of the confidence ellipsoid for $\hat{\boldsymbol{\alpha}}$ with probability $1-\delta$.
- Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$
\left|x^{\top}\left(\hat{\boldsymbol{\alpha}}-\boldsymbol{\alpha}^{*}\right)\right| \leq\|x\|_{\mathbf{v}_{t}^{-1}}\left(R \sqrt{2 \ln \left(\frac{\left|V_{t}\right|^{1 / 2}}{\delta|\boldsymbol{\Lambda}|^{1 / 2}}\right)}+C\right)
$$

- Regret in one time step: $\left.r_{t}=\mathbf{x}_{*}^{\top} \boldsymbol{\alpha}^{*}-\mathbf{x}_{\pi}^{\top} / t\right) \boldsymbol{\alpha}^{*} \leq 2 c_{t}\left\|\mathbf{x}_{\pi(t)}\right\|_{\mathbf{v}_{t}^{-1}}$
- Cumulative regret:

$$
R_{T}=\sum_{t=1}^{T} r_{t} \leq \sqrt{T \sum_{t=1}^{T} r_{t}^{2}} \leq 2\left(c_{T}+1\right) \sqrt{2 T \ln \frac{\left|\mathbf{V}_{T}\right|}{|\boldsymbol{\Lambda}|}}
$$

SpectralUCB analysis sketch

- Derivation of the confidence ellipsoid for $\hat{\boldsymbol{\alpha}}$ with probability $1-\delta$.
- Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$
\left|x^{\top}\left(\hat{\boldsymbol{\alpha}}-\boldsymbol{\alpha}^{*}\right)\right| \leq\|x\|_{\mathbf{v}_{t}^{-1}}\left(R \sqrt{2 \ln \left(\frac{\left|V_{t}\right|^{1 / 2}}{\delta|\boldsymbol{\Lambda}|^{1 / 2}}\right)}+C\right)
$$

- Regret in one time step: $\left.r_{t}=\mathbf{x}_{*}^{\top} \boldsymbol{\alpha}^{*}-\mathbf{x}_{\pi}^{\top} / t\right) \boldsymbol{\alpha}^{*} \leq 2 c_{t}\left\|\mathbf{x}_{\pi(t)}\right\|_{\mathbf{v}_{t}^{-1}}$
- Cumulative regret:

$$
R_{T}=\sum_{t=1}^{T} r_{t} \leq \sqrt{T \sum_{t=1}^{T} r_{t}^{2}} \leq 2\left(c_{T}+1\right) \sqrt{2 T \ln \frac{\left|\mathbf{V}_{T}\right|}{|\boldsymbol{\Lambda}|}}
$$

- Upperbound for $\ln \left(\left|\mathbf{V}_{t}\right| /|\boldsymbol{\Lambda}|\right)$

$$
\ln \frac{\left|\mathbf{V}_{t}\right|}{|\boldsymbol{\Lambda}|} \leq \ln \frac{\left|\mathbf{V}_{T}\right|}{|\boldsymbol{\Lambda}|} \leq 2 d \ln \left(\frac{\lambda+T}{\lambda}\right)
$$

SpectralTS analysis sketch

Divide arms into two groups

- $\Delta_{i}=\mathbf{b}_{*}^{\top} \boldsymbol{\mu}-\mathbf{b}_{i}^{\top} \boldsymbol{\mu} \leq g\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}} \quad$ arm i is unsaturated
- $\Delta_{i}=\mathbf{b}_{*}^{\top} \boldsymbol{\mu}-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}>g\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}} \quad$ arm i is saturated

SpectralTS analysis sketch

Divide arms into two groups

- $\Delta_{i}=\mathbf{b}_{*}^{\top} \boldsymbol{\mu}-\mathbf{b}_{i}^{\top} \boldsymbol{\mu} \leq g\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}} \quad$ arm i is unsaturated
- $\Delta_{i}=\mathbf{b}_{*}^{\top} \boldsymbol{\mu}-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}>g\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}} \quad$ arm i is saturated

Saturated arm

- Small standard deviation \rightarrow accurate regret estimate.
- High regret on playing the arm \rightarrow Low probability of picking

SpectralTS analysis sketch

Divide arms into two groups

- $\Delta_{i}=\mathbf{b}_{*}^{\top} \boldsymbol{\mu}-\mathbf{b}_{i}^{\top} \boldsymbol{\mu} \leq g\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}} \quad$ arm i is unsaturated
- $\Delta_{i}=\mathbf{b}_{*}^{\top} \boldsymbol{\mu}-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}>g\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}} \quad$ arm i is saturated

