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Abstract

We consider the reward-free exploration frame-
work introduced by Jin et al. (2020), where an
RL agent interacts with an unknown environment
without any explicit reward function to maximize.
The objective is to collect enough information dur-
ing the exploration phase, so that a near-optimal
policy can be immediately computed once any
reward function is provided. In this paper, we
move from the finite-horizon setting studied by Jin
et al. (2020) to the more general setting of goal-
conditioned RL, often referred to as stochastic
shortest path (SSP). We first discuss the chal-
lenges specific to SSPs and then study two scenar-
ios: 1) reward-free goal-free exploration in com-
municating MDPs, and 2) reward-free goal-free
incremental exploration in non-communicating
MDPs where the agent is provided with a re-
set action to an initial state. In both cases, we
provide exploration algorithms and their sample-
complexity bounds which we contrast with the
existing guarantees in the finite-horizon case.1

1. Introduction
In problems where the reward function is sparse or even ab-
sent, a reinforcement learning (RL) agent needs to explore
the environment driven by objectives other than reward
maximization. Recent unsupervised exploration deep RL
algorithms successfully tackled complex problems such as
Montezuma’s Revenge (e.g., Ecoffet et al., 2020) or real-
world robotic manipulation tasks (e.g., Pong et al., 2020)
solely driven by the objective of discovering and controlling
the environment. Nonetheless, the problem still lacks of
a rigorous formalization and algorithms do not have solid
theoretical guarantees. A first step in that direction is the
reward-free exploration framework introduced by Jin et al.
(2020) in finite-horizon Markov decision processes (MDPs).
Jin et al. (2020) define an exploration phase where the agent
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interacts with an unknown environment and collects infor-
mation about its dynamics. Then in a planning phase, the
agent is provided with a reward function and it must return
a near-optimal policy without any further learning. The per-
formance of the agent is evaluated by the number of samples
collected during the exploration phase.

While the finite-horizon setting is very popular in theoretical
RL, it is rarely representative of the type of problems consid-
ered in popular benchmarks and real applications in RL. In
this paper, we rather focus on the strictly more general and
more practical stochastic shortest path (SSP) setting (Bert-
sekas, 2012) (often referred to as goal-conditioned RL),
where the objective is to compute a policy that minimizes
the cost accumulated before reaching a specific goal state.
We first reformulate the reward-free exploration setting by
defining the objective of learning an accurate enough model
of the environment so that a near-optimal policy can be
computed for any SSP problem (i.e., for any initial state,
any goal state, and any cost function). We illustrate how
this problem may be considerably more difficult than in the
finite-horizon setting. We then study two different scenar-
ios (i.e., goal-free cost-free exploration in communicating
MDPs and goal-free cost-free incremental exploration in
non-communicating MDPs with restart), summarize the
sample complexity results that we obtain and contrast them
with the guarantees in the finite-horizon case.

2. Preliminaries
A Markov decision process (MDP) is defined as M :=
〈S,A, p, c〉, where S is the state space with S := |S| states
and A is the action space with A := |A| actions. Taking
action a in state s incurs a cost2 of c(s, a) ∈ [0, 1] and the
next state s′ ∈ S is selected with probability p(s′|s, a). We
denote by Γ := maxs,a ‖p(·|s, a)‖0 the largest support of
the transition model. In the SSP case, for a designated goal
state s, the objective is to compute a policy π : S → A
minimizing the cumulative cost before reaching s. Formally,
we define the (possibly unbounded) value function

Vπ(s→ s) := E
[ τπ(s→s)∑

t=1

c(st, π(st))
∣∣ s1 = s

]
,

where τπ(s → s) := inf{t ≥ 0 : st+1 = s | s1 = s, π}
is the (random) number of steps needed to reach s from s

2One can translate between costs and rewards via negation.
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Figure 1. The agent starts at state x and reaches z in H steps with
probability 1/2, and y in H + 1 steps with probability 1/2. From
state y the agent deterministically transitions to state z in 1 step.

when executing policy π. An optimal policy (if it exists) is
denoted by π? ∈ arg minπ Vπ(s→ s). For more details on
the SSP problem we refer to e.g., Bertsekas (2012, Sect. 3).

