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Abstract
In practical reinforcement learning (RL), the dis-
count factor used for estimating value functions
often differs from that used for defining the evalu-
ation objective. In this work, we study the effect
that this discrepancy of discount factors has dur-
ing learning, and discover a family of objectives
that interpolate value functions of two distinct dis-
count factors. Our analysis suggests new ways for
estimating value functions and performing pol-
icy optimization updates, which demonstrate em-
pirical performance gains. This framework also
leads to new insights on commonly-used deep
RL heuristic modifications to policy optimization
algorithms.

1. Introduction
One of the most popular models for reinforcement learning
(RL) is the Markov decision process (MDP) with exponen-
tial discounting over an infinite horizon (Sutton and Barto,
2018; Puterman, 2014), with discounted objectives of the
following form

V πγ (x) = Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣∣ x0 = x

]
.

Discounted models enjoy favorable theoretical properties,
and are also the foundation of many practical RL algorithms
that enjoy empirical success (e.g. see (Mnih et al., 2015;
Schulman et al., 2015a; Lillicrap et al., 2015; Schulman
et al., 2017)). However, in most applications of RL, the
objective of interest is the expected undiscounted cumulative
return,

Eπ

[
T∑
t=0

rt

∣∣∣∣∣ x0 = x

]
, (1)

where T < ∞ is a (possibly random) evaluation horizon,
which usually also denotes the end of the trajectory. For
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example, T could be the first time the MDP gets into a termi-
nal state (e.g., a robot falls); when the MDP does not have a
natural terminal state, T could be enforced as a deterministic
horizon. This creates a technical gap between algorithmic
developments and implementations: it is tempting to design
algorithms that optimize V πγ (x), however, further heuristics
are often needed to get strong practical performance. This
issue manifests itself with the policy gradient (PG) theorem
(Sutton et al., 2000). Let πθ be a parameterized policy. The
policy gradient (PG) ∇θV πθγ (x) is computed as

Eπθ

[ ∞∑
t=0

γtQπθγ (xt, at)∇θ log πθ(at|xt)

∣∣∣∣∣ x0 = x

]
.

(2)

However, the practical implementation of PG updates
usually omits the discount factors (see for example the
high-quality open source packages (Dhariwal et al., 2017;
Achiam and OpenAI, 2018), leading to an approximate gra-
dient of the form

Eπθ

[
T∑
t=0

Qπθγ (xt, at)∇θ log πθ(at|xt)

∣∣∣∣∣ x0 = x

]
. (3)

Most prior work on PG algorithms rely on this heuristic up-
date to work properly in deep RL applications. The intuitive
argument for dropping the factor γt is that Eqn (2) optimizes
V πθγ (x), which is very myopic compared to the objective in
Eqn (1). Consequently, the exponential discount γt is too
aggressive for weighting updates with large t. As a concrete
example, in many MuJoCo control tasks (Brockman et al.,
2016), the most commonly used discount factor is γ = 0.99.
This leads to an effective horizon of 1

1−γ = 100, which
is much smaller than the evaluation horizon T = 1000.
This technical gap between theory and practice has been
alluded to previously (by e.g., O’Donoghue et al., 2016) and
is explicitly discussed by Nota and Thomas (2019).

To bypass this gap, a straightforward solution would be to
naı̈vely increase the discount factor γ ≥ 1 − 1

T and apply
the PG in Eqn (2). In the example above, this implies using
γ ≥ 0.999. Unfortunately, this rarely works well in practice,
as we will also see in experiments. The failure might be due
to the higher variance of the estimation (Schulman et al.,
2015b) or the collapse of the action gaps (Lehnert et al.,
2018; Laroche and van Seijen, 2018), which is aggravated
when combined with function approximations.
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Nevertheless, as a theoretical framework, it is insightful to
emulate the undiscounted objective in Eqn (1) using the
(un)discounted objective V πγ′(x) with γ′ ≥ 1− 1

T . To build
intuitions about this approximation, note that when the time
step is small t� T , the multiplicative factor (γ′)t ≈ 1 and
the cumulative rewards are almost undiscounted; even when
t = T , we have (γ′)t ≥ (1 − 1

T )T ≈ 1
e � 0. Overall,

this is a much more accurate approximation than V πγ (x).
This naturally prompts us to answer the following general
question: How do we evaluate and optimize V πγ′(x) with
estimates built for V πγ (x) where 0 < γ < γ′ ≤ 1?

Main idea. We study the relation between V πγ (x) and
V πγ′(x) via Taylor expansions. In Section 3, we identify a
family of interpolating objectives between the more myopic
objective V πγ (x) and the true objective of interest V πγ′(x).
In Section 4, we start with insights on why the heuristic in
Eqn (3) might be useful in practice. Then, we apply Taylor
expansions directly to the heuristic updates, to arrive at a
family of interpolating updates. In Section 5, we build on
theoretical insights to derive improvements to established
deep RL algorithms. We show their performance gains in
Section 7.

2. Background
Consider the setup of a MDP. At any discrete time t ≥ 0, the
agent is in state xt ∈ X , takes an action at ∈ A, receives an
instant reward rt = r(xt, at) ∈ [0, Rmax] and transitions to
a next state xt+1 ∼ p(·|xt, at). For simplicity, we assume
r(x, a) to be deterministic. Let policy π : X → P(A) be
a mapping from states to distributions over actions. Let
γ ∈ [0, 1) be a discount factor, define the Q-function
Qπγ (x, a) := Eπ [

∑∞
t=0 γ

trt | x0 = x, a0 = a] and value
function V πγ (x) := Eπ [

∑∞
t=0 γ

trt | x0 = x]. We also de-
fine the advantage function Aπγ (x, a) := Qπγ (x, a)−V πγ (x).
Here, Eπ [·] denotes that the trajectories (xt, at, rt)

∞
t=0 are

generated under policy π. Throughout the paper, we use sub-
scripts γ to emphasize that RL quantities implicitly depend
on discount factors.

2.1. Linear programs for reinforcement learning
Henceforth, we assume all vectors to be column vec-
tors. The value functions V πγ satisfy the Bellman equa-
tions V πγ (x) = Eπ

[
r(x, a) + γV πγ (x′) | x0 = x

]
(Bell-

man, 1957). Such equations can be encoded into a linear
program (LP) (De Farias and Van Roy, 2003; Puterman,
2014). Let V ∈ RX be the primal variables, consider the
following LP,

max δTx V, V = rπ + γPπV, (4)

where rπ ∈ RX is the state-dependent reward rπ(x′) :=∑
a′ π(a′|x′)r(x′, a′) and Pπ ∈ RX×X is the transition

matrix under π. Here, δx ∈ RX encodes the one-hot dis-
tribution (Dirac) at x. Similar results hold for considering
the LP objective vTV with a general distribution v ∈ P(X ).
It then follows that the optimal solution to the above LP
is V ∗ = V πγ . Now, consider the dual LP to Eqn (4), let
d ∈ RX be the dual variables,

min (1− γ)−1(rπ)T d, d = (1− γ)δx + γ(Pπ)T d. (5)

The optimal solution to the dual program has a natural
probabilistic interpretation. It is the discounted visitation
distribution dπx,γ under policy π with starting state x as
dπx,γ(x′) := (1 − γ)

∑
t≥0 γ

tPπ(xt = x′|x0 = x) where
Pπ(xt = x′|x0 = x) is a probability measure induced by
the policy π and the MDP transition kernel. By strong
duality, the value function can be equivalently written as

V πγ (x) =
1

1− γ
Ex′∼dπx,γ ,a′∼π(·|x′) [r(x′, a′)] . (6)

3. Taylor Expansions of Value Functions
Below, we show how to estimate V πγ′(x) with approxima-
tions constructed from value functions V πγ (x) for γ < γ′.
Unless otherwise stated, we always assume γ′ < 1 for a
more convenient mathematical treatment of the problem.

3.1. Taylor expansions of discount factors
We start with some notations: we abuse the notation of value
functions V πγ ∈ RX to both refer to the scalar function
as well as a vector. The Bellman equation for the value-
function is expressed in the matrix form (Puterman, 2014)

V πγ′ = rπ + γ′PπV πγ′ . (7)

Inverting the equation,

V πγ′ = (I − γ′Pπ)−1rπ. (8)

Now, we present the main result of Taylor expansions.

Proposition 3.1. The following holds for all K ≥ 0,

V πγ′ =

K∑
k=0

(
(γ′ − γ)(I − γPπ)−1Pπ

)k
V πγ

+
(
(γ′ − γ)(I − γPπ)−1Pπ

)K+1
V πγ′︸ ︷︷ ︸

residual

. (9)

When γ < γ′ < 1, the residual norm converges to 0, which
implies

V πγ′ =

∞∑
k=0

(
(γ′ − γ)(I − γPπ)−1Pπ

)k
V πγ . (10)
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We provide a proof sketch here: Note that γ′Pπ = (γ′ −
γ)Pπ + γPπ and apply the Woodbury matrix identity to
obtain (I − γ′Pπ)−1 = (I − γPπ)−1 + (γ′ − γ)(I −
γPπ)−1Pπ(I − γ′Pπ)−1. We can then recursively expand
Eqn (8) K times to arrive at Eqn (9). In particular, by
expanding the equation once, we see that (I − γ′Pπ)−1 is
equivalent to the following,

(I − γPπ)−1 + (γ′ − γ)(I − γPπ)−1Pπ(I − γPπ)−1

+ (γ′ − γ)2
(
(I − γPπ)−1Pπ

)2
(I − γ′Pπ)−1︸ ︷︷ ︸

can be expanded further

,

where the last term can be expanded further by plugging in
the Woodbury matrix identity. See the complete proof in
Appendix A.

Extensions to γ′ = 1. The above result can extend to the
case γ′ = 1. We make two assumptions: A.1 The Markov
chain induced by π is absorbing and T is the absorption time;
A.2 rπ(x) = 0 for absorbing states x. Under these assump-
tions, we can interpret such absorbing states as the terminal
states. As a result, V πγ′=1(x) = Eπ

[∑T
t=0 rt

∣∣∣ x0 = x
]

is
well-defined and Proposition 3.1 still holds; see Appendix A
for the complete proof.

In practice, it is infeasible to sum up all infinite number
of terms in the Taylor expansion. It is then of interest to
consider the K th-order expansion of V πγ′ , which truncates
the infinite series. Specifically, we define the K th-order
expansion as

V πK,γ,γ′ :=

K∑
k=0

((γ′ − γ)(I − γPπ)−1Pπ)kV πγ . (11)

As K increases, the K th order expansion becomes increas-
ingly close to the infinite series, which evaluates to V πγ′(x).
This is formalized next.

Proposition 3.2. The following bound holds for all K ≥ 0,

∣∣V πγ′(x)− V πK,γ,γ′(x)
∣∣ ≤ (γ′ − γ

1− γ

)K+1
Rmax

1− γ′
. (12)

3.2. Sample-based approximations of Taylor
expansions

We now describe how to estimate V πK,γ,γ′(x) via samples.
First, we build some intuition on the behavior of expansions
at different orders K by considering a few special cases.

Zeroth-order expansion. By setting K = 0, we see that

V π0,γ,γ′ = V πγ . (13)

The zeroth order expansion approximates the value function
V πγ′(x) of the discount factor γ′ with that V πγ (x) of a lower
discount factor γ < γ′. This is a very straightforward
approximation to use in that no sampling at all is required,
but it may not be accurate.

First-order expansion. When K = 1, we consider the
increments of the expansions,

V π1,γ,γ′ − V π0,γ,γ′ = (γ′ − γ)(I − γPπ)−1PπV πγ . (14)

To understand the first order expansion, recall that in
the definition of value function V πγ = (I − γPπ)−1rπ,
immediate rewards rπ are accumulated via the matrix
(I − γPπ)−1. In general, for any X,Y ∈ RX , we can
interpret X = (I − γPπ))−1Y as accumulating Y as
rewards to compute X as value functions. By analogy,
we can interpret the RHS of Eqn (14) as the value func-
tion assuming (γ′ − γ)PπV πγ as immediate rewards. In
other words, the first order expansion bootstraps the ze-
roth order expansion V πγ to form a more accurate approx-
imation. Combined with the zeroth order expansion, we
can also conveniently write the difference of first- and
zeroth-order expansions as an expectation V π1,γ,γ′(x) −
V0,γ,γ′(x) = (γ′ − γ)Eπ

[∑∞
t=1 γ

t−1V πγ (xt)
∣∣ x0 = x

]
.

Let τ ∼ Geometric(1 − γ) be a random time such that
P (τ = t) = (1− γ)γt,∀t ∈ Z≥1. The difference can also
be expressed via this random time

V π1,γ,γ′(x)− V0,γ,γ′(x) =
γ′ − γ
1− γ

Eπ,τ
[
V πγ (xτ )

]
.

