

Accelerating Nash Learning from Human Feedback via Mirror Prox

Daniil Tiapkin^{1,2}, Daniele Calandriello³, Denis Belomestny^{4,5}, Éric Moulines^{1,6}, Alexey Naumov⁵, Kashif Rasul⁷, Michal Valko⁸, Pierre Ménard⁹

¹CMAP, CNRS, École Polytechnique, ²LMO, Université Paris-Saclay, ³Google DeepMind, ⁴Duisburg-Essen University, ⁵HSE University, ⁶Mohamed Bin Zayed University of AI, ⁷Hugging Face, ⁸Stealth Startup / Inria / ENS, ⁹ENS Lyon

- **Problem:** Traditional RLHF relies on reward models (e.g., Bradley-Terry) which fail to capture intransitive human preferences.
- Alternative: Nash Learning from Human Feedback (NLHF) frames the problem as finding a Nash Equilibrium (NE) of a preference game.
- Our Contribution: We introduce Nash Mirror Prox (NashMP), a novel online NLHF algorithm.
- **Key Feature:** NashMP leverages the Mirror Prox optimization scheme to achieve faster convergence, which allows for **last-iterate linear convergence** to the regularized NE.
- Practice: Our method is compatible with existing methods, and shows competitive performance in fine-tuning Large Language Models (LLMs).

Setting: Regularized Nash Learning

- **Preference game:** Preferences $\mathcal{P}(y \succ y'|x)$ induces a bilinear form over preferences $\mathcal{P}(\pi \succ \pi')$ and thus we can define $\max_{\pi} \min_{\pi'} \mathcal{P}(\pi \succ \pi')$;
- Goal: Find a symmetric NE, or von Neumann Winner (VNW), a policy π^* that beats any other policy with probability at least $1/2 : \mathcal{P}(\pi^* \succ \pi) \geq 1/2$.
- Regularized Game: For practical LLM fine-tuning, we must stay close to a reference policy π^{ref} (e.g., the SFT model). We solve a regularized game with the objective:

$$\max_{\pi} \min_{\pi'} \mathcal{P}_{\beta}(\pi \succ \pi') \triangleq \mathcal{P}(\pi \succ \pi') - \beta KL(\pi || \pi^{ref}) + \beta KL(\pi' || \pi^{ref})$$

• This regularized game has a unique NE, denoted π_{β}^{\star} . Finding it efficiently is the main objective.

Algorithm: Nash Mirror Prox (NashMP)

NashMP is an adaptation of the Mirror Prox method to the regularized preference game. It performs a two-step update at each iteration k:

Extrapolation Step: Compute a best response against the *online* policy π_k , staying close to a *target* policy π_k and π^{ref} :

$$\pi_{k+1/2} = \arg\min_{\pi} \left\{ \mathcal{P}(\pi_k \succ \pi) + \beta \text{KL}(\pi || \pi^{\text{ref}}) + \frac{\beta}{\eta} \text{KL}(\pi || \pi_k) \right\}.$$

2 Update Step: Compute a best response against the *online* policy $\pi_{k+1/2}$, staying close to a *target* policy π_k and π^{ref} :

$$\pi_{k+1} = \arg\min_{\pi} \left\{ \mathcal{P}(\pi_{k+1/2} \succ \pi) + \beta \text{KL}(\pi || \pi^{\text{ref}}) + \frac{\beta}{\eta} \text{KL}(\pi || \pi_k) \right\}.$$

Intuition: Two-step approximation of a more numerically stable discretization of the gradient flow ODE: *proximal point method*

$$\pi_{k+1} = \arg\min_{\pi} \left\{ \mathcal{P}(\pi_{k+1} \succ \pi) + \beta \text{KL}(\pi || \pi^{\text{ref}}) + \frac{\beta}{\eta} \text{KL}(\pi || \pi_k) \right\}.$$

Theorem. For $\beta < 1/2$, for the last iterates π_K , $\pi_{K+1/2}$ of NashMP

- The KL-divergence decreases as: $\mathrm{KL}(\pi_{\beta}^* || \pi_K) = \mathcal{O}((1+2\beta)^{-K}/\beta);$
- Exploitability gap satisfies SubOpt_{\beta}(\pi_{K+1/2}) = \mathcal{O}((1+2\beta)^{-K/2}/\beta);
- Span semi-norm in log-probs $\|\log \pi_K \log \pi_\beta^*\|_{\text{span}} = \mathcal{O}((1+2\beta)^{-K/2}/\beta);$

where K is the number of iterations (N = 2K preference queries).