Jin et al. (2020) introduced the reward-free framework in
the finite-horizon case, which is a special case of the SSP
problem where each episode terminates after exactly H
steps. The agent receives as input an accuracy level ε > 0, a
confidence level δ ∈ (0, 1), the state and action spaces, and
the horizon H , while no knowledge is provided about the
transition model p. The learning process is decomposed into
two phases. ¬ Exploration phase: The agent first collects
trajectories from the MDP without a pre-specified reward
function and returns an estimate of the transition model p̂.
 Planning phase: The agent receives an arbitrary reward
function and is tasked with computing an ε-optimal policy
with probability at least 1−δ, without any additional interac-
tion with the environment. The objective is to minimize the
duration of the exploration phase needed to simultaneously
enforce any requested planning guarantee.

Jin et al. (2020) study the reward-free exploration problem
for any arbitrary MDP, where there may exist states that are
difficult or impossible to reach. The core mechanism in their
analysis is to partition the states depending on their ease of
being reached within H steps. Specifically, they distinguish
between significant states, that can be sufficiently visited
and whose transition probability can thus be accurately esti-
mated, and insignificant states that are too difficult to reach
within H steps, but therefore have negligible contribution
to any reward optimization.

Interestingly, in the goal-conditioned setting this distinction
may no longer be meaningful. By way of illustration, con-
sider any fixed horizon H and the toy environment in Fig. 1.
Suppose that the objective is to quickly reach state z (i.e.,
the goal state is z, the starting state is x and all costs are
equal to 1). Even though state y is insignificant within H
steps (in the finite-horizon sense of Jin et al., 2020, for any
positive “significance level”), it is actually crucial in solving
the objective, as z can be reached deterministically in 1 step
from y. Extrapolating this scenario, in the goal-conditioned
setting, we may have an effective horizon of H = +∞
for some goals, which implies that the transition model p
must be accurately estimated across the state-action space
to ensure that a near-optimal policy can be computed.

3. Goal-Free Cost-Free Exploration in
Communicating MDPs

In order to guarantee that the environment can be estimated
uniformly well, we introduce the following assumption.
Assumption 1 (In Sect. 3). The MDP M is communicating,
with finite and unknown diameter

D = max
s,s

Ds,s = max
s,s

min
π

E[τπ(s→ s)] < +∞.

We stress that the challenges that emerge in such setting
are orthogonal to the ones in (Jin et al., 2020): a constraint
on the environment is added (all states must now be reach-
able), allowing the removal of the constraint on performance
(which is not limited to H steps anymore) and thus enabling
to tackle the more general class of goal-oriented problems.

Without loss of generality, we consider throughout that the
maximum cmax of the cost functions that we intend to con-
sider in the planning phase is equal to 1. On the other hand,
the minimum value cmin has a more subtle impact on the
type of performance guarantees we can obtain. In particular,
for any cost function c and any pair of initial and goal states
s and s, we introduce a slack parameter θ ∈ [1,+∞] and
we say that a policy π̂ is (ε, θ)-optimal if 3

V π̂(s→ s) ≤ min
π:E[τπ(s→s)]≤θDs,s

V π(s→ s) + ε.

In the following theorem, we show that depending on the
minimum cost cmin in the cost functions of interest and the
slack θ, we can solve the goal-free cost-free exploration
problem with a bounded sample complexity.
Theorem 1. Consider any unknown environment satisfying
Asm. 1 and the goal-free cost-free exploration problem char-
acterized by an accuracy level 0 < ε ≤ 1, a confidence
level δ ∈ (0, 1), a minimum cost cmin ∈ [0, 1] and a slack
parameter θ ∈ [1,+∞]. There exists an algorithm A whose
exploration phase (i.e., number of time steps) is bounded
with probability at least 1− δ by

Õ

(
D4ΓSA

ωε2
+
D3S2A

ωε
+
D3ΓSA

ω2

)
,

where: ω := max
{
cmin,

ε

θD

}
.