Note that from this expression, we obtain a simple unbi-
ased estimate for V π1,γ,γ′(x)− V0,γ,γ′(x), using a sampled
trajectory and a random time step τ .

General K th-order expansion. We now present results
for general K. Consider the incremental term,

V πK,γ,γ′ − V πK−1,γ,γ′ = (γ′ − γ)K
(
(I − γPπ)−1Pπ

)K
V πγ .

(15)

Note that the aggregate matrix
(
(I − γPπ)−1Pπ

)K
sug-

gests a recursive procedure to bootstrap from lower order
expansions to construct higher order expansions. To see
why, we can rewrite the right-hand side of Eqn (15) as

(γ′ − γ)(I − γPπ)−1Pπ
(
V πK−1,γ,γ′ − V πK−2,γ,γ′

)
.

Indeed, we can interpret the difference V πK,γ,γ′ − V πK−1,γ,γ′
as the value function under the immediate reward (γ′ −
γ)Pπ

(
V πK−1,γ,γ′ − V πK−2,γ,γ′

)
. This generalizes the boot-

strap procedure of the first order expansion as a special
case where we naturally assume V π−1,γ,γ′ = 0. Given K
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i.i.d. random times τi ∼ Geometric(1 − γ), we can write
V πK,γ,γ′(x)− V πK−1,γ,γ′(x) as the expectation(

γ′ − γ
1− γ

)K
Eτi,1≤i≤K

[
V πγ (xτ1+···+τK )

]
.

Based on the above expression, Algorithm 1 provides a
subroutine that generates unbiased estimates of V πK,γ,γ′(x)
by sub-sampling an infinite trajectory (xt, at, rt)

∞
t=0 with

the random times.

Practical implementations. While the above and Algo-
rithm 1 show how to compute one-sample estimates, in
practice, we might want to average multiple samples along
a single trajectory for variance reduction. See Appendix F
for further details on the practical estimates.

Algorithm 1 Estimating the K th order expansion
Require: A trajectory (xt, at, rt)

∞
t=0 ∼ π and discount

factors γ < γ′ < 1
1. Compute an unbiased estimate V̂ πγ (xt) for states along
the trajectory, e.g., V̂ πγ (xt) =

∑
t′≥t γ

t′−trt′ .
2. Sample K random time {τi}1≤i≤K , all
i.i.d. geometrically distributed τi ∼ Geometric(1− γ).

3. Return the unbiased estimate
∑K
k=0

(
γ′−γ
1−γ

)k
V̂ πγ (xtk)

where tk =
∑k
i=1 τi.

Interpretation of expansions in the dual space. Recall
that V πγ′ = (I − γ′Pπ)−1rπ = I(I − γ′Pπ)−1rπ where
the identity matrix I = [δ0, δ1, ...δX ] concatenates Dirac
delta vectors δx,∀x ∈ X . Since rπ is a constant vector,
Taylor expansions essentially construct approximations to
the matrix (I − γ′Pπ)−1. By grouping the matrix with the
reward vector (or the density matrix), we arrive at the primal
expansion (or the dual expansion),

I (I − γ′Pπ)−1rπ︸ ︷︷ ︸
primal expansions of V π

γ′ (x)

= I(I − γ′Pπ)−1︸ ︷︷ ︸
dual expansions of dπ

x,γ′

rπ

The derivations above focus on the primal expansion view.
We show a parallel theory of dual expansion in Appendix B.
The equivalence of primal-dual view of Taylor expansions
suggests connections with seemingly disparate lines of prior
work: Janner et al. (2020) propose a density model for visita-
tion distribution of different γ in the context of model-based
RL. They show that predictions of large discount factors
could be bootstrapped from predictions of small discount
factors. This corresponds exactly to the dual space expan-
sions, which is equivalent to the primal space expansions.

Extensions to Q-functions. In Appendix C, we show that
it is possible to build approximations to Qπγ′ using Qπγ as
building blocks. The theoretical guarantees and estimation
procedures are similar to the case of value functions.

3.3. Approximation errors with finite samples
Proposition 3.2 shows that the expected approximation error

decays as
∣∣V πK,γ,γ′(x)− V πγ′(x)

∣∣ = O

((
γ′−γ
1−γ

)K+1
)

for

γ < γ′ < 1. This motivates using a high value of K when
constructing the approximation. However, in practice, all
constituent terms in the K th order expansion are random es-
timates, each with a non-zero variance. This might lead the
variance of the overall estimate to increase as K increases.
As a result, K mediates a trade-off between bias (expected
approximation error) and variance. We formalize such in-
tuitions in Appendix E, where we theoretically analyze the
trade-off using the phased TD-learning framework (Kearns
and Singh, 2000).

A numerical example. To get direct intuition about the
effect of K, we focus on a tabular MDP example. The MDP
has |X | = 10 states and |A| = 2 actions. All entries of
the transition table p(y|x, a) are generated from a Dirich-
let distribution with parameters (α, . . . , α) with α = 0.01.
The policy π(a|x) is uniformly random. We take γ = 0.2
and γ′ = 0.8. The agent generates N = 10 trajectories
(xt, at, rt)

T
t=0 with a very large horizon T with a fixed start-

ing state x0. We assume access to base estimates V̂ πγ (xt)

and the Taylor expansion estimates V̂ πK,γ,γ′(x0) are com-
puted based on Algorithm 1. We estimate the relative error
as ÊK(x0) =

∣∣∣V πγ′(x0)− V̂ πK,γ,γ′(x0)
∣∣∣. For further experi-

ment details, see Appendix F.

In Figure 1(a), we show how errors vary as a function of K.
We study two settings: (1) Expected estimates (red), where
V̂ πK,γ,γ′(x0) is computed analytically through access to tran-
sition tables. In this case, similar to how the theory suggests,
the error decays exponentially; (2) Sample-based estimates
(blue) with base estimates V̂ πγ (xt) =

∑∞
s=0 γ

srt+s. The
errors decay initially with K but later start to increase a bit
as K gets large. The optimal K in the middle achieves the
best bias-variance trade-off. Note that in this particular ex-
ample, the estimates do not pay a very big price in variance
for large K. We speculate this is because increments to

the estimates are proportional to
(
γ′−γ
1−γ

)K+1

, which scales
down additional variance terms quickly as K increases.

In Figure 1(b), we study how the optimal expansion or-
der K∗ depends on the noise level of base estimates. To
emulate the noise, we assume access to base estimates
V̂ πγ (xt) = V πγ (xt) +N (0, σ2) for some noise level σ. The
optimal order K∗ is computed as K∗ = arg mink Êk(x0).
In general, we observe that when σ increases, K∗ decreases.
Intuitively, this implies that as the base estimates V̂ πγ (x) be-
come noisy, we should prefer smaller value of K to control
the variance. This result bears some insights for practical
applications such as downstream policy optimization, where
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(a) Trade-off of K (b) Optimal K

Figure 1. Comparison of Taylor expansions with different orders.
The x-axis shows the order K, the y-axis shows the log relative
errors of the approximations. The blue curve shows the exact com-
putations while the red curve shows the sample based estimations.
See Appendix F for more details.

we need to select an optimal K for the tasks at hand.

4. Taylor Expansions of Gradient Updates
In Section 3, we discussed how to construct approximations
to V πγ′(x). For the purpose of policy optimization, it is of
direct interest to study approximations to ∇θV πθγ′ (x). As
stated in Section 1, a major premise of our work is that in
many practical contexts, estimating discounted values under
γ′ ≈ 1 is difficult. As a result, directly evaluating the full
gradient∇θV πθγ′ (x) is challenging, because it requires esti-
mating Q-functions Qπθγ′ (x, a). Below, we start by showing
how the decomposition of∇θV πθγ′ (x) motivates a particular
form of gradient update, which is generally considered a
deep RL heuristic. Then we construct approximations to
this update based on Taylor expansions.

4.1. V πγ′ as a weighted mixture of V πγ
We can explicitly rewrite V πγ′(x) as a weighted mixture of
value functions V πγ (x′), x′ ∈ X . This result was alluded to
in (Romoff et al., 2019) and formally shown below.

Lemma 4.1. Assume γ < γ′ < 1. We can write V πγ′(x) =

(ρπx,γ,γ′)
TV πγ , where the weight vector ρπx,γ,γ′ ∈ RX is

(
I − γ(Pπ)T

) (
I − γ′(Pπ)T

)−1
δx.

Also we can rewrite V πγ′(x), using an expectation, as:

V πγ (x) + Eπ

[ ∞∑
t=1

(γ′ − γ)(γ′)t−1V πγ (xt)

∣∣∣∣∣ x0 = x

]
.

(16)

When γ′ = 1, ρπx,γ,γ′ might be undefined. However,
Eqn (16) still holds if assumptions A.1 and A.2 are satisfied.

4.2. Decomposing the full gradient∇θV πθγ′ (x)

Lemma 4.1 highlights that V πγ′(x) depends on π in two as-
pects: (1) the value functions V πγ (x′), x′ ∈ X ; (2) the state-
dependent distribution ρπx,γ,γ′(x

′). Let πθ be a parameter-
ized policy. For conceptual clarity, we can write V πθγ′ (x) =

F (V πθγ , ρπθx,γ,γ′) with a function F : RX × RX → R.
Though this function is essentially the inner product, i.e.,
F (V, ρ) = V T ρ, notationally, it helps stress that V πθγ′ (x)
depends on θ through two vector arguments. Now, we can
decompose∇θV πθγ′ (x).

Lemma 4.2. The full gradient ∇θV πθγ′ (x) can be decom-
posed into the sum of two partial gradients as follows,

(∂V F (V, ρ))
T ∇θV πθγ + (∂ρF (V, ρ))

T ∇θρπθx,γ,γ′

= E
[
∇θV πθγ (x′)

]︸ ︷︷ ︸
first partial gradient

+E
[
V πθγ (x′)∇θ log ρπθx,γ,γ′(x

′)
]

︸ ︷︷ ︸
second partial gradient

,

where the above partial gradients are both evaluated at V =
V πθγ , ρ = ρπθx,γ,γ′ and both expectations are with respect to
x′ ∼ ρπθx,γ,γ′ .

We argue that the second partial gradient introduces most
challenges in practical optimization. Intuitively, this is be-
cause its unbiased estimator is equivalent to a REINFORCE
gradient estimator which requires estimating discounted
values that accumulate V πγ (x′) as ‘reward’ under discount
factor γ′. By the premise of our work, this estimation would
be difficult. We will detail the discussions in Appendix D.

The following result characterizes the first partial gradient.

Proposition 4.3. For any γ < γ′ < 1, the first partial
gradient (∂V F (V πθγ , ρπθx,γ,γ′))

T∇θV πθγ can be expressed as

Eπθ

[ ∞∑
t=0

(γ′)tQπθγ (xt, at)∇θ log πθ(at|xt)

∣∣∣∣∣ x0 = x

]
.

(17)

When γ′ = 1, under assumptions A.1 and A.2, the first
partial gradient exists and is expressed as

Eπθ

[
T∑
t=0

Qπθγ (xt, at)∇θ log πθ(at|xt)

∣∣∣∣∣ x0 = x

]
. (18)

Connections to common deep RL heuristic. Many high-
quality deep RL algorithms (see, e.g. Dhariwal et al., 2017;
Achiam and OpenAI, 2018) implement parameter updates
which are very similar to Eqn (18). As such, Proposition 4.3
provides some insights on why implementing such a heuris-
tic might be useful in practice: though in general Eqn (18)
is not a gradient (Nota and Thomas, 2019), it is a partial gra-
dient of V πθγ′=1(x), which is usually the objective of interest
at evaluation time. Compared with the formula of vanilla
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PG in Eqn (2), Eqn (18) offsets the over-discounting by via
a uniform average over states.

However, it is worth noting that in deep RL practice, the
definition of the evaluation horizon T might slightly differ
from that specified in A.1. In such cases, Proposition 4.3
does not hold. By A.1, T is the absorption time that de-
fines when the MDP enters a terminal absorbing state. In
many applications, however, for MDPs without a natural
terminatal state, T is usually enforced by an external time
constraint which does not depend on states. In other words,
an environment can terminate even when it does not enter
any terminal state (see, e.g., Brockman et al., 2016 for such
examples). To bypass this subtle technical gap, one idea is
to incorporate time steps as part of the state x̃← [x, t]. This
technique was hinted at in early work such as (Schulman
et al., 2015b) and empirically studied in (Pardo et al., 2018).
In this case, the random absorbing time T depends fully on
the augmented states, and Proposition 4.3 holds.

4.3. Taylor expansions of partial gradients
We now consider approximations to the first partial gradients(

∂V F (V πθγ , ρπθx,γ,γ′)
)T
∇θV πθγ = (ρπθx,γ,γ′)

T∇θV πθγ .

