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MOTIVATION: NEWSFEEDS
• Goal: Recommendation of interesting articles from

newsfeeds (RSS).

• Challenges: Too many newsfeeds to even check all
of them once and way too many articles.

• Context: Every feed has a set of features gathered
during the RSS crawling: URL, feed titles, anchor
text, . . . .

• Smoothness Assumption: Feeds with similar con-
texts are interesting in a similar way (have similar
rewards).

• Kernels: We want to extract a non-linear relation-
ship between the contexts and rewards, only from
similarity information between the contexts.

• Bandit setting: We only receive the reward for the
newsfeed that we try.

• Noise: Moreover, we only receive a reward for a
specific article, which is only a noisy estimate for
the reward of the whole newsfeed.

SETTING: KERNEL BANDITS
We model the setting as contextual bandits.

• Action space: A := {1, . . . , N}

• Contexts: For each a, there is a context: xa,t ∈ Rd,
that can change with time t

• Protocol: At time t = 1 . . . T :

– receive contexts xa,t for all a

– choose our action at
– obtain a reward rt

• Rewards depend on the context non-linearly,
i.e. they are linear in mapping to the corresponding
reproducing kernel Hilbert space (RKHS) defined by a
kernel k.

E(ra,t | xa,t) = φ(xa,t)
Tθ∗

• Best action, a∗t at time t is context dependent: a∗t :=
arg maxa∈A{E(ra,t | xa,t)}.

• Loss: How well we do over time w.r.t. the best pos-
sible action — contextual regret:

R(T ) :=
T∑
t=1

[
ra∗t ,t − rt

]

CONTRIBUTIONS
The main challenge in lifting the known analysis for the
contextual bandits where the reward is linear in primal
to the case where the reward is linear in dual is that dual
(RKHS) may be of infinite dimension.

We provide:

• frequentist analysis of kernelised bandits

• cumulative regret bound Õ(
√
T d̃)

• match Ω(
√
d) lower bound for the linear case

• link with GP-UCB

– comparison between effective dimension d̃ and
information gain I(yT ; θ∗)

– improved analysis for the agnostic case

– data-independent worst case upper bounds
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inria.fr news 

Sciencemag.org 

lemonde.fr 

sports.fr 

france24.com/fr/sports 

similarity 

Quality of the node is changing! 
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KERNELUCB ALGORITHM

Input and initialisation:
N the number of actions, T the number of pulls
γ, η regularization and exploration parameters
k(·, ·) kernel function

u0 ← [1, 0, ..., 0]
T (at start, the first action is tried)

y0 ← ∅
Run:
for t = 1 to T do

Choose a← arg maxut−1 and get reward rt−1

Update yt ← [r1, . . . , rt−1]T and Kt

for a = 1 to N do
σa,t ←

√
k(xa,t, xa,t)− kT

x,tK
−1
t kx,t

ua,t ←
(
kT
x,tK

−1
t yt + η

γ1/2σa,t

)
end for

end for

HOW IT WORKS?

• UCB algorithm with kernelised ridge regression:

ua,t =

estimator︷︸︸︷
µ̂a,t +

confidence width︷ ︸︸ ︷
η/γ1/2σ̂a,t .

• Widths in terms of the Mahalanobis distance of
φ(xa,t) from the matrix Φt:

σ̂a,t :=
√
φ(xa,t)T(ΦT

tΦt + γI)−1φ(xa,t).

• σ̂a,t can be also expressed using kernel trick:

γ−1/2
√
k(xa,t, xa,t)− k>xa,t,t(Kt + γI)−1kxa,t,t

• In practice:

– iterative matrix inversion for K−1
t

– lazy variance calculation for arg max

EFFECTIVE DIMENSION

• Known regret bounds for linear contextual bandits
can be vacuous (dimension of the RKHS may be in-
finite).

• We give a bound in terms of a data dependent ef-
fective dimension d̃: Let (λi,t)i≥1 denote the eigen-
values of Cγt = ΦT

tΦt + γI in decreasing order and
define:

d̃ := min{j : jγ lnT ≥ ΛT,j}where ΛT,j :=
∑
i>j

λi,T − γ.

• We call d̃ the effective dimension because it gives a
proxy for the number of principle directions over
which the projection of the data in the RKHS is
spread.

• If the data all fall within a subspace of H of dimen-
sion d′, then ΛT,d′ = 0 and d̃ ≤ d′.

