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e Problem: Traditional RLHF relies on reward models (e.g.,
Bradley-Terry) which fail to capture intransitive human preferences.

o Alternative: Nash Learning from Human Feedback (NLHF) frames the
problem as finding a Nash Equilibrium (NE) of a preference game.

o Our Contribution: We introduce Nash Mirror Prox (NashMP),
a novel online NLHF algorithm.

e Key Feature: NashMP leverages the Mirror Prox optimization scheme
to achieve faster convergence, which allows for last-iterate linear
convergence to the regularized NE.

e Practice: Our method is compatible with existing methods, and shows
competitive performance in fine-tuning Large Language Models (LLMs).

Setting: Regularized Nash Learning

o Preference game: Preferences P(y > y'|x) induces a bilinear form over
preferences P(m = 7') and thus we can define max, miny P(w = 7');

e Goal: Find a symmetric NE, or von Neumann Winner (VNW), a policy 7*
that beats any other policy with probability at least 1/2 : P(n* > 7) > 1/2.

e Regularized Game: For practical LLM fine-tuning, we must stay close to
a reference policy 7 (e.g., the SFT model). We solve a regularized game
with the objective:

£ P(r = n') — BKL(r||7™) + BKL(#|| 7"

o This regularized game has a unique NE, denoted 7. Finding it efficiently is
the main objective.
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Algorithm: Nash Mirror Prox (NashMP)

NashMP is an adaptation of the Mirror Prox method to the regularized preterence
came. It performs a two-step update at each iteration k:

o Extrapolation Step: Compute a best response against the online policy
Tk, staying close to a target policy m; and 7'

Tht1/2 = arg;nin P(m; = m) + BKL(7||7™) + 5KL(7TH7Tk) .

e Update Step: Compute a best response against the online policy 7.1,
staying close to a target policy 7. and 7'

Tht] = arg%nin P(Ty1jo = ) + BKL(WHWmf) + fKL(WHﬂk) .

Intuition: Two-step approximation of a more numerically stable discretization
of the gradient flow ODE: proximal point method

Tyl = arg%nin P(mp1 = m) + ﬁKL(WHWref) + iKL(T{'H?Tk) .

Theorem. For 8 < 1/2, for the last iterates 7, mx 1 /o of NashMP

=0 ((1+28)7%/B);
= O((1+28)"%7/p)
— 10g 75| lspan = O (1 + 28) 7572/ )

where K is the number of iterations (/N = 2K preference queries).

e The KL-divergence decreases as: KL(75||m )
» Exploitability gap satisfies SubOpt (g1 2)

e Span semi-norm in log-probs || log mx

Algorithm KL to f-reg. VN'W
NashMD vunos et a1, 2023) O((ﬁQN)_l)
Online IPO (calandriello et al., 2024) Asymptotic

INPO (Znang et a1, 2025) O((ﬁzN)_l)

MMD (Wang et al., 2025)
EGPO (Znou et al., 2025)

N&ShMP (this paper)

O((1+8%)"/8)
O((1 = B/(1+ B +2Y))")
O((1 +28)"7/p)

¢ Original Game: NashMP finds an e-VNW of the unregularized game
with O(1/€) queries, matching SOTA while providing stronger guarantees
for the regularized setting.
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Approximate NashMP

Problem: steps of NashMP are intractable under a functional approximation,
thus we need an approximation for p € {1,2}

7Tk+p/2 R arg min {P<ﬁ-/€—|—(p—1)/2 - ) + ﬁKL(WHWref) T (5/77>KL(7TH7AT/€)} ;

mell
Solution: approximate steps by policy gradients:

9k+§,t+1 — 9k+§,t — WVng(@/ﬁg,t) )

where

Jk+p/2(6)) =

<I:y’wﬁg[73(7/%/{4—(]9—1)/2 ~ ?/)] + 6KL(7T@H7TIG{:) T (5/77)KL(7T9Hﬁk) '

Lemma. Let ¢ < 1/3 and assume that @J/Hg is estimated using a batch
size of size B, it holds log 71,0 — log Ty, p < €forall k € {0,..., K — 1}
and p € {1,2} with high probability after T steps, where

T =0((ch) " log(1/(82))), B=0((c;-&)7).

Practical Implementation for LLMs

The exact updates are infeasible for LLMs. We propose a practical, approximate
VETSIOn.

e Key Idea: Instead of solving the inner minimization problems exactly, we
take one (or few) gradient steps and use a slowly-updated target network.

¢ Loss Function: The
online policy 7y is updated usmg a loss that pits it against a target policy mgtarset:

Lxasinip(0) = Blog mo(y|z) | 0 mo(y|T)

-~ log
el (ylx)  n T mhewa(y|x)
e Target Update: The target network parameters 6% are updated via an

exponential moving average (EMA) of the online parameters 6:
etarget _ /{(975 (1 L Ii) Hzarget

t+1
e The EMA parameter k controls the trade-off, with 1/k acting as the effective
number of inner optimization steps. This approach is common in deep RL and

th,Oyy/Nﬂe P(y ~ Y ‘ZC)

stabilizes training.

Experiments: Matrix Games

e Setup: A contextual dueling bandit game designed to lack a Bradley-Terry
reward model (i.e., has intransitivity).
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Experiments: LLM Alignment

e Setup: Fine-tuning a Gemma-2B model on the RLHFlow dataset. We
compare against Online DPO, Online IPO, NashMD, and "Regularized
Self-Play' (NashMP without the target network).

e Results: Pairwise win rates judged by a more powerful Gemma-9B8 model.

Win rate SE'T Online DPO  Online IPO  NashMD  Reg. Self-Play NashMP, k = 0.1
SE'T — 0.1623+0.0087  0.1554+0.0001  0.1974+0.00908 0.153640.0087 0.1283+0.0081
Online DPO 0.8377+0.0087 — 0.4743+0.0115 0.5788+0.0116 0.4730+0.0113 0.4392+0.0116
Online IPO 0.8446+0.0091 0.5257+0.0115 — 0.6115+0.0121 0.5036+0.0118 0.4706+0.0117
NashMD 0.8026=+0.0008 0.4212+0.0116 0.3885+0.0121 — 0.4031+0.0119 0.3605+0.0115
Reg. Self-Play  0.8464+0.0087 0.5270+0.0113 0.4964+0.0118 0.5969+0.0119 — 0.4620+0.0118

NashMP, x = 0.1 0.8717+0.0081 0.5608+0.0116 0.5294+0.0117 0.6395+0.0115 0.5380=+0.0118 —
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