

Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees

D. Tiapkin¹, D. Belomestny^{2,1}, D. Calandriello³, É. Moulines⁴, R. Munos³, A. Naumov¹, M. Rowland³, M. Valko³, P. Ménard⁵ ¹HSE University, ²Duisburg-Essen University, ³DeepMind, ⁴École Polytechnique, ⁵ENS Lyon

Overview

- OPSRL algorithm with minimax optimal regret bound up to poly-log factors for large enough T;
- First theoretically and computationally efficient modification of posterior sampling;
- Resolves 2 open problems by [Agrawal and Jia, 2017];
- Novel tight anti-concentration inequality for weighted sums of Dirichlet random variables;

Setting

- Tabular MDP: H horizon, S states, A actions, $p_h(s'|s, a)$ unknown transitions, deterministic reward $r_h(s, a) \in [0, 1].$
- Regret: $\sum V_1^{\star}(s_1) V_1^{\pi^t}(s_1)$ **Optimistic Posterior Sampling for Reinforcement Learning**
- UCBVI bonus-based exploration (theoretically near optimal, empirically bad)

$$\overline{Q}_{h}^{t}(s,a) = r_{h}(s,a) + \widehat{p}_{h}^{t}\overline{V}_{h+1}^{t}(s,a) + \underline{B}_{h}^{t}(s,a), \qquad \overline{V}_{h}^{t}(s) = \max_{a}$$

where $\widehat{p}_h^t(s, a)$ is empirical transition probabilities, and $\widehat{p}_h^t f(s, a) \triangleq \sum_{i=1}^{\infty} \widehat{p}_h^t(s'|s, a) f$

• **PSRL** exploration (no known regret guarantees, empirically good)

$$\widetilde{Q}_h^t(s,a) = r_h(s,a) + \widetilde{p}_h^t \widetilde{V}_{h+1}^t(s,a), \qquad \widetilde{V}_h^t(s) = \max_a \widetilde{Q}_h^t(s,a),$$

where $\widetilde{p}_{h}^{t}(s, a) \sim \rho_{h}^{t}(s, a)$ is sample from posterior distribution for transition probabilities. • **OPSRL** exploration (theoretically near optimal, empirically good)

$$\overline{Q}_{h}^{t}(s,a) = r_{h}(s,a) + \max_{j \in [H]} \widetilde{p}_{h}^{t,j} \widetilde{V}_{h+1}^{t}(s,a), \qquad \overline{V}_{h}^{t}(s) = \max_{a} \overline{Q}_{h}^{t}(s,a)$$

where $\widetilde{p}_{h}^{t,j}(s,a) \sim \rho_{h}^{t}(s,a)$ are $J = \widetilde{\mathcal{O}}(1)$ samples from posterior distribution for transition probabilities.

Regret bounds

Algorithm	Upper bou
UCBVI [Azar et al., 2017]	
UCB-Advantage [Zhang et al., 2020]	$\widetilde{\mathcal{O}}(\sqrt{H^3SAT})$
RLSVI [Xiong et al., 2021]	
SOS-OPS-RL [Agrawal and Jia, 2017]	$\widetilde{\mathcal{O}}(\sqrt{H^4S^2A^2})$
PSRL [Osband et al., 2013]	N/A
OPSRL (this paper)	$\widetilde{\mathcal{O}}(\sqrt{H^3SAT})$
Lower bound [Jin et al., 2018, Domingues et al., 2021]	$\Omega(\sqrt{H^3SAT}$

Green: empirically efficient, Orange: empirically fair, Red: empirically poor.

Optimistic prior of OPSRL

• add an artificial isolated state s_0 with $r_h(s_0, a) > 1$; • add n_0 pseudo-transitions from each state s to s_0 into the history of visits. • use posterior inflation by $\kappa = \mathcal{O}(1)$;

Figure 1:Left: Regret of OPSRL and baselines on grid-world environment with 100 states and 4 action for H = 50 an transitions noise 0.2, average over 4 seeds. **Right:** regret of **OPSRL** for $J \in \{1, 4, 8, 16, 32\}$ on the same environment.

Upper and lower bounds on tails for Dirichlet weighted sum

For any $\alpha = (\alpha_0 + 1, \alpha_1, \dots, \alpha_m) \in \mathbb{R}^{m+1}_+$ define $\overline{p} \in \Delta_m$ with $\overline{p}(\ell) = \alpha_l / \overline{\alpha}, \ell = 0, \dots, m$, where $\overline{\alpha} = \sum_{j=0}^m \alpha_j$ and $\overline{p}'(\ell) = (\alpha_\ell + \mathbb{1}\{\ell = 0\})/(\overline{\alpha} + 1)$. Under technical assumptions, for $f \colon \{0, \dots, m\} \to [0, b_0]$ and $\mu \in (\overline{p}f, b_0)$ $(1-\varepsilon)\left(1-\Phi\left(\sqrt{2\overline{\alpha}\,\mathcal{K}_{\inf}(\overline{p},\mu,f)}\right)\right) \leq \mathbb{P}_{w\sim\mathcal{D}\mathrm{ir}(\alpha)}[wf\geq\mu] \leq \exp\left(-(\overline{\alpha}+1)\,\mathcal{K}_{\inf}(\overline{p}',\mu,f)\right),$ where $\Phi(\cdot)$ is CDF of standard normal law and $\mathcal{K}_{inf}(p, u, f)$ is given by $\left[1 - \lambda \frac{f(X) - u}{b_0 - u}\right] = \inf \left\{ \mathrm{KL}(p, q) : q \in \Delta_m, qf \ge u \right\}$

$$\mathcal{C}_{inf}(p, u, f) \triangleq \max_{\lambda \in [0,1]} \mathbb{E}_{X \sim p} \left[\log \left(1 - \frac{1}{2} \right) \right]$$

- Lower bound is an essential part for optimism and small number of samples J;
- Upper bound is important for the reduction to **UCBV**
- Main application: boundir

ng linear forms of Dirichelet r.v. (e.g.,
$$\widetilde{p}_{h}^{t,j}\widetilde{V}_{h+1}^{t}(s,a)$$
)
 $\widetilde{p}_{h}^{t,j}(s,a) \sim \mathcal{D}ir(\alpha_{0}+1,\alpha_{1},\ldots,\alpha_{S})$ where $\begin{cases} \alpha_{0} = n_{0}/\kappa - 1\\ \alpha_{i} = n_{h}^{t}(s_{i}|s,a)/\kappa \end{cases}$

and
$$\overline{\alpha} = (\overline{n}_h^t(s, a) - \kappa) / \kappa$$

$$\overline{Q}_{h}^{t}(s,a),$$