Algorithm	KL to β -reg. VNW
NashMD (Munos et al., 2023)	$\mathcal{O}((eta^2N)^{-1})$
Online IPO (Calandriello et al., 2024)	Asymptotic
INPO (Zhang et al., 2025)	$\mathcal{O}((eta^2N)^{-1})$
MMD (Wang et al., 2025)	$\mathcal{O}((1+\beta^2)^{-N}/\beta)$
EGPO (Zhou et al., 2025)	$\mathcal{O}((1-\beta/(1+\beta+2Y))^N)$
NashMP (this paper)	$\mathcal{O}((1+2\beta)^{-N/2}/\beta)$

• Original Game: NashMP finds an ϵ -VNW of the unregularized game with $\tilde{\mathcal{O}}(1/\epsilon)$ queries, matching SOTA while providing stronger guarantees for the regularized setting.

Approximate NashMP

Problem: steps of NashMP are intractable under a functional approximation, thus we need an approximation for $p \in \{1, 2\}$

$$\hat{\pi}_{k+p/2} \approx \arg\min_{\pi \in \Pi} \left\{ \mathcal{P}(\hat{\pi}_{k+(p-1)/2} \succ \pi) + \beta \text{KL}(\pi \| \pi^{\text{ref}}) + (\beta/\eta) \text{KL}(\pi \| \hat{\pi}_k) \right\},$$

Solution: approximate steps by policy gradients:

$$\theta_{k+\frac{p}{2},t+1} = \theta_{k+\frac{p}{2},t} - \gamma \hat{\nabla} J_{k+\frac{p}{2}}(\theta_{k+\frac{p}{2},t}),$$

where

$$J_{k+p/2}(\theta) \triangleq \mathbb{E}_{y' \sim \pi_{\theta}} [\mathcal{P}(\hat{\pi}_{k+(p-1)/2} \succ y')] + \beta KL(\pi_{\theta} \| \pi^{ref}) + (\beta/\eta) KL(\pi_{\theta} \| \hat{\pi}_k).$$

Lemma. Let $\bar{\varepsilon} < 1/3$ and assume that $\hat{\nabla} J_{k+\frac{p}{2}}$ is estimated using a batch size of size B, it holds $\log \hat{\pi}_{k+p/2} - \log \pi_{k+p/2} \leq \bar{\varepsilon}$ for all $k \in \{0, \ldots, K-1\}$ and $p \in \{1, 2\}$ with high probability after T steps, where

$$T = \mathcal{O}((c_{\beta}^{\star})^{-1} \log (1/(\beta \bar{\varepsilon}))), \quad B = \tilde{\mathcal{O}}((c_{\beta}^{\star} \cdot \bar{\varepsilon})^{-2}).$$

Practical Implementation for LLMs

The exact updates are infeasible for LLMs. We propose a practical, approximate version.

- **Key Idea:** Instead of solving the inner minimization problems exactly, we take one (or few) gradient steps and use a slowly-updated target network.
- Loss Function: The online policy π_{θ} is updated using a loss that pits it against a target policy π_{θ} target:

$$\mathcal{L}_{\text{NashMP}}(\theta) = \mathbb{E}_{x \sim \rho, y, y' \sim \pi_{\theta}} \left[P(y \succ y'|x) + \beta \log \frac{\pi_{\theta}(y|x)}{\pi^{\text{ref}}(y|x)} + \frac{\beta}{\eta} \log \frac{\pi_{\theta}(y|x)}{\pi_{\theta^{\text{target}}}(y|x)} \right]$$