Since ∇θV πθγ does not depend on γ′, the approximation is
effectively with respect to the weight vector ρπθx,γ,γ′ . Below,
we show results for the K th order approximation.

Proposition 4.4. Assume γ < γ′ < 1. For any x ∈ X ,
define the K th Taylor expansion to ρπx,γ,γ′ as

ρπx,K,γ,γ′ =

K∑
k=0

(
(γ′ − γ)

(
I − γ(Pπ)T

)−1
(Pπ)T

)k
δx.

It can be shown that V πK,γ,γ′(x) = (ρπx,K,γ,γ′)
TV πγ and∥∥ρπx,K,γ,γ′ − ρπK,γ,γ′∥∥∞ = O

((
γ′−γ
1−γ

)K+1
)

.

We build some intuitions about the approximations. Note
that in general we can write the partial gradient as a weighted
mixture of local gradientsQt∇θ log πθ(at|xt) whereQt :=
Qπθγ (xt, at),

Eπ

[ ∞∑
t=0

wK,γ,γ′(t)Qt∇θ log πθ(at|xt)

∣∣∣∣∣ x0 = x

]
, (19)

for some weight function wK,γ,γ′(t) ∈ R. When K →
∞, limwK,γ,γ′(t) = (γ′)t and we recover the original
first partial gradient defined in Eqn (17); when K = 0,
wK,γ,γ′(t) = γt recovers the vanilla PG in Eqn (2). For
other values of K, we show the analytic weights wK,γ,γ′(t)
in Appendix D. Similar to how V πK,γ,γ′ interpolates V πγ and
V πγ′ , here the K th order expansion to the partial gradients

interpolate the full partial gradients and vanilla PG. In prac-
tice, we might expect an intermediate value of K achieve
the best bias and variance trade-off of the update.

5. Policy optimization with Taylor expansions
Based on theoretical insights of previous sections, we pro-
pose two algorithmic changes to baseline algorithms. Based
on Section 3, we propose Taylor expansion advantage esti-
mation; based on Section 4, we propose Taylor expansion
update weighting. It is important to note that other algorith-
mic changes are possible, which we leave to future work.

5.1. Baseline near on-policy algorithm
We briefly introduce backgrounds for near on-policy pol-
icy optimization algorithms (Schulman et al., 2015a; Mnih
et al., 2016; Schulman et al., 2017; Espeholt et al., 2018).
We assume that the data are collected under a behavior
policy (xt, at, rt)

∞
t=0 ∼ µ, which is close to the target

policy πθ. The on-policyness is ensured by constraining
D(πθ, µ) ≤ ε for some divergence D and threshold ε > 0.
Usually, ε is chosen to be small such that little off-policy
corrections are needed for estimating value functions. With
data (xt, at, rt)

∞
t=0, the algorithms estimate Q-functions

Q̂πθγ ≈ Qπθγ . Then the estimates Q̂πθγ (x, a) are used as
plug-in alternatives to the Q-functions in the definition of
gradient updates such as Eqn (2) for sample-based updates.

5.2. Taylor expansion Q-function estimation
In Section 3, we discussed how to construct approximations
to Qπθγ′ using Qπθγ as building blocks. As the first first
algorithmic change, we propose to construct the K th order
expansion QπθK,γ,γ′ as a plug-in alternative to Qπθγ when
combined with downstream optimization. Since QπθK,γ,γ′ ≈
Qπθγ′ , we expect the optimization subroutine to account for
an objective of a longer effective horizon.

In many baseline algorithms, we have access to a value
function critic Vφ(x) and a subroutine which produces
Q-function estimates Q̂πθγ (x, a) (e.g., Q̂πθγ (xt, at) =∑∞
s=0 γ

srt+s). We then construct the K th order expan-
sion Q̂πθK,γ,γ′(x, a) using Q̂πθγ . This procedure is similar to
Algorithm 1 and we show the full algorithm in Appendix C.
See also Appendix F for further experimental details.

5.3. Taylor expansion update weighting
In Section 4, we discussed Taylor expansions approxima-
tion ρπθx,K,γ,γ′ to the weight vector ρπθx,γ,γ′ . As the second
algorithmic change to the baseline algorithm, we update pa-
rameters in the direction of K th order approximations to the

partial gradient θ ← θ + α
(
ρπθx,K,γ,γ′

)T
∇θV πθγ . Eqn (19)

shows that the update effectively translates into adjusting
the weight wt = wK,γ,γ′(t). When combined with other
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Algorithm 2 Taylor expansion Q-function estimation
Require: policy πθ with parameter θ and α

while not converged do
1. Collect partial trajectories (xt, at, rt)

T
t=1 ∼ µ.

2. Estimate Q-functions Q̂πθγ (xt, at).
3. Construct K th order Taylor expansion estimator
Q̂πθK,γ,γ′(xt, at) using Q̂πθ (xt, at).
4. Update the parameter via gradient ascent θ ← θ +
α
∑T
t=1 Q̂

πθ
K,γ,γ(xt)∇θ log πθ(at|xt).

end while

components of the algorithm, the pseudocode is shown in
Algorithm 3. Under this framework, the common deep RL
heuristic could be recovered by setting wt = 1.

Algorithm 3 Taylor expansion update weighting
Require: policy πθ with parameter θ and α

while not converged do
1. Collect partial trajectories (xt, at, rt)

T
t=1 ∼ µ.

2. Estimate Q-functions Q̂t = Q̂πθγ (xt, at).
3. Compute weights for each state wt = wx0,K,γ,γ′(t),
and average gθ =

∑T
t=1 wtQ̂t∇θ log πθ(at|xt).

4. Update parameters θ ← θ + αgθ.
end while

6. Related work
Discount factors in RL. Discount factors impact RL
agents in various aspects. A number of work suggest that
RL problems with large discount factors are generally more
difficult to solve (Jiang et al., 2016), potentially due to
increased complexities of the optimal value functions or col-
lapses of the action gaps (Lehnert et al., 2018; Laroche and
van Seijen, 2018). However, optimal policies defined with
small discounts can be very sub-optimal for RL objectives
with a large discount factor. To entail numerical stability
of using large discounts, prior work has suggested non-
linear transformation of the Bellman targets for Q-learning
(Pohlen et al., 2018; van Hasselt et al., 2019; Kapturowski
et al., 2018; Van Seijen et al., 2019). However, when data is
scarce, small discount factors might prove useful due to its
implicit regularization effect (Amit et al., 2020).

As such, there is a trade-off mediated by choosing different
values of discount factors. Similar trade-off effects are
most well-known in the context of TD(λ), where λ ∈ [0, 1]
trades-off the bias and variance of the TD updates (Sutton
and Barto, 2018; Kearns and Singh, 2000).

Adapting discount factors & multiple discount factors.
In general, when selecting a single optimal discount factor
for training is difficult, it might be desirable to adjust the
discount during training. This could be achieved by human-

designed (Prokhorov and Wunsch, 1997; François-Lavet
et al., 2015) or blackbox adaptation (Xu et al., 2018). Alter-
natively, it might also be beneficial to learn with multiple
discount factors at the same time, which could improve TD-
learning (Sutton, 1995) or representation learning (Fedus
et al., 2019). Complementary to all such work, we study the
connections between value functions defined with different
discounts.

Taylor expansions for RL. Recently in (Tang et al.,
2020), Taylor expansions were applied to study the rela-
tionship between V πγ and V µγ , i.e., value functions under
the same discount factor but different policies π 6= µ. This
is useful in the context of off-policy learning. Our work
is orthogonal and could be potentially combined with this
approach.

7. Experiments
In this section, we evaluate the empirical performance of
new algorithmic changes to the baseline algorithms. We
focus on robotics control experiments with continuous state
and action space. The tasks are available in OpenAI gym
(Brockman et al., 2016), with backends such as MuJoCo
(Todorov et al., 2012) and bullet physics (Coumans, 2015).
We label the tasks as gym (G) and bullet (B) respectively.
We always compare the undiscounted cumulative rewards
evaluated under a default evaluation horizon T = 1000.

Hyper-parameters. Throughout the experiments, we use
the same hyper-parameters across all algorithms. The learn-
ing rate is tuned for the baseline PPO, and fixed across all
algorithms. See Appendix F for further details.

7.1. Taylor expansion Q-function estimation
We use Q̂πθK,γ,γ′(x, a) with K = 1 as the Q-function es-
timator plug-in for the gradient update. When combin-
ing with PPO (Schulman et al., 2017), the resulting algo-
rithm is named PPO(K). We compare with the baseline
PPO and TRPO (Schulman et al., 2015a). In practice, we
consider a mixture of advantage estimator Q̂πθ (x, a) =

(1 − η)Q̂πθγ (x, a) + ηQ̂πθK,γ,γ′(x, a) with η ∈ [0, 1] a con-
stant that interpolates between the PPO (i.e., η = 0) and
PPO(K). Note that though η should be selected such that
it balances the numerical scales of the two extremes, as a
result, we usually find η to work well when it is small in
absolute scale (η = 0.01 works the best).

Results. In Figure 2, we compare a few baselines: (1)
PPO with γ = 0.99 (default); (2) PPO with high discount
factor γ = 1− 1

T = 0.999; (3) PPO with Taylor expansion
based advantage estimator, PPO(K). Throughout, we use
a single hyper-parameter η = 0.01. We see that in general,
PPO(K) leads to better performance (faster learning speed,
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(a) HalfCheetah(G) (b) Ant(G)

(c) Walker2d(G) (d) HalfCheetah(B)

(e) Ant(B) (f) Walker2d(B)

Figure 2. Comparison of Taylor expansion Q-function estimation
with other baselines. Each curve shows median ± std results across
5 seeds. Taylor expansion outperforms PPO baselines with both
lower and high discount factors.

better asymptotic performance or smaller variance across 5
seeds). This shows Taylor expansion Q-function estimation
could lead to performance gains across tasks, given that the
hyper-parameter η is carefully tuned. We provide a detailed
ablation study on η in Appendix F, where we show how the
overall performance across the benchmark tasks vary as η
changes from small to large values.

A second observation is that simply increasing the discount
factor to γ = 1 − 1

T = 0.999 generally degrades the per-
formance. This confirms issue with instability of directly
applying high discount factors which motivates this work.

We also compare with the open source implementation of
(Romoff et al., 2019) in Appendix F, where they estimate
Q̂πγ′ based on recursive bootstraps of Q-function differences.
Conceptually, this is similar to Taylor expansions with K =
∞. We show that without a careful trade-off mediated by
smaller K, this algorithm does not improve performance
out of the box.

(a) HalfCheetah(G) (b) Ant(G)

(c) Walker2d(G) (d) HalfCheetah(B)

(e) Ant(B) (f) Walker2d(B)

Figure 3. Comparison of Taylor expansion update weighting with
other baselines. Each curve shows median ± std results across
5 seeds. Taylor expansion outperforms the default PPO baseline
most stably.

7.2. Taylor expansion update weighting
As introduced in Section 5, we weigh local gradients
Q̂t∇θ log πθ(at|xt) with K th order expansion weights
wK,γ,γ′(t). Here, we take γ′ = 1 − 1

T . Note that since
K =∞ corresponds to limwK,γ,γ′(t) = (γ′)t ≈ 1, this is
very close to the commonly implemented PPO baseline. We
hence expect the algorithm to work better with relatively
large values of K and set K = 100 throughout experiments.
In practice, we find the performance to be fairly robust in
the choice of K. We provide further analysis and ablation
study in Appendix F.

Results. We compare a few baselines: (1) default PPO;
(2) PPO with time limit (Pardo et al., 2018). In this case, the
states are augmented with time steps x̃ ← [x, t] such that
the augmented states x̃ are Markovian; (3) PPO with Taylor
expansion update weighting PPO(K). In Figure 3, we see
that in general, PPO(K) and PPO with time limit outperform
the baseline PPO. We speculate that the performance gains



Taylor Expansions of Discount Factors

arise from the following empirical motivation: since the
evaluation stops at t = T , local gradients close to t = T
should be weighed down because they do not contribute
as much to the final objective. However, the default PPO
ignores such an effect and weighs all updates uniformly. To
tackle this issue, PPO(K) explicitly weighs down the update
while and PPO with time limit augments the state space to
restore stationarity. Empirically, though in some cases PPO
with time limit also outperforms PPO(K), it behaves fairly
unstably in other cases.

Extensions to off-policy algorithms. Above, we mainly
focused on on-policy algorithms. The setup is simpler be-
cause the data are collected (near) on-policy. It is possible to
extend similar results to off-policy algorithms (Mnih et al.,
2015; Lillicrap et al., 2015; Fujimoto et al., 2018; Haarnoja
et al., 2018). Due to the space limit, we present extended
results in Appendix F, where we show how to combine sim-
ilar techniques to off-policy actor-critic algorithms such as
TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018)
in continuous control domains.