Note that we can have either cmin = 0 or θ = +∞, but not
both simultaneously, to guarantee that ω > 0. Following
this exploration phase, the algorithm A can compute in
the planning phase, for any pair of starting and goal state
(s, s) ∈ S2, and for any cost function c in [cmin, 1], a policy
π̂ (depending on c, s, s) that is (ε, θ)-optimal.

Algorithmic principle (see App. A). We first use a sample
complexity analysis to solve SSP problems with a genera-
tive model (Tarbouriech et al., 2020a) and define the num-
ber of samples that are needed in each state-action pair to

3This reduces to standard ε-optimality for θ →∞.
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compute an estimated model that is accurate enough that a
near-optimal policy can be computed for any cost function.
Then we leverage the online learning algorithm GOSPRL
(Tarbouriech et al., 2020b) that explicitly collects the desired
amount of samples in any communicating environment. In-
terestingly, such algorithm is simply defining a sequence of
SSP problems, where the goal state is any state for which
the required number of samples is not achieved yet.

4. Goal-Free Cost-Free Incremental
Exploration

In this section, we seek to provide cost-free guarantees in
MDPs with possibly very large state space and diameter
(e.g., for non-communicating MDPs where D = ∞). In
order to make such setting feasible, we need to restrict the
type of SSP problems we would like to solve during the
planning phase. We propose an alternative approach that
builds on the setting of incremental autonomous exploration
introduced by Lim & Auer (2012).
Assumption 2 (In Sect. 4). The MDP M has a finite, pos-
sibly large state space S for which an upper bound S on
its cardinality is known, i.e., |S| ≤ S.4 It contains a des-
ignated initial state s0 ∈ S. Since the learner may get
stuck in a state without being able to return to s0, we as-
sume that the action space contains a RESET action s.t.
p(s0|s, RESET) = 1 for any s ∈ S.

We make explicit the states where a policy π takes action
RESET in the following definition.
Definition 1. For S ′ ⊆ S a policy π is restricted on S ′ if
π(s) = RESET for any s /∈ S ′. We denote by Π(S ′) the set
of policies restricted on S ′.

We denote by ΓS′ := maxs∈S′,a‖{p(s′|s, a)}s′∈S′‖0 the
largest support of the model p restricted to states in S ′ ⊆ S .

In (Lim & Auer, 2012), given an input parameter L ≥ 1 and
accuracy ε > 0, the objective of the agent is to identify the
set of incrementally L-controllable states S→L (Def. 2), as
well as a set of goal-conditioned policies to reach each state
in S→L from s0 in at most L+ ε steps on average.5

Definition 2 (Incrementally controllable states S→L ). Let ≺
be some partial order on S. The set S≺L of states control-
lable in L steps w.r.t. ≺ is defined inductively as follows.
The initial state s0 belongs to S≺L by definition and if there
exists a policy π restricted on {s′ ∈ S≺L : s′ ≺ s} with

4Lim & Auer (2012) consider a countable, possibly infinite
state space; however this leads to a technical issue in the analy-
sis of UCBEXPLORE (acknowledged by the authors via personal
communication), which requires considering finite state spaces.

5Lim & Auer (2012) showed that discovering all states in
SL := {s ∈ S : minπ∈Π E[τπ(s0 → s)] ≤ L} may require a
number of exploration steps that is exponential in L or |SL|, hence
the definition of incrementally controllable states.

E[τπ(s0 → s)] ≤ L, then s ∈ S≺L . The set S→L of incre-
mentally L-controllable states is defined as S→L := ∪≺S≺L ,
where the union is over all possible partial orders.

Finally, we introduce SL := |S→L | and ΓL := ΓS→
L

.

