Improved Sample Complexity for Incremental Autonomous Exploration in MDPs Jean Tarbouriech^{1,2}, Matteo Pirotta¹, Michal Valko³, Alessandro Lazaric¹ ¹ FACEBOOK Al ² *(nuia* ³) DeepMind

Take-Away

What should an RL agent do in a *reward-free* and *open-ended* unknown environment?

► Our DisCo algorithm provably **1**) *discovers* all states within its *"reach"* in an *incremental* fashion, and **2**) learns a *near-optimal goal-conditioned policy* to reach *each* of them

► We provide theoretical analysis for concepts in deep RL such as exploration on the *frontier of the so far visited states*

Incremental Autonomous Exploration

- \blacktriangleright Environment \mathcal{E} : reward-free, possibly very large, resettable to s_0
- \blacktriangleright Desired objective: explore \mathcal{E} and stop when:
- it identifies all the *L*-controllable states
- it learns an ϵ -optimal goal-reaching policy for *each* of them

A May require an *exponential* number of steps Find the *incrementally* controllable states *[*Lim & Auer, COLT 2012]

 $\mathcal{S}_{L}^{\rightarrow}$: set of incrementally *L*-controllable states **A** unknown

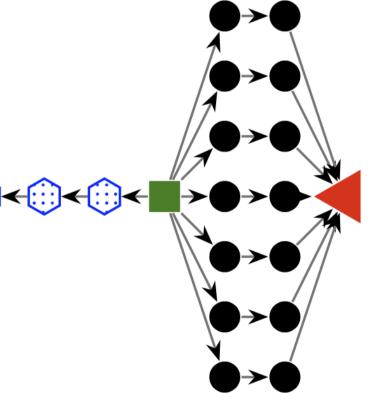
Objective: For *every* goal state $g \in \mathcal{S}_L^{\to}$, find a policy $\hat{\pi}_g$ such that

 $V_{\hat{\pi}_g}(s_0 \to g) \le \min_{\pi \in \Pi(\mathcal{S}_L^{\to})} V_{\pi}(s_0 \to g) + \epsilon$

 $\Pi(\mathcal{S}_L^{\rightarrow})$: class of policies that take the RESET action in states outside of $\mathcal{S}_L^{\rightarrow}$

► *Tighter* variant of the objective originally considered by Lim & Auer

state *s* is *L*-controllable if: $\min_{\pi} V_{\pi}(s_0 \to s) \leq L$ shortest-path distance



DisCo Algorithm — discover and control

- Initialize $\mathcal{K} \leftarrow \{s_0\}, \mathcal{U} \leftarrow \{\}$
- Execute goal-reaching π_g for each $g \in \mathcal{K}$ to *improve* model estimate and discover *new states* to add to \mathcal{U}
- *Compute optim. goal-reaching* 2 $\pi_{\widetilde{g}}$ for each $\widetilde{g} \in \text{fringe}_{\mathcal{K}}(\mathcal{U})$
- If $\widetilde{V}_{\pi_{\widetilde{g}}}(s_0 \to \widetilde{g}) \leq L$, then add \widetilde{g} to \mathcal{K} and go back to step $\mathbf{1}$; else terminate

Sample Complexity Guarantee

DisCo requires

$$\widetilde{O}\left(\frac{L^5 \,\Gamma_{L+\epsilon} \, S_{L+\epsilon} \, A}{\epsilon^2}\right)$$

time steps to find policies $\{\widehat{\pi}_g\}_{g \in S_L^{\rightarrow}}$ $\triangleright S_{L+\epsilon} = |S_{L+\epsilon}^{\rightarrow}|$: number of incremen-

tally $(L + \epsilon)$ -controllable states $\triangleright \Gamma_{L+\epsilon}$: branching factor on $\mathcal{S}_{L+\epsilon}^{\rightarrow}$

(it is always $\leq S_{L+\epsilon}$, often times = O(1))

► DisCo is robust w.r.t.the total number of states S

 \triangleright Sample complexity: only in $\log(S)$

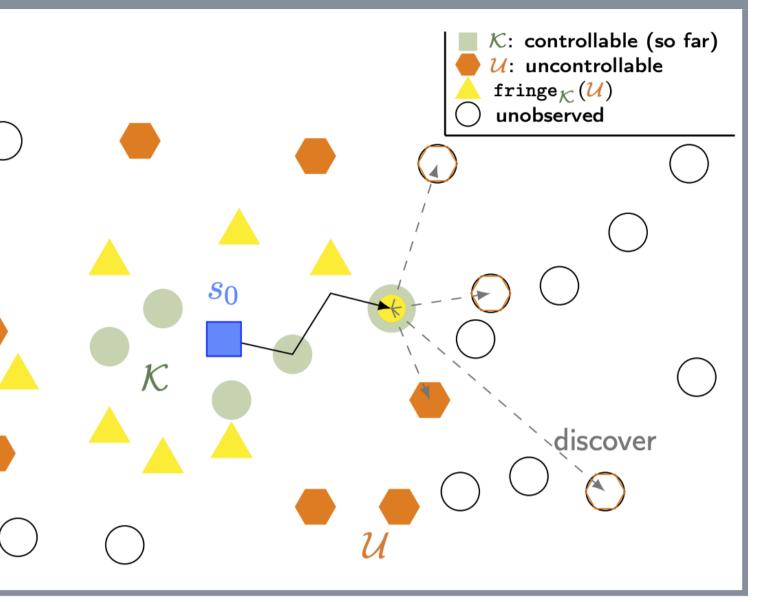
 \triangleright Comput. complexity: indep. of S

Goal-Free Cost-Free Exploration on $\mathcal{S}_L^{\rightarrow}$ with DisCo

▶ Post-exploration, DisCo can compute an (ϵ/c_{\min}) -optimal policy for any goal-oriented problem restricted on $\mathcal{S}_L^{\rightarrow}$ with **any** cost function in $[c_{\min}, 1]$ ► Goal-conditioned counterpart to the "reward-free" framework in *finite-horizon*

- *[*Jin et al., ICML 2020]

NeurIPS 2020



Comparison with Prior Approach

	DisCo	UcbExplore
	(this work)	(Lim & Auer, 2012)
Policies	<mark>€</mark> -optimal	"accurate enough"
Rate	$\widetilde{O}(\epsilon^{-2})$	$\widetilde{O}(\epsilon^{-3})$

Numerical simulation: DisCo outperforms UcbExplore, especially as $\epsilon \downarrow$

