

DeepMind **Large-Scale Representation Learning on Graphs via Bootstrapping**

Self-Supervised Node Representation Learning

Unlabeled data widely available in graphs domain, procuring labels is costly ⇒ Self-supervised learning trains a representation *without labels*

Bootstrapped Graph Latents (BGRL)

- No need to define negative examples particularly hard in graphs domain!
- Computation scales *linearly* as opposed to *quadratic* all-vs-all contrastive methods 0 \Rightarrow Easily applicable to very large graphs that do not fit in memory!

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi Munos, Petar Veličković, Michal Valko

1) Pretrain representation with unlabeled data

2) On top of frozen features, train simpler model making use of small amount of labelled data

Experimental Results

Compare under frozen linear evaluation protocol on <u>standard benchmarks</u> against

- DGI
- **GRACE (quadratic all-vs-all contrastive)**

Dataset	Amazon Photos	WikiCS	Amazon Computers	Coauthor CS	Coauthor Phy
#Nodes	7,650	11,701	13,752	18,333	34,493
#Edges	119,081	216,123	245,861	81,894	247,962
DGI accuracy	91.61 ± 0.22	75.35 ± 0.14	83.95 ± 0.47	92.15 ± 0.63	94.51 ± 0.52
GRACE accuracy	92.78 ± 0.45	$\textbf{80.14} \pm \textbf{0.48}$	89.53 ± 0.35	91.12 ± 0.20	OOM
BGRL accuracy	$\textbf{93.17} \pm \textbf{0.30}$	79.98 ± 0.10	$\textbf{90.34} \pm \textbf{0.19}$	93.31 ± 0.13	95.73 ± 0.05
GRACE Memory	1.81 GB	3.82 GB	5.14 GB	11.78 GB	OOM
BGRL Memory	0.47 GB	0.63 GB	0.58 GB	2.86 GB	5.50 GB

- Train from subsampled graph neighborhoods, using complex message-passing encoder networks
- **Semi-supervised learning** setting, using labels to shape representations: 1% of nodes are of interest for classification, other 99% used for self-supervision

conjunction with data

BGRL matches/exceeds state of the art without negative examples with 5–10x memory savings

(requires defining negative examples)

Achieved 2nd place on <u>OGB-LSC MAG240M</u> challenge at KDD Cup 2021

Extremely large-scale (240 million nodes, 1 billion edges)