Robust Face Recognition Using Online Learning
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Online Algorithm

Inputs:
an unlabeled example x
up to n, representative vertices C;_1 = {cy,cao, ...
vertex multiplicities v¢—1

Robustness to outliers

Similarity Matrix
* Defined over set of faces, higher weights to the pixels in the center

Algorithm: Pl
Ct = Ct_1 m Wi; = €XpP {_ ;{;éxj }, )
Vi = Vi1 X; — Xj||2,1;’; : )
while (|C¢| = ng + 1) where d(x;,x;) = min q [[(xi = %i) = (% = %)y 5 ¢
R—92R i /% = /%1, ,
greedily choose C; C Cy—1 with ming sec, ||a — b|| > R -
update v; based on the repartitioning Data Quantization
Goal Approach if x; is closer than R to any c; € C " g_an_Tot_tstore arl,l the ga?t ctl)ata " ”
. . _ - 4 - vil(i) = v (i) - 1 = Similarity graph needs to be reasonably sma
Aface recognition algorithm that: fe)glrlgiig(rs? I;n;iemi;nric:y w;clzr;eprﬂegt/a;)r else (%) (1) + » Use k-centers algorithm to maintain constant graph size
" Hasahigh accuracy observed faces and inference of vi(|Ce| +1) =1 : Egg;eiggtktgf mnlulljtlitg?ilceitine(;des by & single one
= Has a high recall fﬁce IDsh based on the structure of add x; to the position (|C¢| + 1) in C; T 0, = (Lyu + ng)_lwuzﬁz
the graph.

build a similarity matrix W; over the vertices C%
build a matrix V3 whose diagonal elements are v

= |s robust to outliers

=  Runs in real time
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