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SETTING

STOSOO is a global function maximizer:

e Goal: Maximize f : X — IR given a budget of n evaluations.

e Challenges: f is stochastic and has unknown smoothness

e Protocol: At round ¢, select state x;, observe r; such that

Elre|ed] = f@e).
After n rounds, return a state z(n).

e Loss: Ry, = sup,cy f(2) — f(z(n))

STOSOO operates on a given hierarchical partitioning of A’

e Forany h, X is partitioned in K" cells (X}, ;)o<i<rn_1-

o [ -ary tree T, where depth I = 0 is the whole X.
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o 1, ,; € X}, 1s a specific state per cell where f is evaluated

COMPARISON

deterministic stochastic

known
smoothness

DOO Zooming or HOO

unknown

DIRECT or SOO
smoothness

STOSOO

Hierarchical optimistic optimization algorithms

ASSUMPTIONS

There exists a semi-metric £ on X (triangle inequality not required):

A1l Local smoothness of f: Forall x € X
fla®) = fz) < bz, z7).

“f does not decrease too fast around x*”

fla)

Bounded diameters and well-shaped cells: There ex-
ists a decreasing sequence w(h) > 0, such that for any
depth h > 0 and for any cell &}, ; of depth h, we have
SUPex, ; {(Th,i, x) < w(h). Moreover, there exists v > (0 such
that for any depth h > 0, any cell X}, ; contains a ¢-ball of ra-
dius vw(h) centered in z;, ;.

MEASURE OF COMPLEXITY

For any € > 0, write the set of e-optimal states:

X.E {re X, fla) > f* —¢)

Definition 1 (near-optimality dimension). Smallest constant d such
that there exists C' > 0, for all ¢ > 0, the packing number of X, with (-
balls of radius ve is less than Ce ™4,

Illustration:

f(a®) = flz) = O(]|z" — z])

‘8‘ %

Uz,y) =z —yl| = d=0 ((z,y)=||lz—y|| = d=D/2

Uz, y) = |lz =yl = d=0

STOSOO ALGORITHM

Parameters: number of function evaluations n, maximum num-
ber of evaluations per node £ > 0, maximum depth hp,.x, and
0o > 0.
Initialization:
T <+ {0]0,0]} {root node}
t + 0 {number of evaluations}
m < 0 {number of leaf expansions}
while ¢t < n do
bmax — =0
for h = 0 to min(depth(7), hmax) do
if t < n then
For each leaf o|h, j| € £, compute its b-value:
b (1) = fin; (t) + \/og(nk /0)/ (2T, ; (1))
Among leaves o|h, j] € L; at depth h, select

olh,i] € arg max by, ;(t)
olh,jleL

if bh,i (t) > bmax then
if T}, ;(t) < k then
Evaluate (sample) state x; = xp, ;.
Collect reward r; (s.t. Elri|z:| = f(x3)).
t<—t+1
else {i.e. T}, ;(t) > k, expand this node}
Add the K children of o|h, i] to T
bmax < bh,i(t)
end if
end if
end if
end for
end while
Output: The representative point with the highest [, ;(n)
among the deepest expanded nodes:

z(n) = argmax fij, j(n) s.t. h = depth(7 \ £).

Lh,j

How it works?

e STOSOO iteratively traverses and builds a tree over X

e at each traversal it selects several nodes simultaneously

e the selection is optimistic, based on confidence bounds

e selected nodes are either sampled or expanded

e sample the node k times for a confident estimate of f(zy, ;)

returns the deepest expanded node

ANALYSIS

Main result:

Theorem 1. Let d be the v/3-near-optimality dimension and C' be
the corresponding constant. If the assumptions hold, then the loss of
STOSOO run with parameters k, hyax, and 6 > 0, after n iterations is
bounded, with probability 1 — ¢, as:

Rn < 2 +w (mm (h(n) — 1, hg, hmax))

where ¢ = +/log(nk/d)/(2k) and h(n) is the smallest h € N, such that:

C(k+ Dhmax »_ (w(l)+2e)"" > n,
[=0

and h. is defined as:

he = argmin{h € N: w(h+1) < ¢}.

Exponential diameters and d = O:

Corollary 1. Assume that the diameters of the cells decrease exponen-
tially fast, i.e., w(h) = cy" for some ¢ > 0 and v < 1. Assume that the
v /3-near-optimality dimension is d = 0 and let C' be the corresponding
constant. Then the expected loss of STOSOO run with parameters k,

hAmax = \/n/k,and 6 > 0, is bounded as:
E[Rn] < (2 4+ 1/’)/)€—|— C,yx/n/kmin{O.S/C,l}—Q + 96,

Corollary 2. For the choice k = n/log”(n) and § = 1/+/n, we have:

E[R,| = O(log\j%”)).

This result shows that, surprisingly,
STOSOO can achieve the same rate
O(n~'/2), up to a logarithmic factor, as
the HOO or Stochastic DOO algorithms
run with the best possible metric, al-
though STOSOO does not require the
knowledge of it. STOSOO (diamonds)
vs. Stochastic DOO with ¢; (circles) and
¢5 (squares) on f;.
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THE IMPORTANT CASE d = (

Example 1: Functions f defined on [0,1]” that are locally equiv-
alent to a polynomial of degree o around their maximum, i.e.,
f(x) — f(z*) = O(||lxr — z*||*) for some a > 0, where || - || is any
norm. The choice of semi-metric /(x,y) = ||z — y||* implies that
the near-optimality dimension d = 0. This covers already a large
class of functions.

Example 2: More generally, we consider a finite dimensional and
bounded space X, (e.g., Euclidean space [0, 1]”) with a finite dou-
bling constant. Let a function in such space have upper- and lower
envelope around z* of the same order, i.e., there exists constants
c € (0,1),and n > 0, such that for all z € X

min(n, cl(z,z7)) < f(z7) — f(z) < €z, 27). (1)

*

X

Any function satistying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around z*.

Example of a function with different order in the upper and lower
envelopes, when /(z,y) = |z — y|™:

f(2) = 1= Va + (—2% + V&) - (sin(1/a?) +1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. The maximum number of ¢-balls with radius ¢
that can pack X, (i.e., Euclidean balls with radius £!/%) is at most
of order /2 /et/® < ¢73/2, since o < 1/2 in order to satisfy the
assumption on f. We deduce that there is no semi-metric of the
form |x — y|* for which d < 3/2.

EXPERIMENTS
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Left: Two-sine product function fi(z) = % (sin(13z) - sin(27x)) 4 0.5.
Right: Garland function: fo(z) = 4z (1—x)-(2+1(1—+/| sin(60z)])).
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STOSOQO's on f;. Left: Noised with N7 (0,0.01). Middle: Noised
with A7 (0,0.1). Right: Noised with N-(0, 1).
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STOSOQ’s performance for the garland function. Left noised with
Nr(0,0.01). Right: Noised with N'(0,0.1).

Code at;: HTTPS:/ /SEQUEL.LILLE.INRIA.FR/SOFTWARE /STOSOO