Saturated arm

- Small standard deviation \rightarrow accurate regret estimate.
- High regret on playing the arm \rightarrow Low probability of picking

Unsaturated arm

- Low regret bounded by a factor of standard deviation
- High probability of picking

SpectralTS analysis sketch

- Confidence ellipsoid for estimate $\hat{\boldsymbol{\mu}}$ of $\boldsymbol{\mu}$ (with probability $1-\delta / T^{2}$)
- Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$
\left|\mathbf{b}_{i}^{\top} \hat{\boldsymbol{\mu}}-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}\right| \leq\left(R \sqrt{2 \log \left(\frac{\left|\mathbf{B}_{T}\right|^{1 / 2} T^{2}}{|\boldsymbol{\Lambda}|^{1 / 2} \delta}\right)}+C\right)\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}}
$$

SpectralTS analysis sketch

- Confidence ellipsoid for estimate $\hat{\boldsymbol{\mu}}$ of $\boldsymbol{\mu}$ (with probability $1-\delta / T^{2}$)
- Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$
\left|\mathbf{b}_{i}^{\top} \hat{\boldsymbol{\mu}}-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}\right| \leq\left(R \sqrt{2 \log \left(\frac{\left|\mathbf{B}_{T}\right|^{1 / 2} T^{2}}{|\boldsymbol{\Lambda}|^{1 / 2} \delta}\right)}+C\right)\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}}
$$

- Our key result coming from spectral properties of \mathbf{B}_{t}.

$$
\log \frac{\left|\mathbf{B}_{t}\right|}{|\boldsymbol{\Lambda}|} \leq 2 d \log \left(1+\frac{T}{\lambda}\right)
$$

SpectralTS analysis sketch

- Confidence ellipsoid for estimate $\hat{\boldsymbol{\mu}}$ of $\boldsymbol{\mu}$ (with probability $1-\delta / T^{2}$)
- Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$
\left|\mathbf{b}_{i}^{\top} \hat{\boldsymbol{\mu}}-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}\right| \leq\left(R \sqrt{2 d \log \left(\frac{(\lambda+T) T^{2}}{\delta \lambda}\right)}+C\right)\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}}=\ell\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}}
$$

- Our key result coming from spectral properties of \mathbf{B}_{t}.

$$
\log \frac{\left|\mathbf{B}_{t}\right|}{|\boldsymbol{\Lambda}|} \leq 2 d \log \left(1+\frac{T}{\lambda}\right)
$$

SpectralTS analysis sketch

- Confidence ellipsoid for estimate $\hat{\boldsymbol{\mu}}$ of $\boldsymbol{\mu}$ (with probability $1-\delta / T^{2}$)
- Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$
\left|\mathbf{b}_{i}^{\top} \hat{\boldsymbol{\mu}}-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}\right| \leq\left(R \sqrt{2 d \log \left(\frac{(\lambda+T) T^{2}}{\delta \lambda}\right)}+C\right)\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}}=\ell\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}}
$$

- Our key result coming from spectral properties of \mathbf{B}_{t}.

$$
\log \frac{\left|\mathbf{B}_{t}\right|}{|\boldsymbol{\Lambda}|} \leq 2 d \log \left(1+\frac{T}{\lambda}\right)
$$

- Concentration of sample $\tilde{\boldsymbol{\mu}}$ around mean $\hat{\boldsymbol{\mu}}$ (with probability $1-1 / T^{2}$)
- Using concentration inequality for Gaussian random variable.

$$
\left|\mathbf{b}_{i}^{\top} \tilde{\boldsymbol{\mu}}-\mathbf{b}_{i}^{\top} \hat{\boldsymbol{\mu}}\right| \leq\left(R \sqrt{6 d \log \left(\frac{\lambda+T}{\delta \lambda}\right)}+C\right)\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}} \sqrt{4 \log (T N)}=v\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}} \sqrt{4 \log (T N)}
$$

SpectralTS analysis sketch

Define $\operatorname{regret}^{\prime}(t)=\operatorname{regret}(t) \cdot \mathbb{1}\left\{\left|\mathbf{b}_{i}^{\top} \hat{\boldsymbol{\mu}}(t)-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}\right| \leq \ell\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}}\right\}$

$$
\operatorname{regret}^{\prime}(t) \leq \frac{11 g}{p}\left\|\mathbf{b}_{a(t)}\right\|_{\mathbf{B}_{t}^{-1}}+\frac{1}{T^{2}}
$$