8. Conclusion
We have proposed a family of objectives that interpolate
value functions defined with two discount factors. We have
shown that similar techniques are applicable to other cu-
mulative quantities defined through discounts, such as PG
updates. This framework allowed us to achieve trade-off in
estimating value functions or gradient updates, and led to
empirical performance gains.

We also highlighted a new direction for bridging the gap
between theory and practice: the gap between a fully dis-
counted objective (in theory) and an undiscounted objective
(in practice). By building a better understanding of this gap,
we shed light on seemingly opaque heuristics which are nec-
essary to achieve good empirical performance. We expect
this framework to be useful for new practical algorithms.
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APPENDICES: Taylor Expansions of Discount Factors
A. Proofs
Proposition 3.1. The following holds for all K ≥ 0,

V πγ′ =

K∑
k=0

(
(γ′ − γ)(I − γPπ)−1Pπ

)k
V πγ

+
(
(γ′ − γ)(I − γPπ)−1Pπ

)K+1
V πγ′︸ ︷︷ ︸

residual

. (9)

When γ < γ′ < 1, the residual norm converges to 0, which implies

V πγ′ =

∞∑
k=0

(
(γ′ − γ)(I − γPπ)−1Pπ

)k
V πγ . (10)

Proof. Recall the Woodbury matrix identity

(I − γ′Pπ)−1 = (I − γPπ)−1 + (γ′ − γ)(I − γPπ)−1Pπ(I − γ′Pπ)−1.

Recall the equality V πγ′ = (I − γ′Pπ)−1rπ . By plugging in the Woodbury matrix identity, this immediate shows

V πγ′ = (I − γPπ)−1rπ + (γ′ − γ)(I − γPπ)−1Pπ(I − γ′Pπ)−1rπ

= V πγ + (γ′ − γ)(I − γPπ)−1PπV πγ′ .

Now, observe that the second term involves V πγ′ . We can plug in the definition of V πγ′ = (I − γ′Pπ)−1rπ and invoke the
Woodbury matrix identity again. This produces

V πγ′ = V πγ + (γ′ − γ)(I − γPπ)−1PπV πγ +
(
(γ′ − γ)(I − γPπ)−1Pπ

)2
V πγ′ .

By induction, it is straightforward to show that iterating the above procedure K ≥ 0 times produces the following equalities

V πγ′ =

K∑
k=0

(
(γ′ − γ)(I − γPπ)−1Pπ

)k
V πγ + +

(
(γ′ − γ)(I − γPπ)−1Pπ

)K+1
V πγ′︸ ︷︷ ︸

residual

.

Consider the norm of the residual term. Since Pπ is a transition matrix, ‖Pπ‖∞ < 1. As a result,
∥∥(I − γPπ)−1

∥∥
∞ =

‖
∑∞
t=0 γ

t(Pπ)t‖∞ < (1− γ)−1. This implies∥∥∥((γ′ − γ)(I − γPπ)−1Pπ
)K+1

V πγ′
∥∥∥
∞
<

(
γ′ − γ
1− γ

)K+1

· Rmax

1− γ′
.

When γ < γ′ < 1, the residual norm decays exponentially and → 0 as K → ∞. This implies that the infinite series
converges,

V πγ′ =

∞∑
k=0

(
(γ′ − γ)(I − γPπ)−1Pπ

)k
V πγ .

Additional consideration when γ′ = 1. When γ′ = 1, in order to ensure finiteness of V πγ′=1, we assume the following
two conditions: (1) The Markov chain induced by π is absorbing; (2) for any absorbing state x, rπ(x) = 0. Without loss of
generality, assume there exists a single absorbing state. In general, the transition matrix Pπ can be decomposed as follows
(Grinstead and Snell, 2012; Ross, 2014),

Pπ =

(
P̃π p̃π

0 1

)
,

where P̃π ∈ R(|X |−1)|A|×(|X |−1)|A| and p̃π ∈ RX−1). Here, the first X −1 states are transient and the last state is absorbing.
For convenience, define r̃π as the reward vector rπ constrained on the first X − 1 transient states. We provide a few lemmas
below.
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Lemma A.1. The matrix (I − P̃ )π is invertible and its inverse is (I − P̃ )π =
∑∞
k=0(P̃ )k.

Proof. Define a matrix N =
∑∞
k=0(P̃π)k, then N [x, y] defines the expected number of times it takes to transition from x to

y before absorption. By definition of the absorbing chain, N is finite. This further shows that (I − P̃π) is invertible, because

N(I − P̃π) = (I − P̃π)N = I.

Lemma A.2. Let f(A,B) be a matrix polynomial function of matrix A and B. Then

f
(
Pπ, (I − γPπ)

−1
)

=

f (P̃π,(I − γP̃π)−1) B

0 1

 ,

where B is some matrix.

Proof. The intuition for the above result is that polynomial transformation preserves the block triangle property of Pπ and
(I − γPπ)−1. In general, we can assume

f(A,B) =
∑

m,n≤K

cm,nA
mBn,

for some K ≥ 0 and cm,n ∈ R are scalar coefficients. First, note that (Pπ)k, k ≥ 0 is of the form

(Pπ)
k

=

((
P̃π
)k

C

0 1

)
,

for some matrix C. Since (I − γA)−1 =
∑∞
k=0A

k for A ∈ {Pπ, P̃π}, this implies that

(I − γPπ)−1 =

∞∑
k=0

(γPπ)k =

((
P̃π
)k

D

0 1

)
=

((
I − γP̃π

)−1
D

0 1

)
,

for some matrix D. The above two results show that both polynomials of Pπ and (I − γPπ)−1 are block upper triangle
matrices. It is then straightforward that

(Pπ)
m
(

(I − γPπ)
−1
)n

=

(P̃π)m((I − γP̃π)−1)n E

0 1

 ,

for some matrix E. Finally, since f(Pπ, (I − γPπ)−1) is a linear combination of (Pπ)
m
(

(I − γPπ)
−1
)n

, we conclude
the proof.

Lemma A.3. Under assumption (1) and (2), one could write the value function V πγ′=1 as

V πγ′=1 =

∞∑
k=0

(Pπ)trπ,

where the infinite series on the RHS converges. In addition, for any transient state x, V πγ′=1(x) =
[∑∞

k=0(P̃π)kr̃π
]

(x).
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Proof. Recall that V πγ′(x) := E [
∑∞
t=0 rt | x0 = x]. Under assumption (2), for any absorbing state x, V πγ′(x) = 0 =[∑∞

k=0(Pπ)krπ
]

(x). We can instead constrain the Markov chain to the transient states. For any transient state x, recall the
definition of N from Lemma A.1, it follows that

V πγ′=1(x) =
∑
y

N(expected number of times in y|x0 = x)rπ(y) = [Nrπ] (x) =

[(
I − P̃π

)−1
r̃π
]

(x) =

[ ∞∑
k=0

(P̃π)kr̃π

]
(x).

By Lemma A.2, this is equivalent to [
∑∞
k=0(Pπ)trπ] (x). We thus complete the proof.

Lemma A.4. The following holds for any γ < 1,(
I − P̃π

)−1
=
(
I − γP̃π − (1− γ)P̃π

)−1
=

K∑
k=0

(
(1− γ)

(
I − γP̃π

)−1
P̃π
)k (

I − γP̃π
)−1

+

(
(1− γ)

(
I − γP̃π

)−1
P̃π
)K+1 (

I − P̃π
)−1

=

∞∑
k=0

(
(1− γ)

(
I − γP̃π

)−1
P̃π
)k (

I − γP̃π
)−1

. (20)

Proof. The first two lines derive from a straightforward application of Woodbury matrix identity to (I − P̃π)−1. This is
valid because by Lemma A.1, (I − P̃π) is invertible. The convergence of the infinite series is guaranteed for all γ < 1. To
see why, recall that the finiteness of N =

∑∞
k=0(P̃π)k implies (P̃π)K+1 → 0. We can bound the residual,∥∥∥∥∥

(
(1− γ)

(
I − γP̃π

)−1
P̃π
)K+1 (

I − P̃π
)−1∥∥∥∥∥

∞

≤
∥∥∥∥(P̃π)K+1

(
I − P̃π

)−1∥∥∥∥
∞
→ 0.

Finally, we combine results from the above to prove the main claim. First, consider the absorbing state x. Due to Assumption
(2), V πγ (x) = 0 for any γ ∈ [0, 1]. The matrix equalities in Proposition 3.2 holds in this case.

In the following, we consider any transient states x. By Lemma A.3 and Lemma A.4

Ṽ πγ′=1(x) =

[ ∞∑
k=0

(P̃π)kr̃π

]
(x)

=

[
K∑
k=0

(
(1− γ)

(
I − γP̃π

)−1
P̃π
)k (

I − γP̃π
)−1

r̃π +

(
(1− γ)

(
I − γP̃π

)−1
P̃π
)K+1 (

I − P̃π
)−1

r̃π

]
(x)

Now, notice that because the last entries of rπ, V πγ , V
π
γ′=1 are zero (for the absorbing state),[(

I − γP̃π
)−1

r̃π
]

(x) =
[
(I − γPπ)

−1
rπ
]

(x).

Combining with Lemma A.2,

Ṽ πγ′=1(x) =

[
K∑
k=0

(
(1− γ) (I − γPπ)

−1
Pπ
)k

(I − γPπ)
−1
r̃π +

(
(1− γ) (I − γPπ)

−1
Pπ
)K+1

V πγ′=1

]
(x)

=


K∑
k=0

(
(1− γ) (I − γPπ)

−1
Pπ
)k
V πγ︸ ︷︷ ︸

K-th order expansion

+
(

(1− γ) (I − γPπ)
−1
Pπ
)K+1

V πγ′=1︸ ︷︷ ︸
residual

 (x).

The residual term→ 0 as K → 0 with similar arguments used for Lemma A.4. We hence conclude the proof.
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Proposition 3.2. The following bound holds for all K ≥ 0,∣∣V πγ′(x)− V πK,γ,γ′(x)
∣∣ ≤ (γ′ − γ

1− γ

)K+1
Rmax

1− γ′
. (12)

Proof. The proof follows directly from the residual term in Proposition 3.1. Recall that the residual term takes the form

V πγ′ − V πK,γ,γ′ =
(
(γ′ − γ)(I − γPπ)−1Pπ

)K+1
V πγ′ .

Its infinity norm can be bounded as (γ
′−γ
1−γ )K+1 Rmax

1−γ′

Lemma 4.1. Assume γ < γ′ < 1. We can write V πγ′(x) = (ρπx,γ,γ′)
TV πγ , where the weight vector ρπx,γ,γ′ ∈ RX is(

I − γ(Pπ)T
) (
I − γ′(Pπ)T

)−1
δx.

Also we can rewrite V πγ′(x), using an expectation, as:

V πγ (x) + Eπ

[ ∞∑
t=1

(γ′ − γ)(γ′)t−1V πγ (xt)

∣∣∣∣∣ x0 = x

]
. (16)

When γ′ = 1, ρπx,γ,γ′ might be undefined. However, Eqn (16) still holds if assumptions A.1 and A.2 are satisfied.

Proof. We will derive the above result with the matrix form. Recall by applying Woodbury inversion identity to (I −
γ′Pπ)−1 = (I − (γ′ − γ)Pπ − γPπ)−1, we get

(I − γ′Pπ)−1 =

∞∑
k=0

(
(γ′ − γ)(I − γPπ)−1Pπ

)k
(I − γPπ)−1

= (I − γPπ)−1 +

∞∑
k=1

(
(γ′ − γ)(I − γPπ)−1Pπ

)k
(I − γPπ)−1

= (I − γPπ)−1 + (γ′ − γ)

∞∑
k=1

(
(γ′ − γ)(I − γPπ)−1Pπ

)k · (I − γPπ)−1 · Pπ(I − γPπ)−1

= (I − γPπ)−1 + (γ′ − γ)(I − γ′Pπ)−1 · Pπ · (I − γPπ)−1.

Then, right multiply the above equation by rπ ,

V πγ′ = V πγ + (γ′ − γ)(I − γ′Pπ)−1PπV πγ

= V πγ + (γ′ − γ)

∞∑
t=1

(γ′)t−1(Pπ)tV πγ .

By indexing both sides at state x, we recover the following equality,

V πγ′(x) = V πγ (x) + Eπ

[ ∞∑
t=1

(γ′ − γ)(γ′)t−1V πγ (xt)

∣∣∣∣∣ x0 = x

]
.