• More generally d̃ can be thought of as a measure of
how quickly the eigenvalues of ΦT

tΦt are decreasing.

• For example if the eigenvalues are only polyno-
mially decreasing in i (i.e. λi ≤ Ci−α for some
α > 1 and some constant C > 0) then d̃ ≤ 1 +
(C/(γ lnT ))1/α.

• When Φ ≡ Id, d̃ ≤ d, the assumption that
‖φ(xa,t)‖ ≤ 1 becomes the assumption that the con-
texts are normalised in the primal, and we recover
exactly the result for linear bandits which matches
the lower bound for this setting.

MAIN RESULT
Theorem 1. Assume that ‖φ(xa,t)‖ ≤ 1 and |ra,t| ∈ [0, 1] for
all a ∈ A and t ≥ 1, and set η =

√
2 ln 2TN/δ. Then with

probability 1− δ, SupKernelUCB satisfies:

R(T ) ≤

[
2 + 2

(
1 +

√
γ

2 ln(2TN(1 + lnT )/δ)

)
‖θ∗‖+

+ 8

√(
12 +

15

γ

)
max

{
ln

(
T

d̃γ
+ 1

)
, lnT

}3×

×

√(
2 ln

2TN(1 + lnT )

δ

)]√
d̃T

Remark 1. Theorem 1 suggests that if we know that ‖θ∗‖ ≤ L,
for some L, we should set γ to be of the order of L−1 so that we
obtain Õ(

√
Ld̃T ) regret. If we do not have such knowledge,

just setting γ to a constant (e.g., found by a cross-validation)
will incur Õ(‖θ∗‖

√
d̃T ) regret.

Remark 2. The proof uses a technique of Auer [1] in order
to deal with dependent µ̂a,t. This technique builds mutually
exclusive subsets of “time steps”. In this way, the Azuma-
Hoeffding inequality can be applied on each subset to get a re-
gret bound. Furthermore, although ΦT

tΦt may be of infinite
dimension, we show that only d̃ dimensions matter.

COMPARISON

Bayesian Frequentist

regression GP-Regression Kernel Ridge
Regression

bandits GP-UCB KernelUCB
this work

Bayesian and frequentist approaches to kernelized
regression and contextual bandits

COMPARISON TO GP-UCB
• GP-UCB is a special case of KernelUCB when γ is

set to the model (GP) noise.

• Our analysis improves upon that of GP-UCB for the
agnostic case: when context-to-reward mapping θ∗

is not from GP.

• From the GP-UCB analysis for the agnostic case, the
cumulative regret is bounded as:

O
((
I(yA; θ∗) + ‖θ∗‖2

√
I(yA; θ∗)

)√
T
)
, (1)

where I(yT ; θ∗) is the mutual information between
θ∗ and the vector of (noisy) observations yT .

• Both I(yT ; θ∗) and d̃ are data dependent quantities.

• Since the eigenvalues of ΦT

TΦT are the same as the
eigenvalues of ΦTΦT

T , we can show that:

I(yT ; f) ≥ Ω(d̃ ln lnT )

• This shows that d̃ is at least as good as I(yT ; θ∗),
and comparing our Theorem 1 with (1), our regret

bound only scales as O(
√
d̃), while the dependence

of the regret bound (1) is linear in I(yT ; θ∗).

• As a consequence of the link between I(yT ; θ∗), γT
and d̃, we may also express our bounds in terms of
γT and obtain data-independent worst case upper
bounds for certain kernels: e.g. for RBF kernel, our
bound scales with O(lnT )d/2 in place of O(lnT )d.

REFERENCES

[1] Auer P. Using confidence bounds for exploitation-
exploration trade-offs. JMLR, 2002.

[2] Chu L., Li L., Reyzin L., and Schapire R. E. Contextual
Bandits with Linear Payoff Functions. AISTATS, 2011.

[3] Srinivas N., Krause A., Kakade S., and Seeger M.
Gaussian Process Optimization in the Bandit Setting.
ICML, 2010.

ACKNOWLEDGEMENTS AND CODE
This research was funded by European Community’s
Seventh Framework Programme (FP7/2007-2013) under
grant agreement no 270327 (project CompLACS).

Code at: HTTPS://SEQUEL.LILLE.INRIA.FR/SOFTWARE/KERNELUCB


