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> medical data
> graph on patient states
> [abels are the medical action

> goal: online detection of anomalous data
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Online Semi-Supervised Learning and Face Recognition

This project focuses on real-time learning without explicit feedback. This work combines the ideas of semi-supervised learning
on approximate graphs and online learning. In particular, we develop algorithms that iteratively build a graphical
representation of the world and update it on-the-fly with observed examples (both labeled and unlabeled). We proved regret
bounds of the solutions, demonstrated that the system can recognize faces in real-time even in a resource constraint
environment and can take advantage of the manifold structure to outperform existing methods. The following videos show how
online semi-supervised learning can be used to train a robust face recognizer of a person from just a single frontal image:
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Graph Sparsification

Goal: Get graph G and find sparse H

G H ©—o
@
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Graph Sparsification: What is sparse?

What does sparse graph mean?

P average degree < 10 is pretty sparse
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Graph Sparsification: What is sparse?

What does sparse graph mean?
> average degree < 10 is pretty sparse
> for billion nodes even 100 should be ok

> in general: average degree < polylogn

Are all edges important?
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Graph Sparsification: What is sparse?

What does sparse graph mean?
> average degree < 10 is pretty sparse
» for billion nodes even 100 should be ok

> in general: average degree < polylogn

Are all edges important?

in a tree — sure, in a dense graph perhaps not

-
lrzia—
. Michal Valko — Graphs in Machine Learning Sequel - 30/78



Graph Sparsification: What is good sparse?

Michal Valko — Graphs in Machine Learning Sequel - 31/78



Graph Sparsification: What is good sparse?
Good sparse by Benczir and Karger (1996) = cut preserving!

Michal Valko — Graphs in Machine Learning Sequel - 31/78



Graph Sparsification: What is good sparse?
Good sparse by Benczir and Karger (1996) = cut preserving!

~ ~
\

-~
—
—

(1 +¢) ° :"

Michal Valko — Graphs in Machine Learning

Sequel - 31/78



Graph Sparsification: What is good sparse?
Good sparse by Benczir and Karger (1996) = cut preserving!

~ ~
\ \

~~
H-
M
—
@

09 68

H approximates G well iff VS C V, sum of edges on 45 remains

8S = edges leaving S
https://math.berkeley.edu/~nikhil/
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Graph Sparsification: What is good sparse?

Good sparse by Benczir and Karger (1996) = cut preserving!
Why did they care? faster mincut/maxflow

Recall what is a cut: cutg(S) =2_cs jc5 Wiy
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Graph Sparsification: What is good sparse?

Good sparse by Benczir and Karger (1996) = cut preserving!
Why did they care? faster mincut/maxflow

Recall what is a cut: cutg(S) =2_cs jc5 Wiy

Define G and H are (1 + =)-cut similar when VS
(1 —e)cuty(S) < cutg(S) < (1 + ¢)cuty(S)

Is this always possible? Benczir and Karger (1996): Yes!

Ve 3 (1 + €)-cut similar G with O(nlog n/e?) edges s.t. Ey C E
and computable in O(mlog® n 4+ mlog n/e?) time » node m cazes
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G=K, H = d-regular (random)
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G=K, H = d-regular (random)

How many edges?

|Ee| = O(r?) |En| = O(dn)
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Graph Sparsification: What is good sparse?

G=K, H = d-regular (random)

What are the cut weights for any 57

ws(3S) =[S - [S] wy(6S) = 2-15|-|S|
wg(6S) _n
VScV: wi(35) N
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Graph Sparsification: What is good sparse?

G=K, H = d-regular (random)

What are the cut weights for any 57

ws(3S) =[S - [S] wy(6S) = 2-15|-|S|
wg(6S) _n
VScV: wi(35) N

Could be large :(
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Graph Sparsification: What is good sparse?

= d-regular (random)

& &

What are the cut weights for any 57

ws(3S) =[S - [S] wy(6S) ~ 2 -|5] -S|
wg(dS) _n
VSV 69 T d

Could be large :( What to do?
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Graph Sparsification: What is good sparse?

G=K, H = d-regular (random)
@ @
) @
@ @

What are the cut weights for any S?

we(dS) = [S] - [S]
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Graph Sparsification: What is good sparse?

G=K, H = d-regular (random)
@ @
) @
@ @

What are the cut weights for any S?

wg(6S) = |S] - |S] wh(6S) ~ < 5-15]-|S|
~wg(dS) N
vVScV: wir(59) ~1
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Graph Sparsification: What is good sparse?

H=d- regular (random)

& O

What are the cut weights for any S?

wg(6S) = |S] - |S] wh(6S) ~ < 5-15]-|S|
~wg(dS) N
vVScV: wir(59) ~1

Benczir & Karger: Can find such H quickly for any G!
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Graph Sparsification: What is good sparse?

Recall if f € {0,1}" represents S then f'Lsf = cutg(S)
(1 —¢)cuty(S) < cutg(S) < (1+ ¢)cuty(S)
becomes

(1 — E)fTLHf < fTLGf < (1 + €)fTLHf

If we ask this only for f € {0,1}" — (1 + £)-cut similar combinatoria

Benczir & Karger (1996)

If we ask this for all f € R” — (1 + =)-spectrally similar

Spielman & Teng (2004)

Spectral sparsifiers are stronger!

but checking for spectral similarity is easier
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Spectral Graph Sparsification

Rayleigh-Ritz gives:

x"Lx xTLx
and  Apax = max
xTx xTx

Amin = Min

What can we say about \;(G) and A\;(H)?
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Spectral Graph Sparsification

Rayleigh-Ritz gives:

x"Lx xTLx
and  Apax = max
xTx xTx

Amin = Min

What can we say about \;(G) and A\;(H)?

(1 - E)fTLGf < fTLHf < (1 + E)fTLGf
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Spectral Graph Sparsification

Rayleigh-Ritz gives:

x"Lx xTLx
and  Apax = max
xTx xTx

Amin = Min
What can we say about \;(G) and A\;(H)?
(1 —e)fLef < fLyf < (14 &)f Lgf
Eigenvalues are approximated well!

(1 =2)Ai(6) < Ai(H) < (1 +2)Xi(6)

Using matrix ordering notation (1 —e)Lg <Ly =< (1 +¢)Lg
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Spectral Graph Sparsification

Rayleigh-Ritz gives:

x"Lx xTLx
and  Apax = max
xTx xTx

Amin = Min

What can we say about \;(G) and A\;(H)?
(1 —e)fLef < fLyf < (14 &)f Lgf
Eigenvalues are approximated well!

(1 —=2)Ai(G) < N(H) < (1+2)Xi(G)
Using matrix ordering notation (1 —e)Lg <Ly =< (1 +¢)Lg

As a consequence, arg min, ||lLyx — b|| = argmin, ||[Lgx — bl
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Spectral Graph Sparsification
Let us consider unweighted graphs: w;; € {0,1}

LG_ZW,J i=> Lj

ijeE
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Spectral Graph Sparsification
Let us consider unweighted graphs: w;; € {0,1}

LG_ZWU U_ZLU_Z —6;)(0 beT

ijeE ijeE ecE
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Spectral Graph Sparsification
Let us consider unweighted graphs: w;; € {0,1}

LG—ZWU i =2 Li= (8:=)@ =D _beb;
ijeE ijeE ecE
We look for a subgraph H

Ly =) sebeb]

ecE
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Spectral Graph Sparsification
Let us consider unweighted graphs: w;; € {0,1}

LG_ZWU U_ZLU_Z —6;)(0 beT
ijeE ijeE ecE

We look for a subgraph H

Ly = Zsebebz where s is a new weight of edge e
ecE

"3 )

Lo\

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification

We want (1 — €)LG <Ly= (1 +€)LG
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Spectral Graph Sparsification
Wewant (1—¢)lg =Ly =(1+¢)Lg

Equivalent, given Lg = Z beb]
ecE
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Spectral Graph Sparsification
Wewant (1—¢)lg =Ly =(1+¢)Lg
Equivalent, given Lg = Zbebg find s, s.it. Lg < Zsebebg < klg

ecE eeE

Forget L, given A = Z aca,
ecE
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Spectral Graph Sparsification
Wewant (1—¢)lg =Ly =(1+¢)Lg

Equivalent, given Lg =) bcb find s, s.t. Lg = ) _scbeb] < r-Lg
ecE ecE

Forget L, given A = Z aca, find s, sit. A < Zseaeaz <Kk-A
ecE eeE

: T
Same as, given | = E VeV,
ecE
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Spectral Graph Sparsification
Wewant (1—¢)lg =Ly =(1+¢)Lg

Equivalent, given Lg =) bcb find s, s.t. Lg = ) _scbeb] < r-Lg
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Forget L, given A = Z aca, find s, sit. A < Zseaeaz <Kk-A
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Spectral Graph Sparsification
Wewant (1—¢)lg =Ly =(1+¢)Lg

Equivalent, given Lg =) bcb find s, s.t. Lg = ) _scbeb] < r-Lg
ecE ecE

Forget L, given A = Z aca, find s, sit. A < Zseaeaz <Kk-A
ecE eeE

Same as, given | = E vev, find s, s.t. | < E SeVeVg < K - |
ecE ecE

How to get it?
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Spectral Graph Sparsification
Wewant (1—¢)lg =Ly =(1+¢)Lg

Equivalent, given Lg =) bcb find s, s.t. Lg = ) _scbeb] < r-Lg
ecE ecE

Forget L, given A = Z aca, find s, sit. A < Zseaeaz <Kk-A
ecE eeE

Same as, given | = E vev, find s, s.t. | < E SeVeVg < K - |
ecE ecE

How to get it? v, <+ A-1/2a,
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Spectral Graph Sparsification
Wewant (1—¢)lg =Ly =(1+¢)Lg

Equivalent, given Lg =) bcb find s, s.t. Lg = ) _scbeb] < r-Lg
ecE ecE

Forget L, given A = Z aca, find s, sit. A < Zseaeaz <Kk-A
ecE eeE

Same as, given | = E vev, find s, s.t. | < E SeVeVg < K - |
ecE ecE

How to get it? v, <+ A-1/2a,

T T o~
Then D cpseVevi = | <= > . scaca; ~ A

multiplying by Al/2 on both sides
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Spectral Graph Sparsification: Intuition

How does > .. vevi = I look like geometrically?
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Spectral Graph Sparsification: Intuition

How does > .. vevi = I look like geometrically?