SpectralTS analysis sketch

Define $\operatorname{regret}^{\prime}(t)=\operatorname{regret}(t) \cdot \mathbb{1}\left\{\left|\mathbf{b}_{i}^{\top} \hat{\boldsymbol{\mu}}(t)-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}\right| \leq \ell\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}}\right\}$

$$
\operatorname{regret}^{\prime}(t) \leq \frac{11 g}{p}\left\|\mathbf{b}_{a(t)}\right\|_{\mathbf{B}_{t}^{-1}}+\frac{1}{T^{2}}
$$

Super-martingale (i.e. $\mathbb{E}\left[Y_{t}-Y_{t-1} \mid \mathcal{F}_{t-1}\right] \leq 0$)

$$
\begin{aligned}
& X_{t}=\operatorname{regret}^{\prime}(t)-\frac{11 g}{p}\left\|\mathbf{b}_{a(t)}\right\|_{\mathbf{B}_{t}^{-1}}-\frac{1}{T^{2}} \\
& Y_{t}=\sum_{w=1}^{t} X_{w} .
\end{aligned}
$$

$\left(Y_{t} ; t=0, \ldots, T\right)$ is a super-martingale process w.r.t. history \mathcal{F}_{t}.

SpectralTS analysis sketch

Define $\operatorname{regret}^{\prime}(t)=\operatorname{regret}(t) \cdot \mathbb{1}\left\{\left|\mathbf{b}_{i}^{\top} \hat{\boldsymbol{\mu}}(t)-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}\right| \leq \ell\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}}\right\}$

$$
\operatorname{regret}^{\prime}(t) \leq \frac{11 g}{p}\left\|\mathbf{b}_{a(t)}\right\|_{\mathbf{B}_{t}^{-1}}+\frac{1}{T^{2}}
$$

Super-martingale (i.e. $\mathbb{E}\left[Y_{t}-Y_{t-1} \mid \mathcal{F}_{t-1}\right] \leq 0$)

$$
\begin{aligned}
& X_{t}=\operatorname{regret}^{\prime}(t)-\frac{11 g}{p}\left\|\mathbf{b}_{a(t)}\right\|_{\mathbf{B}_{t}^{-1}}-\frac{1}{T^{2}} \\
& Y_{t}=\sum_{w=1}^{t} X_{w} .
\end{aligned}
$$

$\left(Y_{t} ; t=0, \ldots, T\right)$ is a super-martingale process w.r.t. history \mathcal{F}_{t}.
Azuma-Hoeffding inequality for super-martingale, w. p. $1-\delta / 2$:

$$
\sum_{t=1}^{T} \operatorname{regret}^{\prime}(t) \leq \frac{11 g}{p} \sum_{t=1}^{T}\left\|\mathbf{b}_{a(t)}\right\|_{\mathbf{B}_{t}^{-1}}+\frac{1}{T}+\frac{g}{p}\left(\frac{11}{\sqrt{\lambda}}+2\right) \sqrt{2 T \ln \frac{2}{\delta}}
$$

SpectralTS analysis sketch

Define $\operatorname{regret}^{\prime}(t)=\operatorname{regret}(t) \cdot \mathbb{1}\left\{\left|\mathbf{b}_{i}^{\top} \hat{\boldsymbol{\mu}}(t)-\mathbf{b}_{i}^{\top} \boldsymbol{\mu}\right| \leq \ell\left\|\mathbf{b}_{i}\right\|_{\mathbf{B}_{t}^{-1}}\right\}$

$$
\operatorname{regret}^{\prime}(t) \leq \frac{11 g}{p}\left\|\mathbf{b}_{a(t)}\right\|_{\mathbf{B}_{t}^{-1}}+\frac{1}{T^{2}}
$$

Super-martingale (i.e. $\mathbb{E}\left[Y_{t}-Y_{t-1} \mid \mathcal{F}_{t-1}\right] \leq 0$)

$$
\begin{aligned}
& X_{t}=\operatorname{regret}^{\prime}(t)-\frac{11 g}{p}\left\|\mathbf{b}_{a(t)}\right\|_{\mathbf{B}_{t}^{-1}}-\frac{1}{T^{2}} \\
& Y_{t}=\sum_{w=1}^{t} X_{w} .
\end{aligned}
$$