To derive the expression for ρπx,γ,γ , note that also

V πγ′ = (I − γ′Pπ)−1rπ = (I − γPπ)(I − γ′Pπ)−1(I − γPπ)−1rπ = (I − γPπ)(I − γ′Pπ)−1︸ ︷︷ ︸
weight matrixW

V πγ ,

where we use the fact that (I − γPπ) commutes with (I − γ′Pπ)−1. Since we define ρπx,γ,γ′ as such that V πγ′(x) =(
ρπx,γ,γ′

)T
V πγ , we can derive the matrix form of ρπx,γ,γ′ by indexing the x-th row of weight matrix W . This directly leads

to the desired result

ρπx,γ,γ′ =
(
I − γ(Pπ)T

) (
I − γ′(Pπ)T

)−1
δx.
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Proposition 4.3. For any γ < γ′ < 1, the first partial gradient (∂V F (V πθγ , ρπθx,γ,γ′))
T∇θV πθγ can be expressed as

Eπθ

[ ∞∑
t=0

(γ′)tQπθγ (xt, at)∇θ log πθ(at|xt)

∣∣∣∣∣ x0 = x

]
. (17)

When γ′ = 1, under assumptions A.1 and A.2, the first partial gradient exists and is expressed as

Eπθ

[
T∑
t=0

Qπθγ (xt, at)∇θ log πθ(at|xt)

∣∣∣∣∣ x0 = x

]
. (18)

Proof. First we assume γ′ < 1, we will consider the extension to γ′ = 1 at the end of the proof. Recall that the policy
gradient takes the following form,

∇θV πθγ (x) = Eπθ

[ ∞∑
t=0

γtQπθγ (xt, at)∇θ log πθ(at|xt)

∣∣∣∣∣ x0 = x.

]

We plug in the above, the partial derivative
(
∂V F (V πθγ , ρπθx,γ,γ′)

)T
∇θV πθγ evaluates to the following

∇θV πθγ (x) + Eπθ

[
(γ′ − γ)

∞∑
t=1

(γ′)t−1∇θV πθγ (xt)

]

= Eπθ

[ ∞∑
t=0

γtQπθγ (xt, at)∇θ log πθ(at|xt)

∣∣∣∣∣ x0 = x

]

+ Eπθ

[
(γ′ − γ)(γ′)t−1

∞∑
t=1

∞∑
s=0

γsQπθγ (xt+s, at+s)∇θ log πθ(at+s|xt+s)

∣∣∣∣∣ x0 = x

]

= Eπθ


∞∑
t=0

γt +

t∑
u=1

(γ′ − γ)(γ′)u−1γt−u︸ ︷︷ ︸
coefficient at time t

Qπθγ (xt, at)∇θ log πθ(at|xt)

∣∣∣∣∣∣∣∣∣ x0 = x.


In the above, the coefficient term at time t can be calculated by carefully grouping terms across different time steps. It can
be shown that the coefficient term evaluates to (γ′)t for all t ≥ 0. This concludes the proof.

Alternative proof based on matrix notations. We introduce an alternative proof based on matrix notations as it will
make the extension to γ′ = 1 simpler. First, note that

V πγ′ = (I − γ′Pπ)
−1
rπ = (I − γ′Pπ)

−1
(I − γPπ) (I − γPπ)

−1
rπ = (I − γPπ) (I − γ′Pπ)

−1
(I − γPπ)

−1
rπ,

where for the second equality we exploit the fact that (I − γPπ) commutes with (I − γ′Pπ)
−1. Now, notice that the above

rewrites as

V πγ′ = (I − γPπ) (I − γ′Pπ)
−1︸ ︷︷ ︸

Wγ,γ′

V πγ

where Wγ,γ′ is the weight matrix. This matrix is equivalent to the weighting distribution ρπx,γ,γ′ by Wγ,γ′ [x] = ρπx,γ,γ′
where A[x] is the x-th row of matrix A. The first partial gradient corresponds to differentiating V πθγ′ only through V πθγ . To
make the derivation clear in matrix notations, let θi be the i-th component of the parameter θ. Define ∇θiV πθγ ∈ RX such
that ∇θiV πθγ (x) = ∇θiV πθγ (x), This means the i-th component of the first partial gradient across all states is

Wγ,γ′∇θiV πθγ ∈ RX .
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Let Gθiγ ∈ RX to be the vector of local gradient (for parameter θi) such that Gθiγ (x) =
∑
a∇θiπθ(a|x)Qπθγ (x, a). Vanilla

PG (Sutton et al., 2000) can be expressed as

∇θiV πθγ = (I − γPπ)
−1
Gθiγ .

We can finally derive the following,

Wγ,γ′∇θiV πθγ = (I − γPπ)(I − γ′Pπ)−1Gθiγ

= (I − γPπ)(I − γ′Pπ)−1(I − γPπ)−1Gθiγ

= (I − γPπ)(I − γPπ)−1(I − γ′Pπ)−1Gθiγ

= (I − γ′Pπ)−1Gθiγ

Now, consider the x-th component of the above vector. We have ∇θ[J(πθ, πt)]πt=πθ is equal to

Eπθ

[ ∞∑
t=0

(γ′)t
∑
a

∇θiπθ(a|xt)Qπθγ (xt, a)

∣∣∣∣∣ x0 = x

]
= Eπθ

[ ∞∑
t=0

(γ′)t∇θi log πθ(at|xt)Qπθγ (xt, a)

∣∣∣∣∣ x0 = x

]
When concatenating the gradient for all component θii of θ, we conclude the proof.

Extensions to the case γ′ = 1. Similar to the arguments made in the proof of Proposition 3.2, under assumptions A.1 and
A.2, we can decompose the transition matrix Pπ as

Pπ =

(
P̃ p̃
0 1

)
,

where the last state is assumed to be absorbing. Though (I − γ′Pπ)−1 for γ′ = 1 is in general not necessarily invertible, the
matrix (I − P̃ )−1 is invertible. Since rπ(x) for the absorbing state x, we have deduced that Qπγ (x.a) = V πγ (x) = 0, and
accordinglyGθiγ (x) = 0. As such, though (I−γ′Pπ)−1 for γ′ = 1 might be undefined, the multiplication (I−γ′Pπ)−1Gθiγ
is defined, with the last entry being 0. Since at time t = T , the chain enters the absorbing states, all local gradient terms that
come after T are zero. As a result, the x-th component of (I − γ′Pπ)−1Gθiγ is

Eπθ

[
T∑
t=0

(γ′)t∇θi log πθ(at|xt)Qπθγ (xt, a)

∣∣∣∣∣ x0 = x

]

Proposition 4.4. Assume γ < γ′ < 1. For any x ∈ X , define the K th Taylor expansion to ρπx,γ,γ′ as

ρπx,K,γ,γ′ =

K∑
k=0

(
(γ′ − γ)

(
I − γ(Pπ)T

)−1
(Pπ)T

)k
δx.

It can be shown that V πK,γ,γ′(x) = (ρπx,K,γ,γ′)
TV πγ and

∥∥ρπx,K,γ,γ′ − ρπK,γ,γ′∥∥∞ = O

((
γ′−γ
1−γ

)K+1
)

.

Proof. Recall from Lemma 4.1, by construction,

ρπx,γ,γ′ =
(
I − γ′(Pπ)T

)−1 (
I − γ(Pπ)T

)
δx.

Simialr to the case of primal space expansions in Section 3.1, we construct the K th order expansion to ρπx,γ,γ′ via the

expansion of the matrix
(
I − γ(Pπ)T

)−1
. Recall that

(
I − γ′(Pπ)T

)−1
=

∞∑
k=0

(
(γ′ − γ)(Pπ)T

(
I − γ(Pπ)T

)−1)k (
I − γ(Pπ)T

)−1
.
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When truncating the infinite series to the first K + 1 terms, we derive the K th order expansion ρπx,K,γ,γ′ ,(
(γ′ − γ)(Pπ)T

(
I − γ(Pπ)T

)−1)k (
I − γ(Pπ)T

)−1 (
I − γ(Pπ)T

)
δx =

K∑
k=0

(
(γ′ − γ)(Pπ)T

(
I − γ(Pπ)T

)−1)k
δx.

Note that since∥∥∥∥∥
∞∑

k=K+1

(
(γ′ − γ)(Pπ)T

(
I − γ(Pπ)T

)−1)k (
I − γ(Pπ)T

)−1∥∥∥∥∥
∞

≤
(
γ′ − γ
1− γ

)K+1
1

1− γ′
.

This concludes the proof.

B. Further results on Taylor expansions in the dual space
The dual representation of value function V πγ′(x) in Eqn (6) is V πγ′(x) = (1− γ′)−1(rπ)T dπx,γ′ where rπ, dπx,γ′ ∈ RX are
vector rewards and visitation distribution starting at state x. Here, we abuse the notation dπx,γ to denote both a function and a
vector, i.e., dπx,γ(x′) can be interpreted as both a function evaluation and a vector indexing. Given such a dual representation,
one natural question is whether the K th expansion in the primal space corresponds to some approximations of the discounted
visitation distribution dπK,γ,γ′ ≈ dπx,γ′ . Below, we answer in the affirmative.

Let δx ∈ RX be the one-hot distribution such that [δx]x′ = 1 only when x′ = x. The visitation distribution satisfies the
following balance equation in matrix form

dπx,γ′ = (1− γ′)δx + γ′(Pπ)T dπx,γ′ . (21)

Inverting the equation, we obtain an explicit expression for the visitation distribution dπx,γ′ = (1 − γ′)(I − γ′Pπ)−1δx.
Following techniques used in the derivation of Propo 3.1, we can derive similar approximation results for dual variables.
See Appendix B.

Proposition B.1. The following holds for all K ≥ 0,

dπx,γ′ =
1− γ′

1− γ

K∑
k=0

(
(γ′ − γ)

(
I − γ(Pπ)T

)−1
(Pπ)T

)k
dπx,γ .

+
(

(γ′ − γ)
(
I − γ(Pπ)T

)−1
(Pπ)T

)K+1

dπx,γ′︸ ︷︷ ︸
residual

. (22)

When γ < γ′ < 1, the residual norm→ 0, which implies that the following holds

dπx,γ′ =
1− γ′

1− γ

∞∑
k=0

((γ′ − γ)
(
I − γ(Pπ)T

)−1
(Pπ)T )kdπx,γ . (23)

Proof. Starting from the fixed point equation satisfied by dπγ′ , we can apply Woodbury inversion indentity

dπγ′ = (1− γ′)
(
I − γ′(Pπ)T

)−1
δx

= (1− γ′)
K∑
k=0

(
(γ′ − γ)(I − γPπ)−1(Pπ)T

)k
δx + (1− γ′)

(
(γ′ − γ)

(
I − γ(Pπ)T

)−1
(Pπ)T

)K (
I − γ′(Pπ)T

)−1
δx

=
1− γ′

1− γ

K∑
k=0

(
(γ′ − γ) (I − γ(Pπ))

−1
Pπ
)k
dπγ + (1− γ′)

(
(γ′ − γ)(I − γPπ)−1(Pπ)T

)K
dπγ′

The norm of the residual term could be bounded as∥∥∥(1− γ′)
(
(γ′ − γ)(I − γPπ)−1Pπ

)K
dπγ′
∥∥∥
∞
≤ (1− γ′)

(
γ′ − γ
1− γ

)K+1

→ 0.
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With a similar motivation as expansions in the primal space, we define the K th order expansion by truncating to first K + 1
terms,

dπx,K,γ,γ′ :=
1− γ′

1− γ

K∑
k=0

((γ′ − γ)(I − γPπ)−1Pπ)kdπx,γ (24)

The following result formalizes the connection between the K th order dual approximation to the visitation distribution
dπK,γ,γ′ and the primal approximation to the value function at state x, V πK,γ,γ′(x).

Proposition B.2. The K th order primal and dual approximations are related by the following equality for any K ≥ 0,

V πK,γ,γ′(x) = (1− γ′)−1
(
dπx,K,γ,γ′

)T
rπ (25)

Proof. The proof follows by expanding out the RHS of the equation. Recall the definition of dπK,γ,γ′ ,

(dπK,γ,γ′)
T =

1− γ′

1− γ

K∑
k=0

(dπγ )T
(

(γ′ − γ) (I − γPπ)
−1
)k

= (1− γ′)
K∑
k=0

δTx (I − γPπ)−1
(

(γ′ − γ) (I − γPπ)
−1
)k

= (1− γ′)δTx

[
K∑
k=0

(
(γ′ − γ)(I − γPπ)

−1
Pπ
)k]
· (I − γPπ)

−1
.

Now multiply the RHS by rπ and recall that V πγ = (I − γPπ)−1rπ , we conclude the proof,

RHS =
1− γ′

1− γ
δTx

[
K∑
k=0

(
(γ′ − γ)(I − γPπ)

−1
Pπ
)k]

V πγ = (1− γ′)δTx V πK,γ,γ′ = (1− γ′)V πK,γ,γ′(x).

