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Abstract

Timely detection of concerning events is an
important problem in clinical practice. In
this paper, we consider the problem of condi-
tional anomaly detection that aims to iden-
tify data instances with an unusual response,
such as the omission of an important lab test.
We develop a new non-parametric approach
for conditional anomaly detection based on
the soft harmonic solution, with which we es-
timate the confidence of the label to detect
anomalous mislabeling. We further regular-
ize the solution to avoid the detection of iso-
lated examples and examples on the bound-
ary of the distribution support. We demon-
strate the efficacy of the proposed method in
detecting unusual labels on a real-world elec-
tronic health record dataset and compare it
to several baseline approaches.

1. Introduction

With the advances in health-care and with more data
being handled and stored electronically, the opportu-
nities increase for machine learning to improve the
health care. Despite continuous improvement in medi-
cal practice, medical errors remain a very serious prob-
lem. According to recent data, medical errors are the
8-th leading cause of death in the US population (Kohn
et al., 2000). We aim to identify medical errors that
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correspond to unusual patient-management decisions,
such as ordering a medication. Our hypothesis is that
patient-management decisions that are unusual with
respect to past patients may be due to errors and that
it is worthwhile to raise an alert if such a condition is
encountered. Typical systems for medical error detec-
tion rely on the clinical knowledge, such as expert-
derived rules. Extracting such knowledge is costly,
time-consuming, and very difficult with medical prac-
tice constantly changing. Machine learning can offer
a viable alternative: using past medical records to de-
tect anomalies. Detecting anomalies in the patient-
management decisions has the potential to help avoid
medical errors, which could lead to improved quality
of care and decreased costs.

Traditional anomaly detection methods used in data
analysis are unconditional and look for outliers with
respect to all data attributes (Markou & Singh, 2003).
The conditional anomaly detection (CAD) problem
(Hauskrecht et al., 2007; Song et al., 2007) seeks to
detect unusual values for a subset of variables given
the values of the remaining variables. In the special
case when the target variable is a class label, the prob-
lem is often called mislabeling detection. While we fo-
cus on this special case of anomalies in the class label,
the main objective is different: we are interested in
constructing a system that can raise an alert when an
anomalous label of a new example is observed. For-
mally, we want to solve the following problem:

Problem statement (F): Given a set of n
past observed examples (xi, yi)

n
i=1 (with pos-

sible label noise), check if any instance i in
recent m examples (xi, yi)

n+m
i=n+1 is unusual.
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In general, we seek to reliably identify anomalies on
the response (decision or class) variables for all possi-
ble values of the context (input or feature) variables.
Not knowing the underlying model, that generates the
(attributes, label) pairs, may lead to two major com-
plications. First, a given instance may be far from the
past observed data points (e.g. patient cases). Because
of the lack of the support for alternative responses, it is
difficult to asses the anomalousness of these instances.
We refer to these instances as isolated points. Second,
the examples on the boundary of the class distribu-
tion support, also known as fringe points, may look
anomalous due to their low likelihood.

Because the underlying conditional distribution of the
data is unknown, a non-parametric approach that
looks for the label consistency of the instances on their
neighborhood (e.g. k-nearest neighbor or k-NN) can
be very useful (Papadimitriou & Faloutsos, 2003). The
problem with relying on models such as k-NN is that
they fail to detect clusters of anomalous instances. Our
approach differs from typical local neighborhood ap-
proaches in two important aspects. First, it respects
the structure of the manifold and accounts for more
complex interactions in the data. Second, it solves the
problem of isolated and fringe points by decreasing
the confidence in predicting an opposite label for such
points through regularization.

