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Anomaly (Outlier) Detection

¢ Goal: identify unusual patterns in data

¢ Focus: conditional anomalies

¢ Contribution: graph-based method for
conditional anomaly detection

¢ Application: medical error detection
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¢ Patient electronic records have: demographics,
conditions, labs, medications administered,
procedures performed,...



‘ Conditional Anomalies

== <-| Unconditional Anomalies \

Assumption: Conditional anomalies correspond to medical errors
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Traditional Anomaly Detection
o Nearest Neighbor

¢ Distance — anomalies are distant (NN)

¢ Density —anomalies in low density regions (LOF, COF, LOCI)
¢ Classification

¢ Model based (separate models for (ab)normal distributions)

¢ 1-class (1-class SVM)

¢ Classify normal vs. abnormal (when labels available)
¢ Statistical

¢ > 3std



Challenges for CAD

Task: detect anomalies in labels

Data Fringe Points and Uncoditional Anomalies
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o Dataset adopted from [Papadimitriou and Faloutsos, 2003]



Related Work (CAD)

@ Cross Outlier Detection (Papadimitriou, 2003)

Absolute Deviation (33: 23/290)
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CAD approaches

—— Class Outlier Approach

e OneClass SVM, LOF, ...

— Discriminative Approach

e SVM-CAD

Regularized Discriminative Approach

e Connectivity AD, Soft Harmonic AD \

regularizing unconditional outliers,



Conditional Anomaly Detection Goal

Problem statement (% ): For a dataset (x;,y;)!, find
pairs of (x;,y;) such that P(y # y;|x;) is high.

Fringe Points and Uncoditional Anomalies
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3 ... and at the same
10} time avoid unwanted
anomalies
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Class Outlier Approach

o Take a test case (x,y)
¢ Take any unconditional anomaly method
¢ Find out if x is anomalous wrt {x | x has classy }

» Problems: ignores the other class(es)
¢ Fringe points

¢ Unconditional outliers

¢ Anomaly (alert) scores for class 1 and class 2 may not be
comparable
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Discriminative Approach

» P(3f|x) is high - conditional anomaly
o Learn Model/Build Projections
¢ Bayes Network -
d(y|x) = P(y'|x) ¢ #y “ =

3
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4
¢ bigger the alert score-> more anomalous = 516 | 17

@ Support Vector Machines projections
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Support Vector Machines projections

[Valko et al., 2008]
[Valko and Hauskrecht, 2008]

|[Hauskrecht et al., 2010]

5 e 1 0 1 ... 5
»
*x*"*
x x |*
» »
x xx
<>

13



A new approach

¢ Disadvantages of the SVM-CAD
¢ only linear decision boundary

¢ can become overly confident in the areas with little data
e Isolated points (unconditional outliers)
¢ Soft Harmonic Anomaly Detection
¢ Non-parametric
¢ Graph-based
¢ Regularization

¢ Control the influence of unconditional outliers

¢ Canincorporate unlabeled examples

e Missing medical records

» Tests not done frequently because of the budget constraints
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Harmonic Solution

[Zhu et al., 2003]




Dealing with Outliers

kiwi — outlier




Dealing with Outliers

kiwi — outlier




labeled data

Low
confidence
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Regularization

7, = 1.000 .

BRFERRBENY
ERERERREES
(222 222 22 2
BRBRERREES
BREBERREES
ERERERREES
(22222222 3
SREREES

ERBBEEE

EEFRERS

SRR EEEY
SRR REREEEY
L2 2 2 22 212 2]
SRERBEEEEY
SRR EEEY
SRR BEREEY
(A 22 22 222 2]
SRR EEES
SRR EREE
SEERTREERS

10

10

7,=0010 @

SEEBIBREES
*EERBRRENS
*EERERRENS
LA 2222 222 L)
SEERERRENS
SEERERREN
*EEEEEN

LA 2222
LA 2 *
*EEEE.

ShEARREEEY
EEEREREEEY
FEEREREEEY
SEERER TR
SHEERRRBEES
SHEEBBEREEES
SEEBBERBEES
ShEEBRRBEEES
SHEEBBEREEES
SEEEEREEES

-10

10

18



Soft Harmonic Solution

¢ Unconstrained Regularization

min (( —y)'C({—y)+ ('K

feR™ /

fit to data

regularizer

o Close form solution ¢ = (C’_lK +I}_1y

= =
-0.2 = 0.2

X -1

o when {; is rewritten as ‘&‘ Sgn(ﬂ,;)
e |/;| can be interpreted as a confidence

o|til >>0.5and sgn(l;) # Y

Conditional Anomaly!
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Synthetic Data

= evaluation of conditional anomaly methods is challenging
= synthetic data with known distribution
= flip 3% of the labels

= compare how the anomaly score agrees with true score

10«
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Synthetic Data: Results

¢ Evaluation metric:

¢ How the anomaly score agrees with the true score
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Dataset D1

Dataset D2

Dataset D3

QDA
SVM
[-class SVM

wh—-NN

73.8% (2.1)
38.8% (7.0)
51.3% (0.9)

74.2% (1.9)

29.4% (5.2)
49.8% (1.7)
47.7% (0.6)

56.5% (1.7)

61.0% (1.2)
46.1% (3.1)
64.7% (0.7)

61.4% (2.1)
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Top 5 best scoring anomalies for different

methods on the synthetic dataset D3

True Model Quadratic Discriminant Analysis
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Medical Data

9

9
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4486 patients from UPMC
Cardiac surgery (2002-2007)
45767 patient-day events/states
9K attributes
222 states evaluated|by 15 experts

> 1. Laboratory tests (LABs)

nearest neighbor graph
2. Medications (MEDs)

Metric: How much the

score agrees with the
experts. 4. Procedures

3. Visit features/demographics

5. Heart support devices
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PCP data set: Segmentation

Vector of patient stabe Vector of patient
features management decislons
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PCP Dataset: PLT Lab feature
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Medical Data Results

¢ Outperforming SVM method over the range of
settings of regularization parameters
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Medical Data Results

¢ Outperforming standard weighted nearest neighbors
on the same graph
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Conclusion & Future Work

¢ A non-parametric graph-based approach

¢ Successfully detect conditional anomalies

Adapt to changes in
/ medical practice

¢ Online Soft Harmonic Anomaly Detection

¢ Future work

e Parallelization of harmonic solution
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