Proposition B.2 shows that indeed, the K th order approximation of the value function is equivalent to the K th order
approximation of the visitation distribution in the dual space. It is instructive to consider the special case K = 1.

C. Details on Taylor expansion Q-function advantage estimation
Proposition C.1. Let Qπγ ∈ RX×A be the vector advantage functions. Let P

π ∈ R(X×A)×(X×A) be the transition
matrix such that P

π
(x, a, x′, a′) = π(x′|x′)p(x′|x, a). Define the K th order Taylor expansion of advantage as QπK,γ,γ′ :=∑K

k=0((γ′ − γ)(I − γPπ)−1P
π
)kQπγ . Then limK→∞QπK,γ,γ′ = Qπγ′ for any γ < γ′ < 1.

Algorithm 4 Estimating the K th term of the expansion (Q-function)
Require: A trajectory (xt, at, rt)

∞
t=0 ∼ π and discount factors γ < γ′ < 1

1. Compute advantage function estimates Q̂πγ (xt, at) for states on the trajectory. For example, Q̂πγ (xt, at) =∑
t′≥t γ

t′−trt′ . One could also apply other alternatives (e.g., (Schulman et al., 2015b)) which potentiall reduce the
variance of Q̂πγ (xt, at).
2. Sample K random time τi, 1 ≤ i ≤ K, all i.i.d. geometrically distributed τi ∼ Geometric(1− γ).
3. Return (γ′−γ)K

(1−γ)K Q̂πγ (xτ , aτ ), where τ =
∑K
i=1 τi.

Proof. The proof follows closely that of Taylor expansion based approximation to value functions in Proposition 3.2.
Importantly, notice that here we define P

π
, which differs from Pπ used in the derivation of value functions. In particular,
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P
π
(x, a, y, b) = p(y|x, a)π(b|y) for any x, y ∈ X , a, b ∈ A. Let r be the vector reward function. The Bellmen equation for

Q-function is

Qπγ′ = r + γ′P
π
Qπγ′ .

Inverting the equation and applying the Woodbury inversion identity,

Qπγ′ = (I − γ′Pπ)−1r =

∞∑
k=0

(
(γ′ − γ)

(
I − γPπ

)−1
P
π
)k

Qπγ

The above equality holds for all γ < γ′ < 1 due to similar convergence argument as in Proposition 3.2. Truncating the
infinite series at step K, we arrive at the K th order expansion QπK,γ,γ′ . By construction, limK→∞QπK,γ,γ′ = Qπγ′ .

D. Details on Taylor expansion update weighting
Proposition D.1. The following is true for all K ≥ 0,

ρx,K,γ,γ′(x
′) = I[x′ = x] + Eπ

[ ∞∑
t=1

f(K, t, γ, γ′)I[xt = x′]

∣∣∣∣∣ x0 = x

]
,

Equivalently, the K th order Taylor expansion of V πγ′(x) is

V πK,γ,γ′(x) = Vγ(x) + Eπ

[ ∞∑
t=1

f(K, t, γ, γ′)V πγ (xt)

∣∣∣∣∣ x0 = x

]
, (26)

where f(K, t, γ, γ′) =
∑min(K,t)
u=1 (γ′ − γ)uγt−u

(
t−1
t−u
)

is a weight function.

Proof. We start with a few lemmas.

Lemma D.2. For any n ≥ 0, k ≥ 1, define a set of k-dimensional vector
{
x1, ...xk|xi ∈ Z≥0,

∑k
i=1 xi = n

}
and let

F (n, k) be the size of this set. Then

F (n, k) =

(
n+ k − 1

k − 1

)
.

Proof. By construction, the above set can be decomposed into smaller sets by fixing the value of xk, i.e.,{
x1, ...xk|xi ∈ Z≥0,

k∑
i=1

xi = n

}
= ∪ns=0

{
x1, ...xk−1, xk|xi ∈ Z≥0,

k∑
i=1

xi = n, xk = s

}

Since these sets do not overlap, we have a recursive formula, F (n, k) =
∑n
s=0 F (n− s, k− 1). Starting from the base case

F (n, 1) = 1,∀n ≥ 0, it is straightforward to prove by induction that for all n ≥ 0, k ≥ 1

F (n, k) =

(
n+ k − 1

k − 1

)
.

Lemma D.3. Consider V πK+1,γ,γ′ − V πK,γ,γ′ for K ≥ 0. It can be shown that

V πK+1,γ,γ′ − V πK,γ,γ′ = (γ′ − γ)K+1

( ∞∑
t=0

F (t,K + 1) (Pπ)
t

)
(Pπ)

K+1
V πγ .
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Proof. Starting with the definition,

V πK+1,γ,γ′ − V πK,γ,γ′ =
(

(γ′ − γ) (I − γPπ)
−1
Pπ
)K+1

V πγ

=
(

(γ′ − γ) (I − γPπ)
−1
)K+1

(Pπ)
K+1

V πγ ,

where for the second equality we use the fact that Pπ commutes with (I − γPπ)−1. Then consider
(
(I − γPπ)−1

)K+1
,

(
(I − γPπ)

−1
)K+1

=

( ∞∑
t=0

(γPπ)
t

)K+1

=
∑
s1≥0

...
∑

sK+1≥0

(γPπ)
∑K+1
i=1 si =

∞∑
s=0

F (s,K + 1) (γPπ)
s
.

Note that the last equality corresponds to a regrouping of terms in the infinite summation – instead of summing over
s1, ...sK+1 sequentially, we count the number of examples such that

∑K+1
i=1 si = s and then sum over s. This count is

exactly F (s,K + 1) as defined in Lemma D.2. Hence the proof is completed.

With the above lemmas, we are ready to prove the final result. We start by summing up all the differences of expansions,

V πK,γ,γ′ = V π0,γ,γ′ +

K−1∑
k=0

(
V πk+1,γ,γ′ − V πk,γ,γ′

)
= V πγ +

K−1∑
k=0

(γ′ − γ)k+1

( ∞∑
t=0

F (t, k + 1) (γPπ)
t

)
(Pπ)

k+1
V πγ

= V πγ +

∞∑
t=0

K−1∑
k=0

(γ′ − γ)k+1γ−k−1F (t, k + 1) (γPπ)
t+k+1

V πγ

= V πγ +

∞∑
t=0

K∑
u=1

(γ′ − γ)uγ−uF (t, u) (γPπ)
t+u

V πγ

= V πγ +

∞∑
s=0

K∑
u=1

(γ′ − γ)uγ−uF (s− u, u) (γPπ)
s
V πγ

= V πγ +

∞∑
s=1

K∑
u=1

(γ′ − γ)uγ−uF (s− u, u) (γPπ)
s
V πγ

= V πγ +

∞∑
s=1

K∑
u=1

(γ′ − γ)uγs−u
(
s− 1

u− 1

)
(Pπ)

s
V πγ

= V πγ +

∞∑
s=1

min(K,s)∑
u=1

(γ′ − γ)uγs−u
(
s− 1

u− 1

)
(Pπ)

s
V πγ

In the above derivation, we have applied the transformation u = k + 1, s = t+ u. Then we have modified the bound of the
summation with the definition of F (s− u, u) (in particular, if s < u, F (s− u, u) = 0). If we index the x-th component of
the vector, we recover the desired result.

D.1. Further discussions on the objectives
Recall that the full gradient∇θV πθγ′ (x) is

∇θV πθγ′ (x) = Ex′∼ρπθ
γ,γ′ (·;x)

[
∇θV πθγ (x′)

]
+ Ex′∼ρπθ

γ,γ′ (·;x)

[
V πθγ (x′)∇θ log ρπθγ,γ′(x

′;x).
]

︸ ︷︷ ︸
second term
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Consider the second term. Now, we derive this term in an alternative way which imparts more intuitions on why its
estimation is challenging. Note that

V πθγ′ (x) = V πθγ (x) + (γ′ − γ)Eπ

[ ∞∑
t=1

(γ′)t−1V πθγ (xt)

]

The second term of the full gradient is equivalent to differentiating through the above expression, while keeping all V πθγ (xt)
fixed. This leads the following gradient

second term = (γ′ − γ)(γ′)−1Eπ

[ ∞∑
t=1

(γ′)tWπθ
γ,γ′(xt)∇θ log πθ(at|xt)

]
.

Here, we introduce Wπθ
γ,γ′(xt) = Eπ

[∑∞
s=0(γ′)sV πθγ (xt+s)

]
, which is equivalent to a value function that treats V πθγ (x) as

rewards and with discount factor γ′. Naturally, constructing an unbiased estimator of the second term of the full gradient
requires estimating Wπθ

γ,γ′ , which is difficult in at least two aspects: (1) in practice, value functions are already estimated,
which could introduce additional bias and variance; (2) as a premise of our work, estimating discounted values with discount
factor γ′ is challenging potentially due to high variance.

E. Details on approximation errors with finite samples
Intuitively, as K increases, the K th order expansion V πK,γ,γ′ approximates V Kγ′ more accurately in expectation. However, in
practice where all constituent terms of the approximation are built from the same batch of data, the variance might negatively
impact the accuracy of the estimate.

To formalize such intuitions, we characterize the bias and variance trade-off under the phased TD-learning framework
(Kearns and Singh, 2000). Consider estimating the value function V πγ (x) under discount γ, with estimator V̂ πγ (x). At
each iteration t, let ∆γ

t := maxx∈X |V πγ (x)− V̂ πγ (x)| be the absolute error of value function estimates V̂ πγ . Assume from
each state x, there are independent n trajectories generated under π, (Kearns and Singh, 2000) shows that commonly used
TD-learning methods (e.g. TD(λ)) have error bounds of the following form with probability 1− δ,

∆γ
t ≤ A(γ, δ) +B(γ)∆γ

t−1. (27)

Here, the factor A(γ, δ) is an error term which characterizes the errors arising from the finite sample size n. As n→∞,
A(γ, δ) → 0; the constant B(γ) is a contraction coefficient that shows how fast the error decays in expectation. See
Appendix E for details.

With the calculations of estimators V̂ πγ (x) as a subroutine, we construct the n-sample K th order estimator V̂ πK,γ,γ′(x),

V̂K,γ(x0) =

K∑
k=0

1

n

n∑
i=1

(γ′ − γ)kV̂ πγ (xi,k), (28)

where xi,k is sampled from (Pπ · dµγ)k(·;x). Note that if K = 0, Eqn (28) reduces to 1
n

∑n
i=1 V̂

π
γ (x0), the estimator

analyzed by (Kearns and Singh, 2000). We are interested in the error ∆γ
K,t := maxx∈X |V πγ′(x)− V̂ πK,γ,γ′(x)|, measured

against the value function of discount γ′. The following summarizes how errors propagate across iterations,

Proposition E.1. Assume all samples xi,k are generated independently. Define a factor ε := 1−(γ′−γ)K+1

1−(γ′−γ) . Then with
probability at least 1− 2δ if K ≥ 1 and probability 1− δ if K = 0, the following holds1,

∆γ
K,t ≤ ε(A(γ, δ) + U)︸ ︷︷ ︸

finite sample error

+ E(γ, γ′,K)︸ ︷︷ ︸
expected gap error

+ εB(γ)︸ ︷︷ ︸
contraction coeff

∆γ
t , (29)

where U =
√

2 log 2(K+1)
δ /n for K ≥ 1 and U = 0 if K = 0. The expected gap error E(γ, γ′,K) =

(
γ′−γ
1−γ

)K+1
Rmax
1−γ is

defined in Proposition 3.2.
1The error bounds could be further improved, e.g., by adapting the concentration bounds at different steps 1 ≤ k ≤ K. Note that its

purpose is to illustrate the bias and variance trade-off induced by the Taylor expansion order K.
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Proof. Recall the results from (Kearns and Singh, 2000): Let ∆γ
t := maxx∈X |V πγ (x)− V̂ πγ (x)|. Then with probability at

least 1− δ, the following holds

∆γ
t ≤ A(γ, δ) +B(γ)∆γ

t−1.

In the following, we condition all analysis on the event set that the above inequality holds. Now, using V̂ πγ (x) as a subroutine,
define the estimator for the K th Taylor expansion as in Eqn (28),

V̂K,γ(x0) =

K∑
k=0

1

n

n∑
i=1

(γ′ − γ)kV̂ πγ (xi,k).

Define the error ∆γ
K,t := maxx∈X |V πγ′(x)− V̂ πK,γ(x)|, which is measured against the value function V πγ′(x) with a higher

discount factor γ′. Consider for a given starting state x0,

|V πγ′(x0)− V̂ πK,γ(x0)| = V πγ′(x0)− V πK,γ(x0) + V πK,γ(x0)− V̂ πK,γ(x)

≤ |V πγ′(x0)− V πK,γ(x0)|+ V πK,γ(x0)− V̂ πK,γ(x0)

≤ E(γ, γ′,K) + V πK,γ(x0)− E
[
V̂ πK,γ(x0)

]
︸ ︷︷ ︸

second term

+E
[
V̂ πK,γ(x0)

]
− V̂ πK,γ(x0)︸ ︷︷ ︸

third term

.

