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Anomaly (Outlier) Detection 
 

Goal: identify unusual patterns in data 

 

Focus: conditional anomalies 

 

Contribution:   graph-based method for  
 conditional anomaly detection 

 

Application:  medical error detection 
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Conditional Anomaly 

Patient electronic records have: demographics, 
conditions, labs, medications administered, 
procedures performed,… 

 
3 



Conditional Anomaly 

Assumption:  Conditional anomalies correspond to medical errors 
“Medical errors account for 200 000 preventable deaths a year. “ 

(HealthGrades study, Wall Street Journal, July 27th 2004) 
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Unconditional Anomalies 

Conditional Anomalies 

 
“Controlling overspending becoming necessary”  Dr. Reinhardt 

(Health Care Costs, New York Times, December 19th  2010) 

 



Traditional Anomaly Detection 
Nearest Neighbor 

Distance – anomalies are distant (NN) 

Density – anomalies in low density regions (LOF, COF, LOCI) 

Classification  

Model based (separate models for (ab)normal distributions) 

1-class (1-class SVM) 

Classify normal vs. abnormal (when labels available) 

Statistical 

> 3std   
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Challenges for CAD 

Dataset adopted from [Papadimitriou and Faloutsos, 2003] 
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labels: 
BLUE  
RED 

Task: detect anomalies in labels 



Related Work (CAD) 
Cross Outlier Detection (Papadimitriou, 2003) 

Fringe points 
8 



CAD approaches 

• OneClass SVM, LOF, … 

Class Outlier Approach Class Outlier Approach 

• SVM-CAD 

Discriminative Approach  Discriminative Approach  

• Connectivity AD, Soft Harmonic AD 

Regularized Discriminative Approach Regularized Discriminative Approach 

regularizing unconditional outliers 9 



Conditional Anomaly Detection Goal 

both train and test data are labeled 
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… and at the same 
time avoid unwanted 
anomalies 

… and at the same 
time avoid unwanted 
anomalies 



Class Outlier Approach 
 

Take a test case (x,y) 

Take any unconditional anomaly method  

Find out if x is anomalous wrt { x |  x has class y } 

 

Problems:  

Fringe points       

Unconditional outliers  

Anomaly (alert) scores for class 1 and class 2 may not be 
comparable 

 

ignores the other class(es) ignores the other class(es) 
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Discriminative Approach 
       ‘       is high → conditional anomaly 

Learn Model/Build Projections 

Bayes Network 

 

 

bigger the alert score→ more anomalous 

 

Support Vector Machines projections 
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Support Vector Machines projections 
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A new approach 
Disadvantages of the SVM-CAD 

only linear decision boundary  

can become overly confident in the areas with little data 
Isolated points (unconditional outliers) 

Soft Harmonic Anomaly Detection 

Non-parametric 

Graph-based 

Regularization 
Control the influence of unconditional outliers 

Can incorporate unlabeled examples 
Missing medical records 

Tests not done frequently because of the budget constraints 
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Regularization 
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ONLY LABELED                                                                 ALL DATA 

Low  
confidence 

labeled data 



Soft Harmonic Solution 
Unconstrained Regularization 

Close form solution 

 

regularizer fit to data 

19 

 when       is rewritten as  

       can be interpreted as a confidence 

      >> 0.5 and   

 

 

Conditional Anomaly! 

-0.2         0.2 -1 = x 



Synthetic Data 
 evaluation of conditional anomaly methods is challenging 

 synthetic data with known distribution 

 flip 3% of the labels 

 compare how the anomaly score agrees with true score 
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Synthetic Data: Results 
Evaluation metric:  

How the anomaly score agrees with the true score 
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Top 5 best scoring anomalies for different 
methods on the synthetic dataset D3 
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Medical Data 
4486 patients from UPMC 

Cardiac surgery (2002-2007) 

45767 patient-day events/states 

9K attributes   

222 states evaluated by 15 experts 

 

nearest neighbor graph 

Metric: How much the 
score agrees with the  
experts. 
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PCP data set: Segmentation 
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PCP Dataset: PLT Lab feature 
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Medical Data Results 
Outperforming SVM method over the range of 
settings of regularization parameters 
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Medical Data Results 
Outperforming standard weighted nearest neighbors 
on the same graph 

28 

10 50 100 150 200
0.58

0.6

0.62

0.64

0.66

0.68

0.7

Graph Size: Number of Nodes

A
U

C
 o

f 
m

u
lt
i-
ta

s
k
 C

A
D

 

 

Soft Harmonic CAD CAD with weighted k-NN
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Conclusion & Future Work 
A non-parametric graph-based approach 

Successfully detect conditional anomalies    

Future work 

Online Soft Harmonic Anomaly Detection 

Parallelization of harmonic solution 
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