2. Background

Label propagation on the graph is widely used for
semi-supervised learning (SSL). The general idea is to
assume the consistency of labels among the data which
are 1) close to each other and 2) lie on the structure
(manifold/cluster). The two examples are the Consis-
tency Method of Zhou et al. (Zhou et al., 2004) and
the Harmonic Solution of Zhu et al. (Zhu et al., 2003),
which are the instances of unconstrained regularization
(Cortes et al., 2008). Let G be the similarity graph
with the nodes corresponding to {xi}n+mi=1 and with
the weighted edges W encoding pairwise similarities
between the nodes. We denote by L(W ) the (unnor-
malized) graph Laplacian defined as L(W ) = D −W
where D is a diagonal matrix whose entries are given
by dii =

∑
j wij . In the transductive setting, the un-

constrained regularization searches for soft (continu-
ous) label assignment such that it maximizes fit to the
labeled data and penalizes for not following the man-
ifold structure:

`? = min
`∈Rn

(`− y)TC(`− y) + `TK`, (1)

where K is a symmetric regularization matrix and C is

a symmetric matrix of empirical weights. C is usually
diagonal and the diagonal entries often equal to some
fixed constant cl for the labeled data and cu for the
unlabeled. In a SSL setting, y is a vector of pseudo-
targets such that yi ∈ {±1} is the label of the i-th
example when the example is labeled, and yi = 0 oth-
erwise. The appealing property of (1) is that it can be
computed by the following closed form solution:

`? = (C−1K + I)−1y (2)

3. Methodology

We now propose a way to compute the anomaly score
from (2). The output `? of (1) for the example i can
be rewritten (sgn refers to the sign function) as:

`?i = |`?i | × sgn(`?i ) (3)

SSL methods use sgn(`?i ) in (3) as the predicted label
for i. For an unlabeled example, the closer the value
of `i is to ±1, the more consistent labeling information
was propagated to it. The key observation, which we
exploit in this paper, is that we can interpret |`?i | as a
confidence of the label. We define the anomaly score
si as the absolute difference between the actual label
yi and the inferred soft label `i:

si = |`?i − yi|. (4)

We will now address the problems of isolated exam-
ples by setting K = L(W ) + γgI, where we diagonally
regularize the graph Laplacian. Intuitively, such a reg-
ularization lowers the confidence value |`?i | of all exam-
ples; however it reduces the confidence score of outlier
points relatively more. In the fully labeled setting, the
hard harmonic solution (Zhu et al., 2003) degenerates
to the weighted k-NN. To alleviate this problem, we
allow labels to spread on the graph by using soft con-
straints in the unconstrained regularization problem
(1). In particular, instead of cl = ∞ we set cl to a fi-
nite constant and we set C = clI. With such a setting
we can solve (1) using (2):

`? =

(
c−1l L(W ) +

(
1 +

γg
cl

)
I

)−1
y. (5)

To avoid computation of the inverse, we may calculate
(5) by solving a system of linear equations. We then
plug the output of (5) into (4) to get the anomaly
score. We will refer to this score as SoftHAD score.
Intuitively, when the confidence is high but sgn(`?i ) 6=
yi, we will consider the label yi of the case (xi, yi)
anomalous.
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Backbone Graph The computation of the system
of linear equations (5) scales with cubic1 time com-
plexity. This is not feasible for a graph with more
than several thousands of nodes. To address the prob-
lem, we use data quantization (Gray & Neuhoff, 1998)
and sample a set of nodes from the training data to
create G. We then substitute the nodes in the graph
with a smaller set of k � n + m distinct centroids
which results in O(k3).

4. Experiments

To evaluate our SoftHAD method, we compare it to
the following baselines: (1) 1-class SVM approach in
which we cover each class by a separate 1-class SVM
(Schölkopf et al., 1999), (2) Quadratic discriminant
analysis (QDA) model (Hastie et al., 2001), (3) SVM
classification model (Vapnik, 1995) with RBF kernel,
and (4) Weighted k-NN approach (Hastie et al., 2001)
that uses the same weight metric W .

4.1. UCI ML Datasets

We first evaluated our method on the three UCI ML
datasets (Frank & Asuncion, 2010) for which an or-
dinal response variable was available to calculate the
true anomaly score. In particular, we selected 1) Wine
Quality dataset with the response variable quality
2) Housing dataset with the response variable me-
dian value of owner-occupied homes and 3) Auto MPG
dataset the response variable miles per gallon. In each
of the dataset we scaled the response variable yr to the
[−1,+1] interval and set the class label as y := yr ≥ 0.
We randomly switched the class labels for three per-
cent2 of examples. The true anomaly score was com-
puted as the absolute difference between the original
response variable yr and the (possibly switched) la-
bel. Table 1 compares the agreement scores to the
true score for all methods on (2/3, 1/3) train-test split.
We see that SoftHAD either performed the best or was
close to the best method.