Now, we bound each term in the equation above. Recall ε :=
∑K
k=0(γ′ − γ)k = 1−(γ′−γ)K+1

1−γ′+γ . The second term is bounded
as follows

V πK,γ(x0)− E
[
V̂ πK,γ(x0)

]
≤ ε∆γ

t .

The third term is bounded by applying concentration bounds. Recall that the estimator V̂ πK,γ(x0) :=
∑K
k=0

1
n

∑n
i=1(γ′ −

γ)kV̂ πγ (xi,k) decomposes into K + 1 estimators, each being an average over n i.i.d. samples drawn from the K th step
visitation distribution (Pπ · dπγ )k, 0 ≤ k ≤ K. Applying similarly naive techniques in (Kearns and Singh, 2000), we bound
each of the K + 1 terms individually and then take a union bound over all K + 1 terms. This implies that, with probability
at least 1− δ, the following holds

E
[
V̂ πK,γ(x0)

]
− V̂ πK,γ(x0) ≤ εU = ε

√
2 log

2(K + 1)

δ
/n.

Aggregating all results, we have

|V πγ′(x0)− V̂ πK,γ(x0)| ≤ E(γ, γ′,K) + ε∆γ
t + εU

≤ ε(A(γ, δ) + U) + E(γ, γ′,K) + εB(γ)∆γ
t−1.

This holds with probability at least (1− δ)2 ≥ 1− 2δ.

Bias-variance trade-off via K. The error terms come from two parts: the first term contains errors A(γ, δ) in the
subroutine estimator V̂ πγ (x), and its propagated errors through the sampling of K th order approximations for 1 ≤ k ≤ K
(shown via the multiplier ε). This first term also contains U , a concentration bound that scales with O(

√
logK), which

shows that the variance of the overall estimator grows with K. This first error term scales with
√
n and vanishes as the

number of samples increases. The second term is due to the gap between the expected K th order Taylor expansion and
V πγ′(x0), which decreases with K and does not depend on sample size n. The new contraction coefficient is εB(γ), where it
can be shown that ε ∈ [1, 1

1−γ′+γ ]. Since typical estimators have B(γ) ≤ γ, in general εB(γ) < 1 and the error contracts

with respect to ∆t. In general, the contraction becomes slower as K increases. For example, for TD(λ), B(γ) = (1−λ)γ
1−γλ .

F. Further experiment details
Below, we provide further details on experiment setups along with additional results.
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F.1. Further details on the toy example
We presented a toy example that highlighted the trade-off between bias and variance, mediated by the order parameter K.
Here, we provide further details of the experiments.

Toy MDP. We consider tabular MDPs with |X | = 10 states and |A| = 2 actions. The transition table p(y|x, a) is drawn
from a Dirichlet distribution (α, . . . , α) for α = 0.01. Here, α is chosen such that the MDP is not very communicative
(i.e., the distribution p(·|x, a) concentrates only on a few states). The rewards are random r(x, a) = r(x, a)(1 + ε) where
ε ∼ N (0, 0.22) and mean rewards r(x, a) are drawn from Uniform(0, 1) and fixed for the problem.

F.2. Deep RL algorithms
Proximal policy optimization (PPO). PPO (Schulman et al., 2017) implements a stochastic actor πθ(a|x) as a Gaussian
distribution a ∼ N (µθ(x), σ2I) with state-conditional mean µθ(x) and a global standard deviation σ2I; and a value function
Vφ(x). The behavior policy µ is the previous policy iterate. The policy is updated as Âµγ(x, a)∇θclip(πθ(a|x)µ(a|x) , 1− ε, 1 + ε)

with ε = 0.22. The advantages Âµγ(x, a) estimated using generalized advantage estimation (GAE, (Schulman et al., 2015b))
with γ = 0.99, λ = 0.95. Value functions are trained by minimizing (Vφ(x)−R(x))2 with returnsR(x) = Vφ′(x)+Âµγ(x, a)
with φ′ being a prior parameter. Both parameters θ, φ are trained with the Adam optimizer (Kingma and Ba, 2014) with
learning rate α = 3 · 10−4. We adopt other default hyper-parameters in (Dhariwal et al., 2017), for details, please refer to
the code base.

Trust region policy optimization (TRPO). TRPO (Schulman et al., 2015b) implements the same actor-critic pipeline as
PPO, the difference is in the updates. Instead of enforcing a soft clipping constraint, TRPO enforces a strict KL-divegergence
constraint Ex∼µ [KL(πθ(·|x), µ(·|x)] ≤ ε with ε = 0.01. The policy gradient is computed as Âµγ(x, a)∇θ log πθ(a|x), and
then the final update is constructed by approximately solving a constrained optimization problem, see (Schulman et al.,
2015a) for details. The scale of the final update is found through a line search, to ensure that the KL-divergence constraint is
satisfied. The implementations are based in (Achiam and OpenAI, 2018).

F.3. Deep RL architecture
Across all algorithms, the policy πθ(a|x) = N (µθ(x), σ2I) has a parameterized mean µθ(x) and a single standard deviation
σ2. The mean µθ(x) is a 2-layer neural network with hidden units h = 64, and f(x) = tanh(x) activation functions. The
output layer does not have any activation functions; The value function Vφ(x) is a 2-layer neural network with hidden units
h = 64 and f(x) = tanh(x) as activation functions. The output layer does not have any activation functions.

F.4. Additional deep RL experiment results
F.4.1. TAYLOR EXPANSION Q-FUNCTION ESTIMATION: ABLATION STUDY ON η

Recall that throughout the experiments, we choose K = 1 and construct the new Q-function estimator as a mixture of the
default estimator and Taylor expansion Q-function estimator. In particular, the final Q-function estimator is

Q̂(x, a) = (1− η)Q̂πγ (x, a) + ηQ̂πK,γ,γ′(x, a).

We choose η ∈ [0, 1] such that it balances the numerical scales of the two combining estimators. In our implementation,
we find that the algorithm performs more stably when η is small in the absolute scale. In Figure 5(a)-(b), we show the
ablation study on the effect of η, where we vary η ∈ [0.01, 0.03]. The y-axis shows the normalized performance against
PPO baselines (which is equivalent to η = 0), such that the PPO baseline achieves a normalized performance of 1.

Overall, we see on different tasks, η impacts the performance differently. For example: on HalfCheetah(B), better
performance is achieved with larger values of η, this is consistent with the observation that PPO with γ = 0.999 also
achieves better performance; on Ant(B), however, as η increases from zero, the performance increases marginally before
degrading. In Figure 5, we show the median and mean performance across all tasks. Note that in general, the average
performance increases as η increases from zero, but later starts to decay a bit. When accounting for the effect of performance
variance across all tasks, we chose η = 0.01 as the fixed hyper-parameter throughout experiments in the main paper.

2The exact PPO update is more complicated than this. Refer to (Schulman et al., 2017) for the exact formula.
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Further details on computing Q̂πK,γ,γ′(x, a). Below we assume K = 1. In Algorithm 4, we showed we can construct
unbiased estimates of QπK,γ,γ′(x, a) using Q̂πγ (x, a) as building blocks. With a random time τ ∼ Geometric(1 − γ), the
estimator takes the following form

Q̂K,γ,γ′(xt, at) = Q̂πγ (xt, at) +
γ′ − γ
1− γ

Qπγ (xt+τ , at+τ ).

However, since the estimator is based on a single random time, it can have high variance. To reduce variance, we propose
the following procedure: let (xt, at) be the target state-action pair, we can compute the estimate as

Q̂K,γ,γ′(xt, at) = Q̂πγ (xt, at) +
γ′ − γ
1− γ

H∑
s=1

γs∑H
s′=1 γ

s′
Qπγ (xt+s, at+s).

When H = ∞, the above estimator corresponds to an estimator which marginalizes over the random time. This should
achieve variance reduction compared to the random time based estimate in Algorithm 4. However, then the estimate
requires computing cumulative sums over an infinite horizon (or in general a horizon of T ), which might be computationally
expensive. To mitigate this, we propose to truncate the above summation up to H = 10 steps. This choice of H aims to
achieve a trade-off between computation efficiency and variance. Note that this estimator was previously introduced in
(Tang et al., 2020) for off-policy learning.

F.4.2. TAYLOR EXPANSION UPDATE WEIGHTING: ABLATION ON K

In Figure 5(c)-(d), we carry out ablation study on the effect of K for the update weighting. Recall that K interpolates
two extremes: when K = 0, it recovers the vanilla PG (Sutton et al., 2000) while when K =∞, it recovers the deep RL
heuristic update. We expect an intermediate value of K to achieve some trade-off between bias and variance of the overall
update.

In Figure 5(c), we see the effect on individual environments. The effect is case dependent. For HalfCheetah(G), larger K
improves the performance; however, for Walker(G), the improvement is less prominent over a large range of K. When
aggregating the performance metric in Figure 5(d), we see that intermediate values of K indeed peak in performance. We
see that on average, both K = 10 and K = 100 achieve locally optimal mean performance, while K = 10 also achieves the
locally optimal median performance.

Note on how the practical updates impact the effect of K. Based on our theoretical analysis, when K = 0 the update
should recover the vanilla PG (Sutton et al., 2000), which is generally considered too conservative for the undiscounted
objective in Eqn (1). However, in practice, as shown in Figure 5(d), the algorithm does not severely underperform even
when K = 0. We speculate that this is because practical implementations of PG updates use batches of data instead of
the full trajectories. This means that the relative weights w(t) of the local gradients Q̂t∇θ log πθ(at|xt) are effectively
self-normalized: w̃(t)← w(t)∑

w(t′) where the summation is over the time steps in a sampled mini-batch. The self-normalized
weights w̃(t) are increased in the absolute scale relative to w(t) and partly offset the effect of an initially aggressive discount
w(t) = γt.

F.4.3. COMPARISON TO RESULTS IN (ROMOFF ET AL., 2019)
Recently, Romoff et al. (2019) derived a recursive relations between differences value functions defined with different
discount factors. This was shown in Lemma 4.1. Given a sequence of discount factors γ1 < γ2 < . . . < γN < γ′, they
derived a value function estimator to V πγ′(x) based on recursive bootstraps of value function differences V πγi(x)− V πγi−1

(x′).
Because they aim at recovering the exact value functions, this estimator could be interpreted as similar to Taylor expansions
but with K =∞.

Different from their motives, we focus on the trade-off achieved by intermediate values of K. We argued that by using
K = 0, the estimate might be too conservative; however, using K =∞ might be challenging due to the variance induced in
the recursive bootstrapping procedure. Though it is not straightforward to theoretically show, we conjecture that using the
Taylor expansion Q-function estimator with K =∞ is as difficult as directly estimating V πγ′(x).
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Figure 4. Learning curves generated by running the open source implementation of (Romoff et al., 2019) on Walker2d(G), averaged across
5 runs. There is little progress of learning for the algorithm on other benchmark tasks.

(a) Ablation on η (individual) (b) Ablation on η (average) (c) Ablation onK (individual) (d) Ablation on K (average)

Figure 5. Ablation study of hyper-parameters. We study two hyper-parameters: (a) η (b) K. In both cases, we calculate the task-dependent
normalized final returns after training for 106 steps. See Appendix F for how such normalized returns are computed. In (a), normalized
returns are computed with respect to η = 0 (i.e, the PPO baseline), such that when η = 0, the normalized returns are ones; in (b),
normalized returns are computed with respect to the default PPO baseline, such that values of ones imply that the baseline performs the
same as the default PPO baseline. Dashed curves (bullet tasks) and solid curves (gym tasks) are both mean scores averaged over 5 seeds.

Empirical comparison. The base algorithm of (Romoff et al., 2019) is PPO(Schulman et al., 2017). Their algorithm
uses the recursive bootstraps to estimate Q-functions and advantage functions. The new estimate is used as a direct
plug-in replacement to Q̂πγ (x, a) and Âπγ (x, a) adopted in the PPO algorithm. We run experiments with the open source
implementation of (Romoff et al., 2019) from the original authors3. We evaluate the algorithm’s performance over continuous
control benchmark tasks. We applied the default configurations from the code base with minimum changes to run on
continuous problems (note that (Romoff et al., 2019) focused on a few discrete control problems). Overall, we find that the
algorithm does not learn stably (see Figure 4).

G. Extensions of update weighting techniques to off-policy algorithms
Below, we show that techniques developed in this paper could be extended to off-policy learning algorithms. We provide
both details in theoretical derivations, algorithms, as well as experimental results.