Decomposition of identity: Vu (unit vector): > . (uTve)? =1
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Spectral Graph Sparsification: Intuition

How does > .. vevi = I look like geometrically?

- : o . . Ty \2
Decomposition of identity: Vu (unit vector): > p(u"ve)” =1
moment ellipse is a sphere

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What are we doing by choosing H?
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Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

[ 0~(n) vectors in R" ]

SeVe
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Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

[ 0~(n) vectors in R" ]

SeVe

NS —-"

We take a subset of these e.s and scale them!

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What kind of scaling go we want?
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Spectral Graph Sparsification: Intuition

What kind of scaling go we want?
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Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!
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Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!

the blue eigenvalues are between 1 and k
https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

Example: What happens with K,?
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Spectral Graph Sparsification: Intuition

Example: What happens with K,?

T T
K, graph ZeeE b.bl =L¢ ZeeE vev, =1
/’—\\ /’—\\
/ \ / \
I 1 I 1
‘\ / ! /
Y \ Y
\N_’ \s_’
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Spectral Graph Sparsification: Intuition

Example: What happens with K,?

T T
K, graph ZeeE b.bl =L¢ ZeeE vev, =1
/"‘\\ /’-\\
/ \ / \
I 1 I 1
‘\ / ! /
Y \ Y
\N_’ \s_’

It is already isotropic! (looks like a sphere)
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Spectral Graph Sparsification: Intuition

Example: What happens with K,?

T T
K, graph ZeeE b.bl =L¢ ZeeE vev, =1
/"‘\\ /’—\\
/ \ / \
I 1 I 1
‘\ / ! /
Y \ Y
\N_’ \s_’

It is already isotropic! (looks like a sphere)

rescaling ve = Lfl’rzbe does not change the shape

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

K, graph Y ecebebl =Lg Y eceVeve = |

A\ _

'I /a \\

\ \ / \

\ { !
\ ! \ y
\ 1 \\_,/
\ /

-
lrzia—
. Michal Valko — Graphs in Machine Learning Sequel - 44/78



Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

K, graph Y ecebebl =Lg Y eceVeve = |

A\ _

'I /a \\

\ \ / \

\ { !
\ ! \ y
\ 1 \\_,/
\ /

The vector corresponding to the link gets stretched!
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

K, graph Y ecebebl =Lg Y eceVeve = |

A\ _

'I /a \\

\ \ / \

\ { !
\ ! \ y
\ 1 \\_,/
\ /

The vector corresponding to the link gets stretched!

because this transformation makes all the directions important
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

T T
K, graph ZeeE b.b] =L¢ ZeeE vev, = |
—
/ \ - -
1 \ 7 \\
\ \ '/ \
i NN VX \ 1
N4 %% \ ' \ y
\ S
\ /

The vector corresponding to the link gets stretched!

because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/~nikhil/

. lrezia~
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = Lz;l/2be doing to the norm?

2
[lvell
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What it this rescaling ve = Lz;l/2be doing to the norm?

_ 2
IvelP = [[LG"be
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = Lz;l/2be doing to the norm?

— 2 _
Ivel = |Lg™be|” =biLcbe
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = Lz;l/2be doing to the norm?

_ 2 _
vel> = HLG”zbe — bIL b = Re(e)
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = Lz;l/2be doing to the norm?

_ 2 _
vel> = HLG”zbe — bIL b = Re(e)

reminder Reg(e) is the potential difference between the nodes when injecting a unit current
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = Lz;l/2be doing to the norm?

— 2 —
Ivell? = ||Le*?be]” = bILgbe = Re(e)

reminder Reg(e) is the potential difference between the nodes when injecting a unit current

In other words:  Refe(e) is related to the edge importance!
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = Lz;l/zbe doing to the norm?

_ 2 _
vel> = HLG”be — bIL b = Re(e)

reminder Reg(e) is the potential difference between the nodes when injecting a unit current
In other words:  Refe(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Regf(e).
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = Lz;l/zbe doing to the norm?

_ 2 _
vel> = HLGmbe — bIL b = Re(e)

reminder Reg(e) is the potential difference between the nodes when injecting a unit current
In other words:  Refe(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Regf(e).

Edges with higher R.s are more electrically significant!
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Spectral Graph Sparsification

Todo: Given | =) _vev], find a sparse reweighting.

Randomized algorithm that finds s:
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Randomized algorithm that finds s:

» Sample nlog n/e? with replacement p; o ||ve||® (resistances)
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Spectral Graph Sparsification

Todo: Given | =) _vev], find a sparse reweighting.

Randomized algorithm that finds s:
» Sample nlog n/e? with replacement p; o ||ve||® (resistances)
» Reweigh: s; = 1/p; (to be unbiased)
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Spectral Graph Sparsification

Todo: Given | =) _vev], find a sparse reweighting.

Randomized algorithm that finds s:
» Sample nlog n/e? with replacement p; o ||ve||® (resistances)
» Reweigh: s; = 1/p; (to be unbiased)

Does this work?
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Spectral Graph Sparsification

Todo: Given | =) _vev], find a sparse reweighting.

Randomized algorithm that finds s:
» Sample nlog n/e? with replacement p; o ||ve||® (resistances)
» Reweigh: s; = 1/p; (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1—5</\<Zsevevz> <1+¢
=
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Spectral Graph Sparsification

Todo: Given | =) _vev], find a sparse reweighting.

Randomized algorithm that finds s:
» Sample nlog n/e? with replacement p; o ||ve||® (resistances)
» Reweigh: s; = 1/p; (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1—5</\<Zsevevz> <1+¢
=

finer bounds now available
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Spectral Graph Sparsification

Todo: Given | =) _vev], find a sparse reweighting.

Randomized algorithm that finds s:
» Sample nlog n/e? with replacement p; o ||ve||® (resistances)
» Reweigh: s; = 1/p; (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1—5</\<Zsevevz> <1+¢
=

finer bounds now available

What is the the biggest problem here?
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Spectral Graph Sparsification

Todo: Given | =) _vev], find a sparse reweighting.

Randomized algorithm that finds s:
» Sample nlog n/e? with replacement p; o ||ve||® (resistances)
» Reweigh: s; = 1/p; (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1—5</\<Zsevevz> <1+¢
=

finer bounds now available

What is the the biggest problem here? Getting the p;s!
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Spectral Graph Sparsification

We want to make this algorithm fast.
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We want to make this algorithm fast.
How can we compute the effective resistances?
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system X = arg min, |[Lgx — be|| and then R = bIx
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system X = arg min, |[Lgx — be|| and then R = bIx

Gaussian Elimination O(n®)
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system X = arg min, |[Lgx — be|| and then R = bIx

Gaussian Elimination O(n®)

Fast Matrix Multiplication O(n*3")
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system X = arg min, |[Lgx — be|| and then R = bIx

Gaussian Elimination O(n®)
Fast Matrix Multiplication O(n*3")
Spielman & Teng (2004) O(mlog® n)
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system X = arg min, |[Lgx — be|| and then R = bIx

Gaussian Elimination (@)

Fast Matrix Multiplication O(n*3")
Spielman & Teng (2004) O
Koutis, Miller, and Peng (2010) O(mlog n)
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system X = arg min, |[Lgx — be|| and then R = bIx

Gaussian Elimination (@)

Fast Matrix Multiplication O(n*3")
Spielman & Teng (2004) O
Koutis, Miller, and Peng (2010) O(mlog n)

» Fast solvers for SDD systems:
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system X = arg min, |[Lgx — be|| and then R = bIx

Gaussian Elimination (@)

Fast Matrix Multiplication O(n*3")
Spielman & Teng (2004) O
Koutis, Miller, and Peng (2010) O(mlog n)

» Fast solvers for SDD systems:
L. use sparsification internally

all the way until you hit the turtles
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system X = arg min, |[Lgx — be|| and then R = bIx

Gaussian Elimination (@)

Fast Matrix Multiplication O(n*3")
Spielman & Teng (2004) O
Koutis, Miller, and Peng (2010) O(mlog n)

» Fast solvers for SDD systems:
L, use sparsification internally

all the way until you hit the turtles

still unfeasible when m is large
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Efficient Sequential Learning

in Structured and Constrained Environments

Without losing information
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Efficient Sequential Learning

in Structured and Constrained Environments

Without losing information
data-oblivious methods (e.g., uniform sampling)
L, efficient but inaccurate [Bach, 2013]
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Efficient Sequential Learning

in Structured and Constrained Environments

Without losing information
data-oblivious methods (e.g., uniform sampling)
L, efficient but inaccurate [Bach, 2013]
data-adaptive methods (e.g. eigenvectors, leverage score sampling)
Ls accurate but too expensive [Alaoui and Mahoney, 2015]
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Efficient Sequential Learning

in Structured and Constrained Environments

Goal 1: find a small, provably accurate dictionary in near-linear time
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Efficient Sequential Learning

in Structured and Constrained Environments

Goal 1: find a small, provably accurate dictionary in near-linear time

Contribution: Two new single-pass sequential algorithms
KORS[CQIandrieHo et al., 2017c]
SQUEAK Calandriello et al., 20174] (first part of the talk)
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Goal 1: find a small, provably accurate dictionary in near-linear time