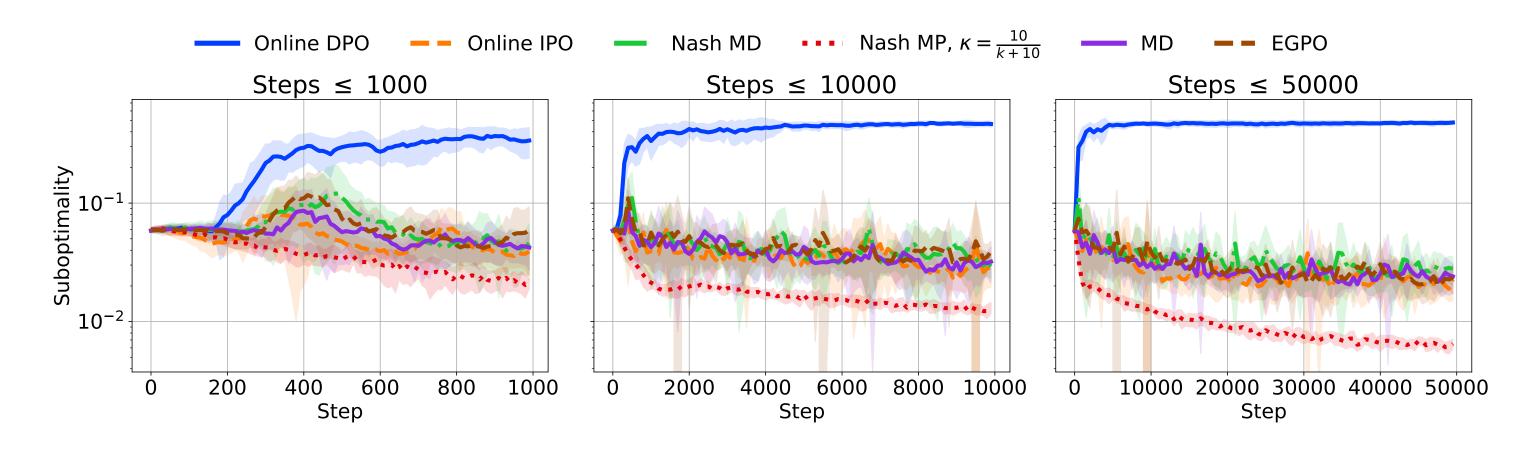
• **Target Update:** The target network parameters θ^{target} are updated via an exponential moving average (EMA) of the online parameters θ :

$$\theta_{t+1}^{\text{target}} = \kappa \theta_t + (1 - \kappa) \theta_t^{\text{target}}$$

• The EMA parameter κ controls the trade-off, with $1/\kappa$ acting as the effective number of inner optimization steps. This approach is common in deep RL and stabilizes training.

Experiments: Matrix Games

• **Setup:** A contextual dueling bandit game designed to lack a Bradley-Terry reward model (i.e., has intransitivity).



Experiments: LLM Alignment

- **Setup:** Fine-tuning a Gemma-2B model on the RLHFlow dataset. We compare against Online DPO, Online IPO, NashMD, and "Regularized Self-Play" (NashMP without the target network).
- Results: Pairwise win rates judged by a more powerful Gemma-9B model.

Win rate	SFT	Online DPO	Online IPO	NashMD	Reg. Self-Play	NashMP, $\kappa = 0.1$
SFT	_	0.1623 ± 0.0087	0.1554 ± 0.0091	0.1974 ± 0.0098	0.1536 ± 0.0087	0.1283 ± 0.0081
Online DPO	0.8377 ± 0.0087		0.4743 ± 0.0115	0.5788 ± 0.0116	0.4730 ± 0.0113	0.4392 ± 0.0116
Online IPO	0.8446 ± 0.0091	0.5257 ±0.0115		0.6115 ± 0.0121	0.5036 ± 0.0118	0.4706 ± 0.0117
NashMD	0.8026 ±0.0098	0.4212 ± 0.0116	0.3885 ± 0.0121		0.4031 ± 0.0119	0.3605 ± 0.0115
Reg. Self-Play	0.8464 ± 0.0087	0.5270 ±0.0113	0.4964 ± 0.0118	0.5969 ± 0.0119	_	0.4620 ± 0.0118
NashMP, $\kappa = 0.1$	0.8717 ± 0.0081	0.5608 ±0.0116	0.5294 ±0.0117	0.6395 ± 0.0115	0.5380 ±0.0118	_