4.2. Medical data

In this real-world experiment, we evaluated CAD on
data extracted from electronic health records (EHR)
of 4,486 patients. Our goal was to detect unusual lab
test orders or medication administrations. We divided
EHRs into two groups: a training set (2646 patients),
and a test set (1840 patients). For each patient, we seg-
mented the data according to the length of the patient

1The complexity can be further improved to O(n2.376
u )

with the Coppersmith-Winograd algorithm.
2We also performed the experiments with 1% to 10% of

switched labels with the same trends.

Wine Quality Housing Auto MPG
QDA 75.1% (1.3) 56.7% (1.5) 65.9% (2.9)
SVM 75.0% (9.3) 58.5% (4.4) 37.1% (8.6)

1-class SVM 44.2% (1.9) 27.2% (0.5) 50.1% (3.5)
wk–NN 67.6% (1.4) 44.4% (2.0) 61.4% (2.3)

SoftHAD 74.5% (1.5) 71.3% (3.2) 72.6% (1.7)

Table 1. Mean anomaly agreement score and variance (over
100 runs) for CAD methods on the 3 UCI ML datasets.

stay where we considered all the patient data avail-
able at 8:00am each day. These patient instances were
then converted into: (1) 9,282 features and (2) 749
labels/tasks – reflecting whether a particular lab was
ordered or a particular medication was given within
a 24-hour period. This segmentation led to 51,492
patient-state instances, such that 30,828 were used for
training and 20,664 for testing. More details can be
found in (Hauskrecht et al., 2010).

Parameters for the graph-based algorithms To
construct G, we computed the similarity weights as:

wij = exp
[
−
(
||xi − xj ||22,ψ

)
/σ2
]
,

where ψ is a weighing of the features (we used
Wilcoxon score (Hanley & McNeil, 1982)) and σ is a
length scale parameter. We chose σ as 10% of the em-
pirical variance of the Euclidean distances. For each
label, we sampled an equal number of positive and
negative instances to construct a k-NN graph. We set
k = 75, cl = 1 and varied γg and the graph size.

Scaling for multi-task anomaly detection In
this dataset, we have 749 binary labels. We want to
output an anomaly score which is comparable among
the different tasks/labels so we can, for example, set a
unified threshold when the system is deployed in prac-
tice. To achieve this score comparability, we propose a
simple approach where we take the minimum and the
maximum score obtained for the training set and scale
all scores for the same task linearly so that the score
after the scaling ranges from 0 to 1.

4.3. Results and Conclusion

For the dataset described above, we computed the
SoftHAD anomaly scores according to (5). We asked
the panel of 15 clinical experts to evaluate the 222 pa-
tient case-label pairs (selected from 749× 20, 664 test
case-label pairs), such that every case-label was eval-
uated by 3 experts who decided whether the alert was
clinically relevant. We finally evaluated the perfor-
mance of the CAD methods using the area under the
ROC curve.
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Figure 1. Medical Dataset: Varying regularizer 1) γg for
SoftHAD 2) cost c for SVM with RBF kernel.
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Figure 2. Medical Dataset: Varying graph size. Compar-
ison of 1) SoftHAD and 2) weighted k-NN on the same
graph.

In Figure 1, we compared SoftHAD vs. CAD using
SVM with RBF kernel for different regularization set-
tings. We sampled 200 examples to construct G (or
train an SVM) and varied the γg regularizer (or cost
c for SVM). Scaling anomaly scores to the same range
improved the performance of both methods and makes
the methods less sensitive to the regularization set-
tings. We outperformed SVM approach over the range
of regularizers. In Figure 2, we fixed γg = 1 and varied
the number of examples we sampled from the training
set to construct the similarity graph and compared it
to the weighted k–NN. The error bars show the vari-
ances over 10 runs. Notice that the both of the meth-
ods are not too sensitive to the graph size. In future,
we plan to extend the approach to the online anomaly
detection. This can be beneficial for the deployment
of our SoftHAD method in hospitals.
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