Contribution: Two new single-pass sequential algorithms
KORS[CQIandrieHo et al., 2017c]
SQUEAK Calandriello et al., 20174] (first part of the talk)

variant of Nystrom sampling
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Efficient Sequential Learning

in Structured and Constrained Environments

Goal 1: find a small, provably accurate dictionary in near-linear time

Contribution: Two new single-pass sequential algorithms
KORS[CQIandrieHo et al., 2017c]
SQUEAK Calandriello et al., 20174] (first part of the talk)

variant of Nystrom sampling
chooses samples using ridge leverage scores
Ls new ridge leverage score lestimator

Adaptive PSD matrix and spectral graph approximation r z teoretickej informatiky KI FMFI BA 22. februar 2019



Efficient Sequential Learning

in Structured and Constrained Environments

Goal 1: find a small, provably accurate dictionary in near-linear time

Contribution: Two new single-pass sequential algorithms
KORS[CQIandrieHo et al., 2017c]
SQUEAK(|Calandriello et al., 2017a] (first part of the talk)

variant of Nystrom sampling
chooses samples using ridge leverage scores

Ls new ridge leverage score lestimator
new sequential importance sampling approach

L analysis for lnon i.i.d. matrix sampling
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Efficient Sequential Learning

in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently
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Efficient Sequential Learning

in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently

Contribution: two approximate second-order optimization algorithms
SKETCHED-KONS [Calandriello et al., 2017c]
PROS-N-KONS [Calandriello et al., 2017b] (second part of the talk)

Adaptive PSD ma d spectral graph app i Seminar z teoretickej informatiky KI FMFI BA 22. februar 2019



Efficient Sequential Learning

in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently

Contribution: two approximate second-order optimization algorithms
SKETCHED-KONS [Calandriello et al., 2017c]
PROS-N-KONS [Calandriello et al., 2017b] (second part of the talk)
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Efficient Sequential Learning

in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently

Contribution: two approximate second-order optimization algorithms
SKETCHED-KONS [Calandriello et al., 2017c]
PROS-N-KONS [Calandriello et al., 2017b] (second part of the talk)

approximate kernelized lonline Newton step
constant per-step cost using Nystrom embedding
L. |adaptive embedding based on KORS dictionary
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Efficient Sequential Learning

in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently

Contribution: two approximate second-order optimization algorithms
SKETCHED-KONS [Calandriello et al., 2017c]
PROS-N-KONS [Calandriello et al., 2017b] (second part of the talk)

approximate kernelized lonline Newton step
constant per-step cost using Nystrom embedding

L. |adaptive embedding based on KORS dictionary
preserve fast rates of exact online Newton step

Ls new adaptive |restart strategy

n lrezia—
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Efficient Sequential Learning
in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently

not in this talk: provably accurate solutions in near-linear time
Kernel PCA [Musco and Musco, 2017]
Kernel Regression [Alaoui and Mahoney, 2015; Bach, 2013; Rudi et al., 2015
Kernel K-Means [Musco and Musco, 2017]
Graph Semi-Supervised Learning [Calandriello et al., 2015]

Graph Sparsification [Calandriello et al., 2016]
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Outline

(1) Dictionary learning

> Nystrom sampling

> ridge leverage scores and effective dimension

> SQUEAK: sequential RLS importance sampling
Ls analysis for non i.i.d. matrix sampling

(2) Online Kernel Learning
> online kernel learning and kernelized online Newton step

> PROS-N-KONS: adaptive Nystrom embedding for online kernel
learning

> adaptive restarts

> regression and classification experiments

n lrezia—
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Setting

Samples: x; € X (e.g. RY)

Feature map: o(x;): X = H = ¢;

Dataset: D, = {$;}1q, Py = [b1, P2, .., D]
Empirical Kernel Matrix: ®T®, = K, € R"™*"
Covariance operator: ®,®) =37 b;d]
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Setting

Samples: x; € X (e.g. RY)

Feature map: o(x;): X = H = ¢;

Dataset: D, = {$;}1q, Py = [b1, P2, .., D]
Empirical Kernel Matrix: ®T®, = K, € R"™*"
Covariance operator: ®,®) =37 b;d]

x| ] x| ] x| ]
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Dictionary Learning

What is Dictionary Learning (DL)?

Representation /Unsupervised learning:

X[ | X| | X[ ]

finding an accurate representation of the input data as a linear
combination of a small set of basic elements (atoms))

n lrezia—
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X| ] X[ ]

finding an accurate representation of the input data as a linear
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Dictionary Learning

What is Dictionary Learning (DL)?

Representation /Unsupervised learning:

X| ] X[ ]

finding an accurate representation of the input data as a linear
combination of a small set of basic elements (atoms))

Dictionary Z = {(w;, ‘bj)}jm:l

n lrezia—
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Dictionary Learning

What is Dictionary Learning (DL)?

Representation /Unsupervised learning:

X| ] X[ ]

finding an accurate representation of the input data as a linear
combination of a small set of basic elements (atoms))

Dictionary Z = {(w;, ‘bj)}jrll

S wibib] = 3 (Vi) (i) = 0,8,57 0]

i=1 i=1

n lrezia—
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Dictionary Learning

(1) which to pick?  (2) how many to pick? (3) how to build Z?

n Crzia~
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Dictionary Learning

(1) which to pick?  (2) how many to pick? (3) how to build Z?

X[ ] X[ ] X[ ] X[ ] X[ ]

1/2 1/2 1/3 1/3 1/3
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Dictionary Learning

(1) which to pick?  (2) how many to pick? (3) how to build Z?

o I xC— ]
2x + 3x
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Dictionary Learning

(1) which to pick?  (2) how many to pick? (3) how to build Z?

o] I— o] I—
2x + 2x
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Dictionary Learning

(1) which to pick?  (2) how many to pick? (3) how to build Z?

X[ ] X[ ] X[ 1 X[ ] X[ 1

X X X X X

~Ber(1/2) ~Ber(1/2) ~Ber(1/3) ~Ber(1/3) ~Ber(1/3)
x X X X X
2 2 3 3 3
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Dictionary Learning

(1) which to pick?  (2) how many to pick? (3) how to build Z?

X[ | X[ | X[ 1 X[ | X[ 1
+ + + +
X X X X X
~Ber(1/2) ~Ber(1/2) ~Ber(1/3) ~Ber(1/3) ~Ber(1/3)
x X X X X
2 2 3 3 3

Nystréom sampling: unbiased estimator

©,5,5707 = ZZ . o]

I]._]].pl
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Ridge Leverage Scores
Intuitively, IRLS| capture orthogonality

Tni = eni KN (Kn +91n) eni = ¢ (0,0) + 1) s

n Crzia~
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Ridge Leverage Scores
Intuitively, IRLS| capture orthogonality

Toi = €Ky Ky +910) "ten; = ¢ (©n@f + 1)1,
If all ¢; are orthogonal, we have

OT0

- STBIBT 4 A1) s —
Th,i Cbl (d)ld)l +’7|) d)’ d);rd)l+,-y
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Ridge Leverage Scores
Intuitively, IRLS| capture orthogonality

Tni = eni KN (Kn +91n) eni = ¢ (0,0) + 1) s

If all ¢; are orthogonal, we have

g = ST (@80 + 1)y = — 2o
i = G (i T+
If all ¢; are identical (collinear), we have
T T —1 ol i 1
Tn,i = d)i (”d)id)i + ’Yl) ¢ = =

”d);rd)i +~yin
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Ridge Leverage Scores
Intuitively, IRLS| capture orthogonality

Tni = eni KN (Kn +91n) eni = ¢ (0,0) + 1) s

If all ¢; are orthogonal, we have

i = TR + 1)y = Py
¢; b+
If all ¢; are identical (collinear), we have
d] bi 1
7ot = OF (09ib + 1) s = — =

”d);rd)i +~yin

Given ®;_q, adding a new column to it can only reduce the RLS of
columns already in ®;_;

Tei < Teo1,i

n lrezia—
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Effective Dimension
Intuitively, the leffective dimension is the
number of relevant directions in the data

>

eff. dim. deg <7

rank k 0
0
0
dimension n
n (K,
G0) =3y oo = T (Kalla 900 ™) =3 3¢ 3 < Rank(o)
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Effective Dimension
Intuitively, the leffective dimension is the
number of relevant directions in the data

>

eff. dim. deg <7

rank k 0

1 dimension n
. t— . . t
Given dz (), adding a new column to ®@;_; can only increase d’(v)

di(7) = di'(7)
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Reconstruction guarantees

An (g,7)-accurate dictionary Z satisfies

®SSToT

n Crzia~
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Reconstruction guarantees

An (g,7)-accurate dictionary Z satisfies

multiplicative error multiplicative error
1 1
(1-¢)0,0; < OSSO < (1+6)D,0;)
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Reconstruction guarantees

An (g,7)-accurate dictionary Z satisfies

multiplicative error additive error multiplicative error additive error
T THT T
1-28)0,0, — eyl =OSS'O' <X (14)0,0, + e&nl
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Reconstruction guarantees

An (g,7)-accurate dictionary Z satisfies

multiplicative error additive error multiplicative error additive error
T THT T
1-28)0,0, — eyl =OSS'O' <X (14)0,0, + e&nl

Low-rank PSD matrix approximation
Projection TTz = ®S(STOTOS)ST®T on dictionary span
L. Nystrém approx. K = O TTT;®
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Reconstruction guarantees

An (g,7)-accurate dictionary Z satisfies

multiplicative error additive error multiplicative error additive error
T THT T
1-28)0,0, — eyl =OSS'O' <X (14)0,0, + e&nl