We extend the formalism of (Lim & Auer, 2012) and define
a more challenging cost-free objective. At the end of the
exploration phase, an algorithm should be able to compute a
near-optimal policy restricted on S→L for any SSP problem
with initial state s0, any goal state s ∈ S→L , and any cost
function. As the state space S may be very large, the set
S→L effectively captures our area of interest, with L being
the radius of interest provided as input. Note that S→L is
unknown in advance and is hard to estimate online.

Similar to Thm. 1 we provide an (ε, θ)-optimality guarantee
for the planning phase with the additional condition that we
consider policies restricted to the initially unknown set S→L .

Theorem 2. Consider any unknown environment satisfying
Asm. 2 and the goal-free cost-free incremental exploration
problem characterized by an accuracy level 0 < ε ≤ 1, a
confidence level δ ∈ (0, 1), a minimum cost cmin ∈ [0, 1]
and a slack parameter θ ∈ [1,+∞]. There exists an algo-
rithm A whose exploration phase (i.e., number of time steps)
is bounded with probability at least 1− δ by

Õ

(
L5ΓL+εSL+εA

ω2ε2
+
L3S2

L+εA

ωε

)
,

where: ω := max
{
cmin,

ε

θL

}
.

Note that we can have either cmin = 0 or θ = +∞, but
not both simultaneously, to guarantee that ω > 0. Follow-
ing this exploration phase, the algorithm A has confidently
identified a set S→L ⊆ K ⊆ S→L+ε, and has collected enough
information such that for any goal state s ∈ S→L and any
cost function c in [cmin, 1], it can compute in the planning
phase a policy π̂ (depending on c, s) that verifies

V π̂(s0 → s) ≤ min
π∈Π(S→

L ):E[τπ(s0→s)]≤θL
V π(s0 → s) + ε.

Algorithmic principle. Despite the difference in the setting,
we leverage similar algorithmic principles as in Sect. 3. In
this case, we define the sample requirements limited to the
states that have currently been discovered and for which a
shortest-path policy is available. Such policies are then used
to collect new samples and a one-step random exploration is
used to expand the set of controllable states until all states
in S→L have been identified. The resulting algorithm, called
DisCo, is presented in (Tarbouriech et al., 2020c).6

6While in (Tarbouriech et al., 2020c) the presentation of the
algorithm deals with the unit-cost case, the extension to handle gen-
eral costs is straightforward as explained in the paper’s Sect. 2.3.
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Reference RF-FH — (Jin et al., 2020) RF-COMM — Sect. 3 of this paper
(Thm. 1)

RF-INC — Sect. 4 of this paper
(Thm. 2)

Setting Finite-horizon RL Goal-conditioned RL (i.e., SSP) Goal-conditioned RL (i.e., SSP)

Feedback Any rewards r ∈ [0, 1]
Any goal state, any costs c ∈ [cmin, 1]

with cmin ≥ 0
Any goal state in S→

L , any costs
c ∈ [cmin, 1] with cmin ≥ 0

MDP - Non-communicating
and resetting after H steps , Communicating with diameter D - Non-communicating and reset action

Optimality , Restricted to H steps - Arbitrary* length to goal - Arbitrary* length to goal +
, Incremental Optimality

State dep. , Total state space S , Total state space S - State space of interest S→
L � S

Sample comp.
Õ
(
S2Apoly(H)

ε2
Õ
(
S2Apoly(D)

ε2

)
Õ
(
S2Apoly(D)

ε3

)
Õ
(
S2
LApoly(L)

ε2

)
Õ
(
S2
LApoly(L)

ε4

)
+S4Apoly(H)

ε

)
for not too small
cmin > 0

for very small cmin ' 0
for not too small
cmin > 0

for very small cmin ' 0

Table 1. High-level comparison between (Jin et al., 2020) and this paper. Asterisk* introduces the subtlety that, only in the case of
cmin ' 0 (the second sub-column), the length to goal targeted by the candidate policy is restricted if it is “too long”.

