
1

Semi-supervised Learning with 
Random Walks on Graphs

Michal Valko (University of Pittsburgh)

Branislav Kveton (IRSC), Matthai Philipose (IRS)

Týždeň absolventov Matfyzu 2009, 18. decembra 2009 12:30



2

Main Ideas

• Goal:  Adaptation to (structured) patterns with minimal 
human feedback (labels)
– Most of data around is unlabeled

– Labeling is expensive

• Solution:  Semi – Supervised learning
– Labeled examples are provided in the beginning

• Provide initial bias

– Unlabeled examples come as available

• Approach: Graph – based inference with max-margin learning 



Semi-supervised learning
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Data Supervised Semi-Supervised
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Structured data

brace

matryoshka, matryoshka … matryoshka matryoshka tylenol, tylenol, tylenol 

With sequences we have dependencies between yi and yi+1

INPUT x

INPUT x

LABEL y

LABEL y
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Overview 

• Graph – based inference

• Offline Learning

• Online Learning

– Face Recognition

• Max – Margin graph cuts

• Structured Learning

– Handwriting Recognition

• Online Learning

– Object Recognition
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Graph-based Semi-Supervised 
Learning
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Graph-based Semi-Supervised 
Learning
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Harmonic Function Solution (HFS)

• Labels of unlabeled vertices are inferred using the 
harmonic function solution
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Regularized HFS
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Regularization

ONLY LABELED                                                                 ALL DATA

Low 
confidence



Online HFS

Inputs: an example xt, a data adjacency graph W

Algorithm:

Add xt to the graph W and compute the Laplacian L

Infer labels on the graph:

Predict 

Outputs: a prediction    , an updated data adjacency graph W
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algorithm?
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Online HFS

Inputs: an example xt, a data adjacency graph W

Algorithm:

If the graph W has more than M vertices, quantize it

Add xt to the graph W and compute the Laplacian L

Infer labels on the graph:

Predict 

Outputs: a prediction    , an updated data adjacency graph W
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Quantizing Data Adjacency Graphs

• Preferably a strategy that minimizes the error:

where W and W’ are quantized and complete data 
adjacency graphs, respectively, and L and L’ are the 
corresponding graph Laplacians

• We merge the two most similar vertices in the graph 
W and increase the multiplicity of the new vertex

• The harmonic function solution on the quantized 
graph can be computed in O(M3) instead of O(t3)

lulguululguuuu
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Theoretical Guarantees

• We seek a regret bound of the form:

• The errors should be bounded on the order of
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Experiments

• Face recognition of 3 people (roughly 1,500 faces) on 
a 60-second video from ILS Open House 2008

Training set

Test set



Experimental Results

• SVMs with RBFs misclassify 18 percent of faces

• Online HFS reduces the error to 7 percent
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Offline HFS

SVMs with RBFs

Online HFS



Video(s)

• Go to Structured learning?
17
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Overview 

• Graph – based inference

• Offline Learning

• Online Learning

– Face Recognition

• Max – Margin graph cuts

• Structured Learning

– Handwriting Recognition
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Max Margin Graph Cuts

f(x) 

decision boundary

yt = -1 yt = 1
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Max Margin Graph Cuts
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Regularization

ONLY LABELED                                                                 ALL DATA

Low 
confidence



22

Theory

• With enough correctly inferred labels we can 
generalize well. 

RISK EMPIRICAL RISK WRT INFERRED LABELS

GRAPH RISK GRAPH COMPLEXITY COMPLEXITY
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Overview 

• Graph – based inference

• Offline Learning

• Online Learning

– Face Recognition

• Max – Margin graph cuts

• Structured Learning

– Handwriting Recognition
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Structured Graph Cuts

• For many structured 
labels there is no labeled 
example

• Huge number of possible 
structured labels 

CAT MAT

CAT

PAN

CAN
RAN

SAP

SITSAT

RAT

CAN

SIP

CAN
RAT
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BREAK – INFER – SYNCHRONIZE

B

A or O

E

C or R

C

B–R–A–C–E  
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BREAK – INFER – SYNCHRONIZE

• Synchronization for sequences is done 
using Viterbi algorithm

P(y1 = b)

P(y1|x1)

P(y3=a|y2=a) P(y4=a|y3=c) P(y5=e|y4=c)P(y2=r|y1=b)

P(y2|x2) P(y3|x3) P(y4|x4) P(y5|x5)
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Max Margin Markov Networks

• Augment M3N learning with unlabeled structured 
data

a-z a-z a-z a-z a-zy

x

Maximum Margin Markov Networks (Taskar ‘03)

Synchronized 

Structured 

Label

b r eca
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Offline experiments 

• Handwriting Recognition – 26 way classification

• Letter: 16x8 pixels 

• 7K words, 50K letters
Letter K

TRAIN

TEST

labeled

unlabeled
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• skiing

• s, k, i, i, n, g

• S, K,  I,   I,  N,  Y

• S–K–I–I–N–G

‘Synchronizing’ structured labels

PY = 0.28 PG = 0.13

Last letter of the word SKIING
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Results
(supervised vs. semi-supervised error rates)
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Results
(structured vs. unstructured error rates)
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