Low-rank PSD matrix approximation
Projection TTz = ®S(STOTOS)ST®T on dictionary span
L. Nystrém approx. K = O TTT;®
Ly K- =91, <K <K

1
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Reconstruction guarantees

An (g,7)-accurate dictionary Z satisfies

multiplicative error additive error multiplicative error additive error
T THT T
1-28)0,0, — eyl =OSS'O' <X (14)0,0, + e&nl

Low-rank PSD matrix approximation
Projection TTz = ®S(STOTOS)ST®T on dictionary span
L. Nystrém approx. K = O TTT;®

Ly K- =91, <K <K

Graph sparsification (not in this talk)

n lrezia—
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Reconstruction guarantees

An (g,7)-accurate dictionary Z satisfies

multiplicative error additive error multiplicative error additive error
T THT T
1-28)0,0, — eyl =OSS'O' <X (14)0,0, + e&nl

Low-rank PSD matrix approximation
Projection TTz = ®S(STOTOS)ST®T on dictionary span
L. Nystrém approx. K = O TTT;®

Ly K- =91, <K <K

Graph sparsification (not in this talk)

In graph problems dictionary Z is subset of reweighted edges
L (1 — E)Lg <Lz = (1 —|-€)|.g

n lrezia—
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Oracle RLS Sampling

Theorem (Alaoui and Mahoney, 2015)

Given ~y be the Nystrom regularization, & the accuracy, § the confidence.
If the dictionary T, is computed using the sampling distribution p, j < T, ; and using

at least m columns
2d"ﬁ('y)) n
> —= 2 )| -,
o ( 1)) 1og (7)

then with probability 1 — § we have

(1—e)0,0) — eyIZDSSTOT<(1 +£)D, DT + eql

n lrezia—
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Oracle RLS Sampling

Theorem (Alaoui and Mahoney, 2015)

Given ~y be the Nystrom regularization, & the accuracy, § the confidence.
If the dictionary T, is computed using the sampling distribution p, j < T, ; and using

at least m columns
2d"ﬁ('y)) n
> —= 2 )| -,
o ( 1)) 1og (7)

then with probability 1 — § we have

(1—e)0,0) — eyIZDSSTOT<(1 +£)D, DT + eql

Goaldsmalland acctrate dictionary done!

n lrezia—
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Oracle RLS Sampling

Theorem (Alaoui and Mahoney, 2015)

Given ~y be the Nystrom regularization, & the accuracy, § the confidence.
If the dictionary T, is computed using the sampling distribution p, j < T, ; and using

at least m columns
2d"ﬁ('y)) n
> —= 2 )| -,
o ( 1)) 1og (7)

then with probability 1 — § we have

(1—e)0,0) — eyIZDSSTOT<(1 +£)D, DT + eql

Goaldsmalland acctrate dictionary done!

Goal 1: small and accurate dictionary iin near-linear time
If someone gave us the RLS
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Adaptive PSD matrix and spectral graph approximation Seminar z teoretickej informatiky KI FMFI BA 22. februar 2019



Oracle RLS Sampling

Theorem (Alaoui and Mahoney, 2015)

Given ~y be the Nystrom regularization, & the accuracy, § the confidence.
If the dictionary T, is computed using the sampling distribution p, j < T, ; and using

at least m columns
2d"ﬁ('y)) n
> —= 2 )| -,
o ( 1)) 1og (7)

then with probability 1 — § we have

(1—e)0,0) — eyIZDSSTOT<(1 +£)D, DT + eql

Goaldsmalland acctrate dictionary done!

Goal 1: small and accurate dictionary iin near-linear time
If someone gave us the RLS

Computing 7, ; = e, ,K (Kn + 91, ) e, also requires storing and
inverting the full K,

n lrezia—
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Estimating RLS

Good news 1: given accurate 7,; = compute accurate dictionary
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Estimating RLS

Good news 1: given accurate 7,; = compute accurate dictionary
Good news 2: given accurate dictionary = compute accurate 7, ;
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Estimating RLS

Good news 1: given accurate 7,; = compute accurate dictionary
Good news 2: given accurate dictionary = compute accurate 7, ;

Given dictionary Z,, with |Z,| = J atoms

Tn,i = en,iKI(Kn + 'Vln)_len,i

> 77n,i = e,-TR,,(I?t + 7I)‘1e,-
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Estimating RLS

Good news 1: given accurate 7,; = compute accurate dictionary
Good news 2: given accurate dictionary = compute accurate 7, ;

Given dictionary Z,, with |Z,| = J atoms

Tn,i = en,iKI(Kn + 'Vln)_len,i
=&/ (0,D, + 1) ),

> 7= el Kn(Ke + 1) te;
» Instead, approximate 7, ; directly in H

n lrezia—
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Estimating RLS

Good news 1: given accurate 7,; = compute accurate dictionary
Good news 2: given accurate dictionary = compute accurate 7, ;

Given dictionary Z,, with |Z,| = J atoms

Tn,i = en,iKI(Kn + 'Vln)_len,i
=&/ (0,D, + 1) ),
?n,i = d);r((DnSnS—nrcDT + ’YI)_ld)i

> 7= el Kn(Ke + 1) te;
» Instead, approximate 7, ; directly in H

n lrezia—
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Estimating RLS

Good news 1: given accurate 7,; = compute accurate dictionary
Good news 2: given accurate dictionary = compute accurate 7, ;

Given dictionary Z,, with |Z,| = J atoms
Th,i = en,iKI(Kn + ’Yln)_len,i
= & (D, 05 + 1)y,
?n,i = d);r((DnSnS—nrcDT + ’YI)_ld)i
1 (k,-,,- — KniS(STK:S, + yl)‘lsjkn,,.) .

ay

> 77n,i = e,-TK,,(Kt + yl)_le,-
» Instead, approximate 7, ; directly in 4, and then use kernel trick

n lrezia—
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Estimating RLS

Good news 1: given accurate 7,; = compute accurate dictionary
Good news 2: given accurate dictionary = compute accurate 7, ;

Given dictionary Z,, with |Z,| = J atoms

Toi = e iK{ (Ko +91,) e
=] (0, 0] + 1)1,
Toi = OF (©,SaSEOT + A1) b,
== (ki,i — kn,iSn(SyKeSn + VI)_lsIk"”’) ‘

ay
Foi = el Kn(Ke + 1) e;
> 7-n,l e, n( t +7 ) €
» Instead, approximate 7, ; directly in 4, and then use kernel trick

» If Z (&,7)-accurate = T,,J(’y)/(llt?':) < Tni < 7ni(7)
[Calandriello et al., 2017a]

n lrezia—
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Estimating RLS

Good news 1: given accurate 7,; = compute accurate dictionary
Good news 2: given accurate dictionary = compute accurate 7, ;

Given dictionary Z,, with |Z,| = J atoms
Th,i = en,iKI(Kn + ’Yln)_len,i
= & (D, 05 + 1)y,
?n,i = d);r((DnSnS—nrcDT + ’YI)_ld)i
1 (k,-,,- — KniS(STK:S, + yl)‘lsjkn,,.) .

ay

> (STK:S, + 'yl)_1 is a J x J matrix
Ls 7, can be computed in O(J?) space and O(J?) time
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Estimating RLS

Good news 1: given accurate 7,; = compute accurate dictionary
Good news 2: given accurate dictionary = compute accurate 7, ;

Given dictionary Z,, with |Z,| = J atoms
Th,i = en,iKI(Kn + ’Yln)_len,i
= & (D, 05 + 1)y,
?n,i = d);r((DnSnS—nrcDT + ’YI)_ld)i
1 (k,-,,- — KniS(STK:S, + yl)‘lsjkn,,.) .

ay

> (STK:S, + 'yl)_1 is a J x J matrix
Ls 7, can be computed in O(J?) space and O(J?) time

» 7, for i € I, can be computed using only samples contained in Z, .

n lrezia—
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Chicken and egg problem

and spectr z teoretickej



SQUEAK- Sequential RLS sampling

n Cezia—
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SQUEAK- Sequential RLS sampling
P1,i X T1j,
1 = ]I{Ber(ﬁl’;)}
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SQUEAK- Sequential RLS sampling
P1,i X T1j,
1 = ]I{Ber(ﬁl’;)}
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SQUEAK- Sequential RLS sampling
P1,i X T, P2,i X T2,

z1; = I{Ber(p1,i)} ;=1 {Ber (@) } 7y

P1,i
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SQUEAK- Sequential RLS sampling
P1,i X T1j, P2,i X T2, P3,i X T3,i

z1; = I{Ber(p1.i)} 2, =1 {Ber (pz’)}zu 73 =1 {Ber (%:
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SQUEAK- Sequential RLS sampling
P1,i X T1j, P2,i X T2, P3,i X T3,i

z1; = I{Ber(p1.i)} 2, =1 {Ber (pz’)}zu 73, =1 {Ber (%:

» Store points directly in Z
L single pass over the dataset
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SQUEAK- Sequential RLS sampling

P1,i X T1j, P2,i X T2, P3,i X 73

Zl:i = I{Ber(p1,i)} 2z, =1 {Ber (pz’)}zl,,- z3; =1 {Ber (%) } 2

» Store points directly in Z
L single pass over the dataset

» Unnormalized p; ;
Ls no need for approximate degr(y):

natiky KI FMFI BA 22. februar 2019
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SQUEAK- Sequential RLS sampling

ply, X Tij, P2 i OC T P3,i X T3

z; = I{Ber(p1,i)} Z :]I{Ber(pz’)}zl,,- 73, :]I{Ber (%:)}22,,-

» Store points directly in Z
L single pass over the dataset
» Unnormalized p; ;
Ls no need for approximate degr(y):
» Never recompute 7; ; after dropping
L, never construct the whole K,
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SQUEAK- Sequential RLS sampling
P1,i X T1j, P2,i X T2, P3,i X T3,i

z; = I{Ber(p1,i)} Z :]I{Ber(pz’)}zl,,- 73, :]I{Ber(

P3,i )
53,/) } 22,i

» Store points directly in Z
L single pass over the dataset
» Unnormalized p; ;
Ls no need for approximate degr(y):
» Never recompute 7; ; after dropping
L, never construct the whole K,