5. Discussion
We stress that RF-FH (Jin et al., 2020), RF-COMM (Sect. 3)
and RF-INC (Sect. 4) tackle orthogonal settings, each posing
different challenges. That notwithstanding, we believe that
it is insightful to compare the three settings in terms of
algorithmic approach and resulting bound (see Table 1).

Similarities in the three algorithmic designs. All three
approaches construct accurate estimates of the transitions.
RF-FH (Jin et al., 2020) restrict their attention to “signifi-
cant” states within H steps. As previously explained, such a
reasoning cannot be directly extended to general SSP prob-
lems, as there is no more notion of fixed horizon, with some
states possibly becoming non-negligible for value optimiza-
tion at some random point before the goal state is reached.
This is why RF-COMM enforces to visit uniformly enough
the state-action space, which explains the need for the com-
municating assumption (Asm. 1). By focusing on incremen-
tal exploration, RF-INC can effectively restrict its attention
to the (unknown) state space of interest S→L , which removes
the need for the communicating assumption. Finally, note
that to collect the sought-after samples, Jin et al. (2020)
deploy a finite-horizon algorithm for regret minimization,
whereas our algorithms leverage SSP policies.

Comparison between RF-FH and RF-COMM. In the
main order term w.r.t. ε, the dependencies in S2 and A are
equivalent, matching the lower bound derived in the finite-
horizon case (Jin et al., 2020, Thm. 4.1). Moreover, the role
of the horizon H in RF-FH is captured by the ratio D/cmin

in RF-COMM (when cmin > 0). Note that this ratio is not
a strict horizon (as the performance may last longer, as op-
posed to finite-horizon which always truncates it atH steps),
and it is environment-dependent and thus crucially unknown,
which introduces an additional layer of complexity to the

problem. RF-COMM (Thm. 1) is the first result tackling
the reward-free framework beyond finite-horizon, for goal-
conditioned RL in communicating MDPs. The resulting
exploration bound scales polynomially with D, which is
somewhat unavoidable. Finally, the bound of RF-COMM
inherits a Õ(ε−2) dependency (as in RF-FH of Jin et al.,
2020) whenever cmin is not too small (and can therefore be
considered as a constant). Otherwise, RF-COMM can cope
with very small (or even zero-valued) cmin, yet the bound
worsens to Õ(ε−3), and the performance becomes restricted
to policies with not too large expected goal-reaching time
(via the slack parameter θ). This interesting behavior does
not appear in the finite-horizon case (where the range of
rewards has no influence on the rate in ε), and it captures
the key role of the minimum cost played in the behavior of
the optimal goal-reaching policy.

Specificity of RF-INC. The incremental focus of RF-INC
enables to tackle goal-conditioned tasks while removing
the communicating assumption of RF-COMM, where the
dependency on the diameter D is replaced by the parameter
L, which may be designed to be much smaller than D. In
fact, while L defines the horizon of interest, resetting af-
ter every L steps (as in finite-horizon) would prevent the
agent to identify incrementally L-controllable states and
lead to poor performance. Another interesting element of
comparison is the dependency on the size of the state space.
While the RF-FH algorithm of (Jin et al., 2020) is robust
w.r.t. states that can be reached with very low probability, it
still displays a polynomial dependency on the global state
space S. On the other hand, in virtue of its incremental
focus, RF-INC (Thm. 2) depends polynomially on the num-
ber of (L+ ε)-controllable states and only logarithmically
on S. This result is significant since not only SL+ε can be
arbitrarily smaller than S, but also because the set S→L+ε

itself is initially unknown to the learner.



Reward-Free Exploration beyond Finite-Horizon

REFERENCES

Bertsekas, D. Dynamic programming and optimal control,
volume 2. 2012.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and
Clune, J. First return then explore. arXiv preprint
arXiv:2004.12919, 2020.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T.
Reward-free exploration for reinforcement learning. In
International Conference on Machine Learning, 2020.