$\left(Y_{t} ; t=0, \ldots, T\right)$ is a super-martingale process w.r.t. history \mathcal{F}_{t}.
Azuma-Hoeffding inequality for super-martingale, w. p. $1-\delta / 2$:

$$
\sum_{t=1}^{T} \operatorname{regret}^{\prime}(t) \leq \frac{11 g}{p} \sum_{t=1}^{T}\left\|\mathbf{b}_{a(t)}\right\|_{\mathbf{B}_{t}^{-1}}+\frac{1}{T}+\frac{g}{p}\left(\frac{11}{\sqrt{\lambda}}+2\right) \sqrt{2 T \ln \frac{2}{\delta}}
$$

Backup: SpectralEliminator pseudocode

Input:

N : the number of nodes, T : the number of pulls
$\left\{\boldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\right\}$ spectral basis of \mathcal{L}
$\lambda:$ regularization parameter
$\beta,\left\{t_{j}\right\}_{j}^{J}$ parameters of the elimination and phases

```
\(A_{1} \leftarrow\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\}\).
```

for $j=1$ to J do
$\mathbf{V}_{t_{j}} \leftarrow \gamma \boldsymbol{\Lambda}_{\mathcal{L}}+\lambda \mathbf{I}$
for $t=t_{j}$ to $\min \left(t_{j+1}-1, T\right)$ do
Play $\mathbf{x}_{t} \in A_{j}$ with the largest width to observe r_{t} :
$\mathbf{x}_{t} \leftarrow \arg \max _{\mathbf{x} \in A_{j}}\|\mathbf{x}\|_{\mathbf{v}_{t}^{-1}}$
$\mathbf{V}_{t+1} \leftarrow \mathbf{V}_{t}+\mathbf{x}_{t} \mathbf{x}_{t}^{\top}$

end for

Eliminate the arms that are not promising:
$\hat{\boldsymbol{\alpha}}_{t} \leftarrow \mathbf{V}_{t}^{-1}\left[\mathbf{x}_{t_{j}}, \ldots, \mathbf{x}_{t}\right]\left[r_{t_{j}}, \ldots, r_{t}\right]^{\top}$
$A_{j+1} \leftarrow\left\{\mathbf{x} \in A_{j},\left\langle\hat{\boldsymbol{\alpha}}_{t}, \mathbf{x}\right\rangle+\|\mathbf{x}\|_{v_{t}^{-1}} \beta \geq \max _{\mathbf{x} \in A_{j}}\left[\left\langle\hat{\boldsymbol{\alpha}}_{t}, \mathbf{x}\right\rangle-\|\mathbf{x}\|_{\left.\mathbf{v}_{t}^{-1} \beta\right]}\right]\right\}$
end for

Backup: SpectralEliminator analysis

SpectralEliminator

- Divide time into sets $\left(t_{1}=1 \leq t_{2} \leq \ldots\right)$ to introduce independence for Azuma-Hoeffding inequality and observe

$$
R_{T} \leq \sum_{j=0}^{J}\left(t_{j+1}-t_{j}\right)\left[\left\langle\mathbf{x}^{*}-\mathbf{x}_{t}, \hat{\boldsymbol{\alpha}}_{j}\right\rangle+\left(\left\|\mathbf{x}^{*}\right\|_{\mathbf{v}_{j}^{-1}}+\left\|\mathbf{x}_{t}\right\|_{\mathbf{v}_{j}^{-1}}\right) \beta\right]
$$

- Bound $\left\langle\mathbf{x}^{*}-\mathbf{x}_{t}, \hat{\boldsymbol{\alpha}}_{j}\right\rangle$ for each phase
- No bad arms: $\left\langle\mathbf{x}^{*}-\mathbf{x}_{t}, \hat{\boldsymbol{\alpha}}_{j}\right\rangle \leq\left(\left\|\mathbf{x}^{*}\right\|_{\mathbf{v}_{j}^{-1}}+\left\|\mathbf{x}_{t}\right\|_{\mathbf{v}_{j}^{-1}}\right) \beta$
- By algorithm: $\|\mathbf{x}\|_{\mathbf{v}_{j}^{-1}}^{2} \leq \frac{1}{t_{j}-t_{j-1}} \sum_{s=t_{j-1}+1}^{t_{j}}\left\|\mathbf{x}_{s}\right\|_{\mathbf{v}_{s-1}^{-1}}^{2}$
- $\sum_{s=t_{j-1}+1}^{t_{j}} \min \left(1,\left\|\mathbf{x}_{s}\right\|_{\mathbf{v}_{s-1}^{-1}}^{2}\right) \leq \log \frac{\left|\mathbf{V}_{j}\right|}{|\boldsymbol{\Lambda}|}$