» Runtime depends on merge tree
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SQUEAK- Sequential RLS sampling

T with |Z| = J atoms, space: O(J?), Runtime: single merge O(J3)

n Crzia~
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SQUEAK- Sequential RLS sampling
SQUEAK - fully unbalanced tree: O(nJ3)

Tjan) + Tz

. Tz Iis3)  h=3

T2y + L2z |

. Tiz2) Tiaw

Ty + Ty |

Zaay Ty Ty Ty s h=1
D, D D Dy Ds

T with |Z| = J atoms, space: O(J?), Runtime: single merge O(J3)
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DISQUEAK- Distributed sequential RLS sampling
DISQUEAK - fully balanced tree: O(log(n)J3)
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DISQUEAK
Theorem (Calandriello et al., 2017a)

Let a = (§£52) and v > 1. Forany0<e <1, and 0 < § < 1, if we run
DISQUEAK with g > 22 log(%)), then w.p. 1—6, for all nodes {h, I}

(1) The dictionary Z¢p, y is (g,7y)-accurate.
(2) 1Znnl = O(@der(7)hy) < O(Z dep7) log(5 2))).

» Accuracy/dictionary size match oracle RLS-sampling at any time
L no free lunch: space/time scale with |Z| < d%(v)
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DISQUEAK
Theorem (Calandriello et al., 2017a)

Let a = (§£52) and v > 1. Forany0<e <1, and 0 < § < 1, if we run
DISQUEAK with g > 22 log(%)), then w.p. 1—6, for all nodes {h, I}

(1) The dictionary Z¢p, y is (g,7y)-accurate.
(2) 1Znnl = O(@der(7)hy) < O(Z dep7) log(5 2))).

» Accuracy/dictionary size match oracle RLS-sampling at any time
L no free lunch: space/time scale with |Z| < d%(v)

> O(d"%(7)2 + d%(7)d) space constant in n
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DISQUEAK
Theorem (Calandriello et al., 2017a)

Let a = (§£52) and v > 1. Forany0<e <1, and 0 < § < 1, if we run
DISQUEAK withqg > 260‘ = log(%)), then w.p. 1—46, for all nodes {h, I}
(1) The dictionary Z¢p, y is (g,7y)-accurate.

(2) 1Znnl = O(@der(7)hy) < O(Z dep7) log(5 ).

» Accuracy/dictionary size match oracle RLS-sampling at any time
L no free lunch: space/time scale with |Z| < d%(v)

> O(d"%(7)2 + d%(7)d) space constant in n
» Merge tree fixed in advance

n lrezia—
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DISQUEAK
Theorem (Calandriello et al., 2017a)

Let a = (§£52) and v > 1. Forany0<e <1, and 0 < § < 1, if we run
DISQUEAK with g > 22 log(%)), then w.p. 1—6, for all nodes {h, I}

(1) The dictionary Z¢p, y is (g,7y)-accurate.
(2) 1Znnl = O(@der(7)hy) < O(Z dep7) log(5 2))).

» Runtime: single merge O(|Z,|3) < (5(d:ff(’y)3)
L. total depends on specific merge tree
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DISQUEAK
Theorem (Calandriello et al., 2017a)

Let a = (§£52) and v > 1. Forany0<e <1, and 0 < § < 1, if we run
DISQUEAK with g > 22 log(%)), then w.p. 1—6, for all nodes {h, I}

(1) The dictionary Z¢p, y is (g,7y)-accurate.
(2) 1Znnl = O(@der(7)hy) < O(Z dep7) log(5 2))).

» Runtime: single merge O(|Z,|3) < (5(d:ff(’y)3)
L. total depends on specific merge tree

» Fully unbalanced tree: O(#2) = O(nd%(7)?) on a single machine
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DISQUEAK
Theorem (Calandriello et al., 2017a)

Let a = (§£52) and v > 1. Forany0<e <1, and 0 < § < 1, if we run
DISQUEAK withqg > 260‘ = log(%)), then w.p. 1—46, for all nodes {h, I}
(1) The dictionary Z¢p, y is (g,7y)-accurate.

(2) 1Znnl = O(@der(7)hy) < O(Z dep7) log(5 ).

» Runtime: single merge O(|Z,|3) < (5(d:ff(’y)3)
L. total depends on specific merge tree

» Fully unbalanced tree: O(#2) = O(nd%(7)?) on a single machine
» Fully balanced tree: (5(Iog(n)d:ff(’y)3) time, (’3(nd:ff('y)3) work!

n lrezia—
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Comparison

2 = oracle, p(y) = max; 7, ;(y) < 1/ regularized coherence
O(Runtime) O(|Z,]) Passes
Bach, 2013 (Uniform) nu(vy) + 2 nu(7y) 1
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Comparison

2 = oracle, p(y) = max; 7, ;(y) < 1/ regularized coherence
O(Runtime) O(|Z,]) Passes
Bach, 2013 (Uniform) nu(vy) + 2 nu(7y) 1
Oracle RLS sampling n+= d(y) log(n) Many
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Comparison

2 = oracle, p(y) = max; 7, ;(y) < 1/ regularized coherence
O(Runtime) O(|Z,]) Passes
Bach, 2013 (Uniform) nu(vy) + 2 nu(7y) 1
Oracle RLS sampling n+= d(y) log(n) Many
Exact RLS sampling n’ di(y) log(n) Many
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Comparison

2 = oracle, p(y) = max; 7, ;(y) < 1/ regularized coherence
O(Runtime) O(|Z,]) Passes
Bach, 2013 (Uniform) nu(vy) + 2 nu(7y) 1
Oracle RLS sampling n+= d(y) log(n) Many
Exact RLS sampling n’ di(y) log(n) Many
Alaoui and Mahoney, 2015 nu(vy)? nu(y) + di(v) log(n) 3
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Comparison

2 = oracle, p(y) = max; 7, ;(y) < 1/ regularized coherence

O(Runtime) O(|Z,]) Passes
Bach, 2013 (Uniform) nu(vy) + 2 nu(7y) 1
Oracle RLS sampling n+= d(y) log(n) Many
Exact RLS sampling n’ di(y) log(n) Many
Alaoui and Mahoney, 2015 nu(vy)? nu(y) + di(v) log(n) 3
SQUEAK/DISQUEAK 3

k)dZ dZ | 1

Calandriello et al., 2017a (n/k)den() () log(n)

n lrezia—
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Comparison

2 = oracle, p(y) = max; 7, ;(y) < 1/ regularized coherence
O(Runtime) O(|Z,]) Passes
Bach, 2013 (Uniform) nu(vy) + 2 nu(7y) 1
Oracle RLS sampling n+= d(y) log(n) Many
Exact RLS sampling n’ di(y) log(n) Many
Alaoui and Mahoney, 2015 nu(vy)? nu(y) + di(v) log(n) 3
SQUEAK/DISQUEAK 3
k)dZ dZ | 1
Calandriello et al., 2017a (n/k)des(v) er(7) log(n)
KORS )
n n | 2 1
Calandriello et al., 2017¢ ndgi(7) r(7) log”(n)

. lreia—
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Comparison

2 = oracle, p(y) = max; 7, ;(y) < 1/ regularized coherence
O(Runtime) O(|Z,]) Passes
Bach, 2013 (Uniform) nu(vy) + 2 nu(7y) 1
Oracle RLS sampling n+= d(y) log(n) Many
Exact RLS sampling n’ di(y) log(n) Many
Alaoui and Mahoney, 2015 nu(vy)? nu(y) + di(v) log(n) 3
SQUEAK/DISQUEAK 3
k)dZ dZ | 1
Calandriello et al., 2017a (n/k)des(v) er(7) log(n)
KORS )
n n | 2 1
Calandriello et al., 2017¢ ndgi(7) r(7) log”(n)
Musco and Musco, 2017 ndz(v)? dg(y) log(n) log(n)

. lreia—

Adaptive PSD matrix and spectral graph approximation Seminar z teoretickej informatiky KI FMFI BA 22. februar 2019



Proof sketch

P1,i X T1,i,
a 71 ; =I{Ber(p1,i)}
e P2,i X T2 j,
‘b ” 2 :]I{Ber (%j)}zl,,-

P3,i X T3i,
- Ps.i .
Z3j = ]I{Ber (52 _)}22,,

N

dependent chains

” : of dependent coin flip
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Proof sketch

Similar to importance sampling. If the p;; were fixed in advance

P(z,ij = 1) = P(B(pr,i/Pe—1,i) = 1)P(ze—1,i,j = 1)

n lrezia—
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Proof sketch

Need to bound

P(Elt e{l,...,n}:|Pr — I3t||2 >ceU|Zy| > 3qdefr('y)t)

Michal Valko: Distributed sequential sampling for adaptive DL Sequel, Inria - 28/41



Proof sketch

Need to bound
P(Ht €{l,....,n}: [Py — P2 >cU|L| > 3qdeff(fy)t)

After a union bound

il@ (”Pt - ﬁtHz > E)

t=1

+y P (ILI > 3Gdef(7)e N {W e{l,... t}:||Pe = Pyfl2 < 5})
t=1

Michal Valko: Distributed sequential sampling for adaptive DL Sequel, Inria - 28/41