Lim, S. H. and Auer, P. Autonomous exploration for navi-
gating in mdps. In Conference on Learning Theory, pp.
40–1, 2012.

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and
Levine, S. Skew-fit: State-covering self-supervised re-
inforcement learning. In International Conference on
Machine Learning, 2020.

Tarbouriech, J., Pirotta, M., Valko, M., and Lazaric,
A. Sample complexity bounds for stochastic short-
est path with a generative model, 2020a. URL
https://jtarbouriech.github.io/docs/
ssp_genmodel.pdf.

Tarbouriech, J., Pirotta, M., Valko, M., and Lazaric, A. A
provably efficient sample collection strategy for reinforce-
ment learning. arXiv preprint arXiv:2007.06437, 2020b.

Tarbouriech, J., Pirotta, M., Valko, M., and Lazaric, A.
Improved sample complexity for incremental autonomous
exploration in mdps. Advances in Neural Information
Processing Systems, 33, 2020c.

https://jtarbouriech.github.io/docs/ssp_genmodel.pdf
https://jtarbouriech.github.io/docs/ssp_genmodel.pdf


Reward-Free Exploration beyond Finite-Horizon

A. Cost-Free Goal-Free Exploration in Communicating MDPs (Sect. 3)
We leverage the GOSPRL algorithm of (Tarbouriech et al., 2020b), an algorithm that mimics the behavior of a generative
model in communicating MDPs. Specifically, in any unknown communicating environment with diameter D and for any
arbitrary (possibly time-varying) requirement of samples bt(s, a) (where the sequence is bounded from above by b(s, a)),
GOSPRL requires (with high probability) at most Õ(BD +D3/2S2A) times steps to collected the sought-after samples for
each state-action pair (s, a), where B ≤

∑
s,a b(s, a).

We now show that instantiating GOSPRL for carefully selected sampling requirements bt(s, a) enables to obtain the
guarantee of Thm. 1. To do so, we build on the sample complexity analysis of solving SSP problems with a generative
model derived in (Tarbouriech et al., 2020a, Thm. 1). As such, we introduce the following sampling requirement function

φ(X, y) := α ·

(
X3Γ̂

yε2
log

(
XSA

yεδ

)
+
X2S

yε
log

(
XSA

yεδ

)
+
X2Γ̂

y2
log2

(
XSA

yδ

))
, (1)

where α > 0 is a numerical constant and Γ̂ := maxs,a‖p̂(·|s, a)‖0 ≤ Γ is the largest support of p̂.

This sampling requirement function for carefully selected values of X and y is used to guide the GOSPRL algorithm.
Specifically, we set y to be equal to the minimum cost (in either the true or cost-perturbed model), i.e., y := ω. As for the
value of X , let us perform the following distinction of cases.

¬ First let us assume that the learning agent has prior knowledge of the diameterD. Then we setX = D. From (Tarbouriech
et al., 2020a), collecting at least φ(D,ω) samples from each state-action pair enables to guarantee the ε-optimality cost-free
planning guarantee of Thm. 1. The total time required to collect such samples is upper bounded by DSAφ(D,ω), which
directly yields the sample complexity guarantee stated in Thm. 1.

 Second we show that we can relax the assumption of knowing the diameter D without altering the sample complexity
guarantee. To do so, we begin the algorithm by a procedure with computes a quantity D̂ such that D ≤ D̂ ≤ D(1 + ε) with
high probability. From (Tarbouriech et al., 2020b, App. H), this can be done in Õ(D3S2A/ε2) time steps by leveraging
GOSPRL. We thus begin the algorithm by running such diameter-estimation subroutine. Crucially, we note that its sample
complexity is subsumed in the total sample complexity of Thm. 1. Then we simply apply the reasoning in case ¬ by
considering X = D̂ in the allocation of Eq. 1 instead of X = D. Since D̂ is a sufficiently tight upper bound on D (i.e.,
D̂ = O(D)), we ultimately obtain the same sample complexity guarantee as in case ¬.


