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e Inverse reinforcement learning: expert trajectories — policy (via reward) unlabeled trajectories |

e Problem: expert trajectories are expensive to get or not available from U performers { S(i)t
e Solution: learn also from unlabeled trajectories and use the structure in the feature counts .
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e If we assume that the reward is linear in feature counts, R*(s) = w* - ¢(s), then: randomly pick 7(?) and set i + 1
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e IRL of Abbeel and Ng [1] is based on matching the feature counts of the expert performer:
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e Semi-supervised learning (55L) makes distributional assumptions such compactness (gap, estimate (¥ « p(r(?)
null-category) or smoothness (manifold). We choose to use the gap assumption and the t() <« min; w (i — )
related semi-supervised support vector machines (SVMs). i — 1+ 1
e Semi-supervised SVMs use besides the standard hinge loss V ( f, z;,y;) = max{1—y |f(x)|,0}, until () < ¢
also the hat loss V(f,z) = max{1 — | f(z)|,0} on unlabeled data [2] to compute max-margin
decision boundary f that avoids dense regions of data: RESULTS: SSIRL vS. IRL
mln ZV fsxisyi) + HfH +7uzv fixi), Gridworlds
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e In semi-supervised IRL (SSIRL) we penalize the decision boundary w that crosses the em-
pirical feature counts from unlabeled trajectories:
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e Contributions:

— first IRL method to take advantage of the unlabeled trajectories
— assuming clustered feature counts can learn a better performing policy
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e Disadvantages: 0145

— similar to [1] only outputs a mixture policy
— stopping criterion is needed, because the method converges to IRL [1]
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¢ Future directions:
— enhance other inverse RL methods (MaxEnt IRL, MMP) with unlabeled trajectories
— investigate manifold assumption for inverse RL
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