Proof sketch

We start by bounding P (HPt — P2 > 5). Let

Ps,i —1pc1/2
zij=1 {Us,,yj < = }25—1,,',1‘7 vi = (K; +91) Kt/ e

Ps—1,i
with usjj ~U(0,1). Then

t

Y:= Pt*ﬁtf Zi( - t”’J)V,V;r

1111

Michal Valko: Distributed sequential sampling for adaptive DL Sequel, Inria - 29/41



Proof sketch

We start by bounding P (HPt — P2 > 5). Let

55i
Zsij =1 {us,,-,j <=

Ps—1,i

} Zs_1,i s vi = (K¢ + 7')_1K1/2et,i
with usjj ~U(0,1). Then

Yt*Pt*Pt* ZZ( - t”’J)V:V;r

1111

Cannot use concentrations for independent r.v., because z ;; and z ;s js
are both dependent on z;_; j» j» through the estimates.

ributed sequential sampling for adaptive DL Sequel, Inria - 29/41



Proof sketch

Build the martingale

Zs 1
Xisijy = <~ -

Ztl
,J> v
Ps—1,i pSI

We can use variants of Bernstein's inequality for matrix martingales, we

need a bound on

X s,y

IA

the range

1 1 11
(2 - 2 o < 2
q ps—l,l ps,/ aq ps,l

11 11

= vl = - el K (K + 1) 1K e
q Ps,i g Ps,i

Tl P = 28 o 0T 07w

q Ps,i q Ps,i q Ps,i qTs,i

ributed sequential sampling for adaptive DL

Sequel, Inria - 30/41



Proof sketch

Build the martingale
Zs—1,i,j  Ztij T
Xisiy = <~ - > vivi
Ps—1,i ps i

We can use variants of Bernstein's inequality for matrix martingales, we
need a bound on the range

1\ zs—1ij s, 11
o)l = = \ (22t - 203 T < 2w

q ps—l,l ps,/ aq ps,l
11 11

< vy = = —eT K (Ke + 1) 71K %e
q Ps,i q Ps,i

= i,vie;rpte| - ig < gﬁ = thJ < g = Ra
q Ps,i q Ps,i q Ps,i g Ts,i q




Proof sketch

Now bound the total variation

W=>"E X3, | (X5

1 q t Zs_ Zs—1,i,j ( 1 > T T
: — = V;V; V;V;
q2 Z Z Ps 1,i Ps,i ps—l,i R

Jj=1 i=1 s=1

ributed sequential sampling for adaptive DL Sequel, Inria - 31/41



Proof sketch

Now bound the total variation

W — ZE [Xzs)u} ’ {X,}{s"’J} 1}

1< z1ij (1 1 o1
S ID B Ll R

q j=1 i=1 s=1 Ps—1,i Ps,i Ps—l,l

l

1 Iz i (1 1
W DY Zod <~ - = )
— < Ps—1,i \ Ps,i Ps—1,i

eL, Inria - 31/41



Proof sketch

Now bound the total variation

W — ZE [Xzs)u} ’ {X,}{s"’J} 1}

1< z1ij (1 1 T
S ID B Ll R

q j=1 i=1 s=1 Ps—1,i Ps,i Ps—l,l

1 Iz i (1 1
W DY = <~ - = )
— < Ps—1,i \ Ps,i Ps—1,i




Proof sketch

This looks too pessimistic. When i is large, zs ; j should be zero.
We should take advantage of that.

tributed sequential sampling for adaptive DL Sequel, Inria - 32/41



Proof sketch

This looks too pessimistic. When % is large, zs ; j should be zero.
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Proof sketch

max‘Z% {244 | s still hard to analyze, since it is the
s=0 P

s,i

maximum of dependent variables

s, i’

t—1  zs,ij t—1 ) Z.i’,j
Moreover max,_g { = } depends on max,_ { 2 }

We will find another set of dominating r.v. 1/w;j, indep. from each other
Then apply Bernstein for indep. r.v.

Random variable A stochastically dominates random variable B, if for all

values a the two equivalent conditions are verified

P(A>a)>P(B>a) e PA<a)<P(B<a).

n lrezia—
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Proof sketch

Similar to importance sampling. If the p;; were fixed in advance

P(zt,ij = 1) = P(B(pe,i/Pe-1.i) = 1)P(ze-1,j = 1)
PPz =1)
Pr—1,i

n lrezia—

Adaptive PSD matrix and spectral graph approximati i rmatiky KI FMFI BA 22. febt



Proof sketch

Similar to importance sampling. If the p;; were fixed in advance

P(ze,1j = 1) = P(B(pr,i/Pt-1,)) = 1)P(2t-1,1,j = 1)
Pt,i
= ~77]P) Zi_ 1] = 1
Pe_1.i ( t—1,i,j )
Pt Pt—1i  Pi+1iPii _ ~
= ool ol B o
Pt—1,i Pt—2,i pii 1
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Proof sketch

Similar to importance sampling. If the p;; were fixed in advance

P(ze,1j = 1) = P(B(pr,i/Pt-1,)) = 1)P(2t-1,1,j = 1)
Pt,i
= ~77]P) Zi_ 1] = 1
Pe_1.i ( t—1,i,j )
Pt Pt—1i  Pi+1iPii _ ~
= ool ol B o
Pt—1,i Pt—2,i pii 1

Weight increase along chain % < % until z,;; =0or = < L.
t i t,i 7 i~ i

-1, n,i
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Proof sketch

Predictable quadratic variation W of a chain scales (roughly) with

W ~ dhak { }
=0 Ps,:
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Proof sketch

Predictable quadratic variation W of a chain scales (roughly) with
= Zs,i.j
w3 ~ sk 54
Ps,i
Cannot use concentrations for independent r.v.

1|z 1
And in worst case max{ S"’J} S — <t
Ps,i Tt,i
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Predictable quadratic variation W of a chain scales (roughly) with

- Zs,ij
W||5 ~
w3 ~ sk 54

s, i

Cannot use concentrations for independent r.v.

1 [ z
And in worst case max{ SiJ S— <t
pS ’

This looks too pessimistic. When =~ is large, z, ;; should be zero.
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Proof sketch

Predictable quadratic variation W of a chain scales (roughly) with
= Zs,i.j
w3 ~ sk 54
Ps,i
Cannot use concentrations for independent r.v.

1 [ z
And in worst case max{ SiJ S— <t
pS ’

This looks too pessimistic. When =~ is large, z, ;; should be zero.

We will find another set of dominating r.v. Wi indep. from each other
1)

P(max{zf’i’j} < a) 21?(1 < a)
Ps,i Wi j

matiky KI FMFI BA 22. feb:
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Proof sketch

Imagine the ps ; were fixed in advance. Then

Zye ;=1
— g
=iy " }S"I}—{o.m._\'})
g
<
A
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U 1/m, o /b,
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Proof sketch

Imagine the ps ; were fixed in advance. Then

Z05=1
P(x:lax{%::’l’:l'v’} S“lf{o.m..\'})
S
&
P(ﬁ S‘l|f{t.m.x})
cl 1/17’»6 O‘z /pl.t
1 0 for
Ze i
]P’(max{f"” <a|>P(—<a)]=¢1-1 for
Ps,i Wo,ij
’ T 1 for

a<l
l<a<a/p,
a/Pt,i§3
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SQUEAK- recap before application

Goal 1: find a small, provably accurate dictionary in near-linear time

SQUEAK and DISQUEAK
Sub-linear time using multiple machines

Final dictionary can be updated if new samples arrive
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Experiments
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SQUEAK- recap before application

Goal 1: find a small, provably accurate dictionary in near-linear time

SQUEAK and DISQUEAK
Sub-linear time using multiple machines
Final dictionary can be updated if new samples arrive

Novel analysis, potentially useful for general importance sampling

Future work
Experiments

L, Easy to implement: distributed task queue
Preliminary results promising, easily scales to 1M+ samples

Beyond passive processing: SQUEAK for active learning

n lrezia—
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Efficient Sequential Learning
in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently
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Efficient Sequential Learning
in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently

Low-rank PSD matrix approximation

Kernel matrix K,, Kernel PCA
Kernel Regression
[Alaoui and Mahoney, 2015; Bach, 2013; Rudi et al., 2015]

Kernel K-Means
[Musco and Musco, 2017]
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Efficient Sequential Learning
in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently

Low-rank PSD matrix approximation

Kernel matrix K,, Kernel PCA
Kernel Regression
[Alaoui and Mahoney, 2015; Bach, 2013; Rudi et al., 2015]

Kernel K-Means
[Musco and Musco, 2017]

Graph Laplacians Lg Graph Semi-Supervised Learning
[Calandriello et al., 2015]

Graph Sparsification
[Calandriello et al., 2016]
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Efficient Sequential Learning
in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently

Low-rank PSD matrix approximation

Hessian (convex function)
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Efficient Sequential Learning
in Structured and Constrained Environments

Goal 2: use dictionary to solve down-stream problems efficiently

Low-rank PSD matrix approximation
Hessian (convex function) ~ Batch Conjugate gradient
[Rudi et al., 2017]

Online Newton Step (second part of talk)
[Calandriello et al., 2017b; Calandriello et al., 2017c]

Adaptive PSD matrix and spectral graph approximation Seminar z teoretickej informatiky KI FMFI BA 22. februar 2019



Outline

(1) Dictionary learning
> Nystrom sampling
> ridge leverage scores and effective dimension
> SQUEAK: sequential RLS importance sampling
Ls analysis for non i.i.d. matrix sampling

(2) Online Kernel Learning
> online kernel learning and kernelized online Newton step

> PROS-N-KONS:: adaptive Nystrom embedding for online kernel
learning

> adaptive restarts

> regression and classification experiments

n lrezia—
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Online Kernel Learning (OKL)

Online game between learner and adversary, at each round t € [T]
1 the adversary reveals a new point o(x;) = ¢ € H
2 the learner chooses a function f,, and predicts f, (x;) = ©(x;) Wy,
3 the adversary reveals the curved loss /;,

4 the learner suffers £,(¢d]w;) and observes the associated gradient g;.
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Online game between learner and adversary, at each round t € [T]
1 the adversary reveals a new point o(x;) = ¢ € H
2 the learner chooses a function f,, and predicts f, (x;) = ©(x;) Wy,
3 the adversary reveals the curved loss /;,

4 the learner suffers £,(¢d]w;) and observes the associated gradient g;.