3See https://github.com/facebookresearch/td-delta.

https://github.com/facebookresearch/td-delta
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G.1. Off-policy actor-critic algorithms
Off-policy actor-critics (Mnih et al., 2015; Lillicrap et al., 2015) maintain a deterministic policy πθ(x) and a Q-function
critic Qφ(x, a). The agent takes exploratory actions under the environment, and saves data (xt, at, rt) into a common replay
buffer D. At training time, the algorithm samples data from the replay to update parameters. The policy is updated via the
deterministic policy gradient (Silver et al., 2014), θ ← θ + α∇θEµ [Qφ(x, πθ(x))], where µ is implicitly defined by the
past behavior policy.

Deep deterministic policy gradient (DDPG). DDPG (Lillicrap et al., 2015) maintains a deterministic policy network
πθ(a|x) ≡ πθ(x) and a Q-function critic Qφ(x, a). The algorithm explores by executing a perturbed policy a = ε+ πθ(x)
where ε ∼ N (0, σ2) for σ = 0.1, and then saves the data (x, a, r, x′) into a replay buffer D. At training time, the behavior
data is sampled uniformly from the replay buffer (xi, ai, ri, x

′
i)
B−1
i=0 ∼ U(D) with B = 100. The critic is updated via TD(0),

by minimizing: 1
B

∑B−1
i=0 (Qφ(xi, ai) − Qtarget(xi, ai))

2 where Qtarget(xi, ai) = ri + γQφ′(x
′
i, πθ′(x

′
i)), where θ′, φ′ are

delayed versions of θ, φ respectively (Mnih et al., 2015). The policy is updated by maximizing 1
B

∑B−1
i=0 Qφ(xi, πθ(xi))

with respect to θ. Both parameters θ, φ are trained with the Adam optimizer (Kingma and Ba, 2014) with learning rate
α = 10−4. We adopt other default hyper-parameters in (Achiam and OpenAI, 2018), for details, please refer to the code
base.

Twin-delayed DDPG (TD3). TD3 (Fujimoto et al., 2018) adopts the same training pipeline and architectures as DDPG.
TD3 also adopts two critic networks Qφ1

(x, a), Qφ2
(x, a) with parameters φ1, φ2, in order to minimize the over-estimation

bias (Hasselt, 2010; Van Hasselt et al., 2016).

Soft actor-critic. SAC (Haarnoja et al., 2018) adopts a similar training pipeline and architectures as TD3. A major
conceptual difference is that SAC is based on the maximum-entropy formulation of RL (Ziebart et al., 2008; Fox et al.,
2016). The Q-function is augmented by entropy regularization bonus and the policy is optimized such that it does not
collapse to a deterministic policy.

G.2. Architecture
All algorithms share the same architecture. The policy network πθ(x) takes as input the state x, and is a 2-layer neural
network with hidden units h = 256 and f(x) = relu(x) activation functions. The output is squashed by f(x) = tanh(x)
to comply with the action space boundaries; The critic Qφ(x, a) takes a concatenated vector [x, a] as inputs, is 2-layer
neural network with hidden units h = 256 and f(x) = relu(x) activation functions. The output does not have any activation
functions.

For stochastic policies, the policy network parameterizes a Gaussian also parameterizes a log standard deviation vector
log σ(x), which is a neural network with the same architecture above. The stochastic output is a reparameterized function
a = πθ(x) + exp(log σ(x)) · ε where the noise ε ∼ N (0, 1). Finally, the action output is squashed by tanh(x) to comply
with the action boundary (Haarnoja et al., 2018).

G.3. Algorithm details for update weighting
To derive an update based on update weighting, we start with the undiscounted on-policy objective Vγ′(x) =
Ex′∼ρπθ

x,γ,γ′

[
V πθγ (x′)

]
. Given behavior data generated under µ, we abuse the notation and also use µ to denote the

state distribution under µ (usually implicitly defined by sampling from a replay buffer D). By rewriting the objective with
importance sampling (IS),

V πθγ′ (x) = Ex′∼ρπθ
x,γ,γ′

[
V πθγ (x′)

]
= Ex′∼µ

[
ρπθx,γ,γ′(x

′)

µ(x′)
V πθγ (x′)

]
, (30)

we derive an off-policy learning objective. By dropping a certain terms (see (Degris et al., 2012) for details about the
justifications for dropping such terms), we can derive the IS-based gradient update

Ex′∼µ
[
ρπθx,γ,γ′(x

′)

µ(x′)
∇θV πθγ (x′)

]
≈ Ex′∼µ

[
ρπθx,γ,γ′(x

′)

µ(x′)
∇θQφ (x′, πθ(x

′))

]
To render the update feasible, we need to estimate the ratio

ρ
πθ
x,γ,γ′ (x

′)

µ(x′) . Inspired by (Sinha et al., 2020), we propose to
maintain a fast replay buffer Df which contains the most recent sampled data (which implicitly defines ρπθx,γ,γ′), then the
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estimator wψ is trained to estimate the density ratio between D (which implicitly defines µ) and Df . See Appendix F for
further details. The full off-policy actor-critic algorithm is summarized in Algorithm G.3. In practice, we implement a
undiscounted uniform distribution instead of ρπx,γ,γ′(x

′) with γ′ = 1. The main motivation is that this distribution is much
easier to specify as it corresponds to sampling from the replay buffer uniformly without discounts, as explained below.

As an important observation for practical implementations, note that

ρπx,γ,γ′(x
′) =

γ

γ′
I[x0 = x′] + (γ′ − γ)Eπ

∑
t≥1

(γ′)t−1I[xt = x′]

∣∣∣∣∣∣ x0 = x


when setting γ′ = 1, we see that the second term of the distribution is proportional to Eπ

[∑
t≥1 I[xt = x′]

∣∣∣ x0 = x
]
,

which corresponds to a uniform distribution over states on sampled trajectories, without discounting. This will make
implementations much simpler. We will see that this could also lead to performance gains. We leave Taylor expansion based
extension of this method for future work.

Details on training the density estimator wψ(x). The density estimator wψ(x) is parameterized with exactly the same
architecture as the policy network πθ(x), except that its output activation is replaced by log(1 + exp(x)) to ensure that
wψ(x) > 0. The off-policy actor-critic algorithm maintains an original buffer D of size |D| = 106; in addition, we maintain
a fast replay buffer Df with |Df | = 104, which is used for saving the most recently generated data points. For ease of
analysis, assume that the data sampled from Df come from πθ, while the data sampled from D come from µ.

To learn the ratio
ρ
πθ
x,γ,γ′ (x

′)

µ(x′) , we adopt a simple discriminative loss function as follows

L(ψ) = −Ex′∼ρπθ
x,γ,γ′

[
log

wψ(x′)

1 + wψ(x′)

]
− Ex′∼µ

[
log

1

1 + wψ(x′)

]
≈ −Ex∼Df

[
log

wψ(x′)

1 + wψ(x′)

]
− Ex∼D

[
log

1

1 + wψ(x′)

]
.

The optimal solution to ψ∗ = arg minψ L(ψ) is wψ∗(x′) =
ρ
πθ
x,γ,γ′ (x

′)

µ(x′) (assuming enough expressiveness). Then, the
density estimator is used for weighting the policy update: when sampling a batch of B data from the buffer, the weight
wψ(xi), 1 ≤ i ≤ B is computed for each data point xi. Then the weights are normalized across batch w̃i =

wψ(xi)
τ∑B

j=1 wψ(xj)
τ

where the inverse temperature is τ = 0.1. Then w̃i is used for weighting the such that the policy is updated as θ ←
θ + α 1

B

∑B
i=1 w̃i∇θQφ(xi, πθ(xi)).

Algorithm 5 Update weighting Off-policy actor-critic
Require: policy πθ(x), Q-function critic Qφ(x, a), density estimator wψ(x) and learning rate α ≥ 0

while not converged do
1. Collect data (xt, at, rt) ∼ µ and save to the buffer D and the fast buffer Df
2. Estimate the density by the discriminative loss between D,Df , such that wψ(x′) ≈ ρπθx,γ,γ′(x′)/µ(x′), where x is
the initial state of the MDP.
3. Sample data from (xi, ai, ri)

B
i=1 ∼ D.

3(a). Update the Q-function critic Qφ(x, a) via TD-learning, such that Qφ(x, a) ≈ Qπθγ (x, a).
3(b). Update the policy parameter with the gradient θ ← θ + α

∑B
i=1 wψ(xi)∇θQφ(xi, πθ(xi)).

end while

We carry out the update in Algorithm 2, where the density estimator wψ(x) is trained based on a discriminative loss
between D and Df . For any given batch of data {xi}Bi=1, we normalize the prediction w̃i = wψ(xi)

τ/
∑B
j=1 wψ(xj)

τ with
hyper-parameter τ = 0.1 as similarly implemented in (Sinha et al., 2020). The temperature annealing moves w̃i closer to a
uniform distribution and tends to stabilize the algorithm. See Appendix F for further details.

Discussion on relations to other algorithms. Previous work focuses on re-weighting transitions to stabilize the training
of critics. For example, prioritized replay (Schaul et al., 2015) prioritizes samples with high Bellman errors. Instead,
Algorithm 2 reweighs samples to speed up the training of the policy. Our observation above also implies that when sampling

fromD,Df for training the estimates wψ ≈
ρ
πθ
x,γ,γ′ (x

′)

µ(x′) , it is not necessary to discount the transitions. This is in clear contrast
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(a) HalfCheetah(G) (b) Ant(G) (c) Walker2d(G) (d) Hopper(G)

Figure 6. Evaluation of near off-policy actor-critic algorithms over continuous control domains. Each curve corresponds to a baseline
algorithm averaged over 5 random seeds. TD3(γ) (red curve) consistently outperforms or performs similarly as other baselines.

(a) HalfCheetah(G) (b) Ant(G) (c) Walker2d(G) (d) Hopper(G)

Figure 7. Evaluation of near off-policy actor-critic algorithms over continuous control domains. Each curve corresponds to a baseline
algorithm averaged over 5 random seeds. SAC(γ) (red curve) consistently outperforms or performs similarly as other baselines.

to prior work, such as (Sinha et al., 2020), where they propose to train wψ(x′) ≈ dπθx,γ(x′)/dµx,γ(x′) , which is the fully
discounted visitation distribution under γ based on the derivation of optimizing a discounted objective V πθγ (x).

Results. We build the algorithmic improvements based on TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018),
and name the correspinding algorithms TD3(γ) and SAC(γ) respectively. We compare with TD3, SAC, and DDPG (Lillicrap
et al., 2015), all of which are off-policy algorithms.

We first compare TD3(γ) with TD3 in Figure 6. To highlight the default sample efficiency of off-policy methods, we include
PPO as a baseline as well. Across all four presented tasks, we see that TD(γ) performs similarly or marginally outperforms
the TD3 baseline. To make concrete the comparison between final performance, we report the final score mean± 0.5std of
each algorithm in Table 1. As a default baseline, we also show the results of DDPG reported in (Achiam and OpenAI, 2018).
Overall, TD3(γ) provides a modest yet consistent boost over baseline TD3.

Then we compare SAC(γ) with SAC in Figure 7 and Table 1. We see that SAC(γ) provides marginal performance gains
over Walker2d and Ant, while it is slightly overperformed by baseline SAC for HalfCheetah and Hopper. We speculate that
this is partly because the hyper-parameters of baseline SAC are well tuned on HalfCheetah, and it is difficult to achieve
further significant gains without exhaustive hyper-parameter search. Overall, SAC(γ) is competitive compared to SAC.
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Tasks TD3(γ) TD3 DDPG-v1

ANT(G) 3601± 879 3269± 686 ≈ 1000
HALFCHEETAH(G) 10350± 279 9156± 718 ≈ 8500

WALKER2D(G) 4090± 440 4233± 314 ≈ 2000
HOPPER(G) 3340± 262 2626± 677 ≈ 1800

Tasks SAC(γ) SAC DDPG-v2

ANT(G) 5572± 115 4886± 530 706± 123
HALFCHEETAH(G) 11774± 96 12059± 91 7957± 527

WALKER2D(G) 4626± 165 4522± 269 2261± 147
HOPPER(G) 3384± 81 3557± 20 2024± 297

Table 1. Final performance of baseline algorithms over benchmark tasks. The final performance is computed as the mean scores over
the last 10 iterations of each algorithm, averaged over 5 seeds. When compared with TD3, the performance of DDPG-v1 is taken from
(Achiam and OpenAI, 2018); when compared with SAC, the performance is based on re-runs of the DDPG-v2 baselines with (Achiam
and OpenAI, 2018). For each task, the best algorithms are highlighted in bold fonts (potentially with ties).