Kernel flexible but curse of kernelization
t parameters = O(t) per-step prediction cost
gt = flt(d)tTWt)d)t = gty
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Online Kernel Learning (OKL)

Online game between learner and adversary, at each round t € [T]
1 the adversary reveals a new point o(x;) = ¢ € H
2 the learner chooses a function f,, and predicts f, (x;) = ©(x;) Wy,
3 the adversary reveals the curved loss /;,

4 the learner suffers £,(¢d]w;) and observes the associated gradient g;.

Kernel flexible but curse of kernelization
t parameters = O(t) per-step prediction cost
gt = flt(d)tTWt)d)t = gty

Learning to minimize regret R(w) = Zthl Ce(bewe) — Le(Prw)
and [compete with best-in-hindsight w* := arg min,, ¢4, 2;1 Li(dew)

n lrezia—
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OGD and losses

N\

convex

First order (GD) [Kivinen et al., 2004; Zinkevich, 2003]
VT regret, O(d)/O(t) time/space per-step
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OGD and losses

N\

\ B

\}‘

strongly convex

convex

First order (GD) [Kivinen et al., 2004; Zinkevich, 2003]
VT regret, O(d)/O(t) time/space per-step

First order (GD) [Hazan et al., 2008]
log(T) regret,
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OGD and losses

N\ d\kﬂ(
Mf_} L “‘k

-

strongly convex

convex

First order (GD) [Kivinen et al., 2004; Zinkevich, 2003]
VT regret, O(d)/O(t) time/space per-step

First order (GD) [Hazan et al., 2008]
log(T) regret, but often not satisfied in practice

Lo(eg. (ve — diwe)?)
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OGD and losses

d M
N \

strongly convex

convex o-curved

Second order (Newton-like) [Hazan et al., 2006; Zhdanov and Kalnishkan, 2010]
log(T) regret, O(d?)/O(t?) time/space per-step
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OGD and losses

B
\ . A
—

strongly convex

convex o-curved

Second order (Newton-like) [Hazan et al., 2006; Zhdanov and Kalnishkan, 2010]
log(T) regret, O(d?)/O(t?) time/space per-step

Weaker than strong convexity
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OGD and losses

N\ 4 \ - 4

<

strongly convex

o-curved

convex

Second order (Newton-like) [Hazan et al., 2006; Zhdanov and Kalnishkan, 2010]
log(T) regret, O(d?)/O(t?) time/space per-step

Weaker than strong convexity

Satisfied by [exp=concave losses:
Lssquared loss, squared hinge-loss, logistic loss
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OGD and losses

\ _IN A P \

\}‘

strongly convex

o-curved

convex

Second order (Newton-like) [Hazan et al., 2006; Zhdanov and Kalnishkan, 2010]
log(T) regret, O(d?)/O(t?) time/space per-step

Weaker than strong convexity

Satisfied by [exp=concave losses:
Lssquared loss, squared hinge-loss, logistic loss

Assumptions:
¢, are o-curved and |¢;(z)| < L whenever |z| < C (scalar Lipschitz)
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Second-Order OKL (Kernel Online Newton Step)

Second-Order Gradient Descent

t
Wil = Wy — At_lgt, A= ZUgSgST +al= GthT +al

s=1

n Crzia~
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Regret [Hazan et al., 2006; Luo et al., 2016]

initial error T
1
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Second-Order OKL (Kernel Online Newton Step)
Second-Order Gradient Descent
t
Wip1 = Wy — At_lgt, A = ZagsgsT +al = GthT + al

s=1
Regret [Hazan et al., 2006; Luo et al., 2016]

initial error T
1
R(w*) < afw* = woll3 +O <Z g/ (G:G/ + a')lgt>
t=1

.
< alw* —wo|*+ O <L D> ol (@D + al)ldat)

t=1
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Second-Order OKL (Kernel Online Newton Step)

Second-Order Gradient Descent

t
Wil = Wy — At_lgt, A= ZagsgsT +al= GthT +al

s=1
Regret [Hazan et al., 2006; Luo et al., 2016]
initial error T
i
R(w*) < * 2 O T G GT | -1
(W) < aljw* = woll3 + g: (G:G; +al) g
t=1

online effective dimension
T 1

-
< allw* —wo[> + O LY ¢ (0.0] +al) b
t=1
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Second-Order OKL (Kernel Online Newton Step)

Second-Order Gradient Descent

t
-1 T T
Wi = we — AL g, A = E 08s8, + al = GG, + al
s=1
Regret [Hazan et al., 2006; Luo et al., 2016]

initial error T
1
R(w*) < afw* = woll3 +O <Z g/ (G:G/ + a')lgt>
t=1

online effective dimension
T 1

-
< alw* —wo|*+ O <L D> ol (@D + al)1¢t>
t=1

< allw* — wo||? + O(log Det(K7/a £1,))
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Second-Order OKL (Kernel Online Newton Step)

Second-Order Gradient Descent

t
Wil = Wy — At_lgt, A= ZagsgsT +al= GthT +al

s=1
Regret [Hazan et al., 2006; Luo et al., 2016]
initial error T
i
R(w") < allw* = woll3 +O <Z g (GG, + a')lgt>
t=1

online effective dimension
T 1

T

< afw* —wol? + 0<L D> ol (@D + al)1¢t>
t=1

< allw* — wo||? + O(log Det(K7/a £1,))

< OZHW:k — W()”2 + O(dgf—f(a)log( T))[Calandriello et al., 2017¢]
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Effective Dimension in online learning

R(W") < afw” — wol| + O(dg(a) log(T))

dX(a) number of [relevant orthogonal directions played by the adversary.

Every inew orthogonal direction causes some regret.
Lsif it is played often enough (i.e., > a/(Lo))
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Effective Dimension in online learning

R(w") < af|w” — wo||* + O(d;js(a) log(T))
dX(a) number of [relevant orthogonal directions played by the adversary.

Every inew orthogonal direction causes some regret.
Lsif it is played often enough (i.e., > a/(Lo))

If all &, are orthogonal
d(VT)~ VT

and

RwW*) < VT +VTlog(T) ~ VT

n lrezia—
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Effective Dimension in online learning

R(W") < afw” — wol| + O(dg(a) log(T))

dX(a) number of [relevant orthogonal directions played by the adversary.

Every inew orthogonal direction causes some regret.
Lsif it is played often enough (i.e., > a/(Lo))

If all &, are orthogonal
d(VT)~ VT
and

RwW*) < VT +VTlog(T) ~ VT

n lrezia—

Adaptive PSD matrix and spectral graph approximation

If &; from finite subspace
de(1) ~ O(1) < r
is constant in T and

R(w*) < O(1)+ O(1) log(T) ~ log T
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Approximating KONS
KONS: df(«)log(T) regret

e

Ls large H = O(t) prediction d;w,, O(t?) updates g, — A; 'g;
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Approximating KONS
KONS: df(«)log(T) regret
Ls large H = O(t) prediction d;w,, O(t?) updates g, — A; 'g;

Use approximate second order updates in large H [Calandriello et al., 2017¢]

Ls df(a)log(T) regret, but prediction still depends on t
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L. large H = O(t) prediction ¢]w;, O(t?) updates g, — A;'g;

Use approximate second order updates in large H [Calandriello et al., 2017¢]

Ls df(a)log(T) regret, but prediction still depends on t

Use exact second order updates in small approximate H

L, replace ¢ with approximate map ¢ (random features, embeddings)
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Approximating KONS
KONS: df(«)log(T) regret
L. large H = O(t) prediction ¢]w;, O(t?) updates g, — A;'g;

Use approximate second order updates in large H [Calandriello et al., 2017¢]

Ls df(a)log(T) regret, but prediction still depends on t

Use exact second order updates in small approximate H
L, replace ¢ with approximate map ¢ (random features, embeddings)

finite H = constant per-step prediction/update cost
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Approximating KONS
KONS: df(«)log(T) regret
L. large H = O(t) prediction ¢]w;, O(t?) updates g, — A;'g;

Use approximate second order updates in large H [Calandriello et al., 2017¢]

Ls df(a)log(T) regret, but prediction still depends on t

Use exact second order updates in small approximate H
L, replace ¢ with approximate map ¢ (random features, embeddings)

finite H = constant per-step prediction/update cost

Zét tWt —E d)tW Zet twt ($tw)+€t(¢tw)_et(¢tW*)

. lreia—
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Approximating KONS
KONS: df(«)log(T) regret
L. large H = O(t) prediction ¢]w;, O(t?) updates g, — A;'g;

Use approximate second order updates in large H [Calandriello et al., 2017¢]

Ls df(a)log(T) regret, but prediction still depends on t

Use exact second order updates in small approximate H
L, replace ¢ with approximate map ¢ (random features, embeddings)

finite H = constant per-step prediction/update cost

Zét tWt —E d)tW Zet twt ($tw)+€t(¢tw)_et(¢tW*)

(a) Exact KONS in H: dJ(c)log(T)

. lreia—
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Approximating KONS
KONS: df(«)log(T) regret
L. large H = O(t) prediction ¢]w;, O(t?) updates g, — A;'g;

Use approximate second order updates in large H [Calandriello et al., 2017¢]

Ls df(a)log(T) regret, but prediction still depends on t

Use exact second order updates in small approximate H
L, replace ¢ with approximate map ¢ (random features, embeddings)

finite H = constant per-step prediction/update cost

Zét tWt —E d)tW Zet twt ($tw)+€t(¢tw)_et(¢tW*)

(a) Exact KONS in H: dJ(c)log(T)
(b) error between W best in 7 and w* best in H: bound how?

. lreia—
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Subspace approximation error

H cannot be fixed

L, the adversary will find orthogonal points and exploit this

o Crzia~
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Subspace approximation error

H cannot be fixed
L, the adversary will find orthogonal points and exploit this

same for fixed budget (e.g., k-rank approx [Luo et al., 2016])
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Subspace approximation error

H cannot be fixed
L, the adversary will find orthogonal points and exploit this

same for fixed budget (e.g., k-rank approx [Luo et al., 2016])

Use Nystrom approximation instead and adapt it online
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Subspace approximation error

H cannot be fixed
L, the adversary will find orthogonal points and exploit this
same for fixed budget (e.g., k-rank approx [Luo et al., 2016])

Use Nystrom approximation instead and adapt it online
L, if the adversary plays a “sufficiently orthogonal” ¢, add it to Z;;;
H, = Span(Z;) defined using m, linducing points Z, = {5},

Use RLS (KORS) to select inducing points
L. SQUEAK without removal (Z; C Z;1, ’}-N[t C ﬁt-‘_l)

w.h.p. accurate and maximum size [H¢| < O(dk(7)log*(T))
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Subspace approximation error

H cannot be fixed
L, the adversary will find orthogonal points and exploit this
same for fixed budget (e.g., k-rank approx [Luo et al., 2016])

Use Nystrom approximation instead and adapt it online
L, if the adversary plays a “sufficiently orthogonal” ¢, add it to Z;;;
H, = Span(Z;) defined using m, linducing points Z, = {5},

Use RLS (KORS) to select inducing points
L. SQUEAK without removal (Z; C Z;1, ’}-N[t C ﬁt+1)
w.h.p. accurate and maximum size [H¢| < O(dk(7)log*(T))

O(dJ(7)?) time/space cost to run exact KONS in 7
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PROS-N-KONS

Every time we change 7 we pay o||w; — w3 (initial error in GD)

Ls the adversary can influence w;, and make it large

n Crzia~
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PROS-N-KONS

ok

Reset w; and Kt when H, changes

L, wasteful, but not too often. At most J < d.F(v) times.
learning is preserved through ﬁt that always improves
adaptive doubling trick
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Final regret guarantees

For any curved loss

Rr(w) < O GRE)IOE(T)(olw| + d (a) g (T/a)) + AT /),

restarts online-offline gap H-H gap
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Final regret guarantees

For any curved loss

Rr(w) < O( dRA)ISEX(T) (ol w|* + d (a) log (T/a)) + 4T /o).

restarts

online-offline gap H-H gap

Setting v = a/ T removes second term
L, regret/computational cost is (’3(de¥f(1/ T)?)

still small in many cases, scale with eigenvalue decay

> If X; =19, regretis o(des(1/T)) < o( T*9)
> If Ae = 7! (Gaussian H), regret is o(polylog(T))
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Final regret guarantees

For any curved loss

Rr(w) < O( dRA)ISEX(T) (ol w|* + d (a) log (T/a)) + 4T /o).

restarts

online-offline gap H-H gap
Setting v = a/ T removes second term
L, regret/computational cost is (’3(de¥f(1/ T)?)

still small in many cases, scale with eigenvalue decay
b If Xg =t 9, regret is o(deir(1/T)) < o( TH9)

> If Ae = 7! (Gaussian H), regret is o(polylog(T))
> If H =R? regret is O(rlog(T)) [Luo et al., 2016]
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Final regret guarantees

For squared loss only and =«

R(w") < O (J (af|w* B + dii(a) log(T /a)) + JE*)
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Final regret guarantees

For squared loss only and =«
R(w*) < O (J (o||w*||3 + die() log(T /e)) + JLF)

Last term £* = Y21 £o(dew*) + af|w* |3 replaces 2 T

L regularized cumulative loss of w*, very small if H{ is good
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Final regret guarantees

For squared loss only and =«
R(w*) < O (J (o||w*||3 + die() log(T /e)) + JLF)

-
Last term £* = >, le(dew*) + aof|w*[|3 replaces 2 T
L regularized cumulative loss of w*, very small if H{ is good

First-order regret bound, £* constant if model is correct

L constant H-H gap is enough if instantaneous loss goes to 0.
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Experiments - regression

a=1~v=1
. cadata n = 20k, d =8 casp n =45k, d =9

Algorithm . .

Avg. Squared Loss | #SV | Time Avg. Squared Loss | #SV Time
FOGD 0.04097 + 0.00015 30 — 0.08021 + 0.00031 30 —
NOGD 0.03983 + 0.00018 30 — 0.07844 + 0.00008 30 —
PROS-N-KONS 0.03095 + o0.00110 20 18.59 0.06773 + 0.00105 21 40.73
Con-KONS 0.02850 -+ 0.00174 19 18.45 0.06832 + 0.00315 20 40.91
B-KONS 0.03095 + 0.00118 19 18.65 0.06775 + 0.00067 21 41.13
BATCH 0.02202 -+ 0.00002 —_ — 0.06100 =+ 0.00003 — —

. slice n = 53k, d = 385 year n = 463k, d = 90

Algorithm - -

Avg. Squared Loss #SV Time Avg. Squared Loss #SV Time
FOGD 0.00726 =+ 0.00019 30 — 0.01427 + 0.00004 30 —
NOGD 0.02636 =+ 0.00460 30 — 0.01427 + 0.00004 30 —
DuAL-SGD — — — 0.01440 =+ 0.00000 100 —
PROS-N-KONS did not complete — — 0.01450 =+ 0.00014 149 884.82
CoN-KONS did not complete — e 0.01444 + 0.00017 147 889.42
B-KONS 0.00913 + 0.00045 100 60 0.01302 + 0.00006 100 505.36
BATCH 0.00212 + 0.00001 — — 0.01147 + 0.00001 — —

. lreia—
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Experiments - binary classification

a=1~v=1
. ijjennl n = 141,691, d = 22 cod-rna n = 271,617, d = 8
Algorithm . §
accuracy #SV time accuracy #SV time
FOGD 9.06 + 0.05 400 — 10.30 + 0.10 400 —
NOGD 9.55 +0.01 100 — 13.80 + 210 100 —
DuaL-SGD 8.35 + 0.20 100 — 4.83 + o021 100 —
PROS-N-KONS 9.70 + 0.01 100 211.91 13.95 + 1.19 38 270.81
CoN-KONS 9.64 + 0.01 101 215.71 18.99 + 9.47 38 271.85
B-KONS 9.70 + 0.01 98 206.53 13.99 + 116 38 274.94
BATCH 8.33 +0.03 — — 3.781 + 001 — —
a =0.01, v =0.01
. ijjennl n = 141,691, d = 22 cod-rna n = 271,617, d =
Algorithm . §
accuracy #SV time accuracy #SV time
FOGD 9.06 + 0.05 400 — 10.30 + o0.10 400 —
NOGD 9.55 + 0.01 100 — 13.80 + 2.10 100 —
DuaAL-SGD 8.35 + 020 100 — 4.83 +o021 100 —
PROS-N-KONS 10.73 + 0.12 436 1003.82 4.91 +0.04 111 459.28
CoN-KONS 6.23 + 018 432 987.33 5.81 + 1.9 111 458.90
B-KONS 4.85 + 0.08 100 147.22 4.57 +o.05 100 333.57
BATCH 5.61 + 0.01 e e 3.61 +o0.01 — —

. lreia—
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PROS-N-KONS - recap

Goal 2: use dictionary to solve down-stream problems efficiently

PROS-N-KONS: avoid curse of kernelization, constant per-step cost
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PROS-N-KONS - recap

Goal 2: use dictionary to solve down-stream problems efficiently

PROS-N-KONS: avoid curse of kernelization, constant per-step cost
First approximate method with logarithmic regret

Future work
Restarts really necessary?
Adaptive « and ~?
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Conclusions

Goal 1: find a small, provably accurate dictionary in near-linear time

SQUEAK and DISQUEAK
Lsmatch space/accuracy of oracle RLS sampling
linear or sublinear runtime, single-pass

Goal 2: use dictionary to solve down-stream problems efficiently

PROS-N-KONS
Lspreserve logarithmic rate with constant per-step cost

Leverage existing analysis to get provably accurate linear-time algorithms

. lreia—
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Open questions

Short-term: more applications, more experiments
Kernel Ridge Regression - Gaussian Process - Laplacian Smoothing
Kernel PCA - Graph Spectral Embedding
Empirically: which kernel/~y for which dataset/«

Middle-term: non-trivial extensions

Anytime KORS, adaptive tree SQUEAK

From full (gradient descent) to partial feedback (linear/GP bandits)
From RLS to volume sampling/DPP

Long-term: new problems

Deterministic algorithms [Ghashami et al., 2015]

n lrezia—
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Reconstruction guarantees
Consider the regularized projection T,

r,=o,00 (0,0 +1)7! =(0,0] +41)7 1D, <DT(d) @)+t

_anDTﬂl) LoipT (00T + 1)~ wa
i=1

Ty = (0n®] + 1)1 D,8,8] OF (0, D) + 1)1 = wyhh|
Jj=1

An accurate dictionary satisfies
r,—T,3<
ITh=Thllz<e
equivalent to mixed additive/multiplicative error in quadratic form

(1-8)D,@) — eyl < D,S,S D) < (1+)D,D,) + eyl
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