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Take-away messages

e Generalized formulation of TRPO
o High-order objective — new algorithm !!!
o First-order objective — TRPO
e Connections between TRPO vs. off-policy evaluation
o TRPO «—— special variant of Retrace Q(\)
e Performance gains on large-scale algorithms
o Distributed IMPALA & R2D2
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Intuitions of high-order expansions

e Estimating value-function / n
with off-policy data requires full IS

e First-order: one-step deviation n/
(TRPO, PPO, MPO...)

u
e Second-order: two-step / -4

deviation V @ o




Background: Taylor expansions

Consider a real function f(x),x € R
Fixing a reference point X

Any point could be evaluated with the expansion
k

@ (g ' k41
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i=0
Can we do Taylor expansion of Q-function and

value-function?
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Notations

e State space and action space Iy & X, Ay © A
e Policy

o Target policy 'ﬂ-
o Behavior policy
e Matrix & vector quantities
o Reward and Q-function R, QW - R|X||A|
o Matrix equality ()" = ([ — W/PW)_lR
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Taylor expansions of Q-function

e Useful matrix equality
(I-A)"'=U-B)'+({I-B)(A-B)(I-A4)~"
e Expanding the Q-function equality w.r.t. i
Q"= (I —yP")"'R
= Q"+ (I —yP!) " (P" = P1)Q"

e Can recursively apply the above expansion
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Taylor expansion of Q-function

e Theorem 1. Generic Taylor expansion

K
_ - k
Q" - Q* = (y(I = yP*) (P — PH)) QH
b=l K-th order
Residual =— -+ (7(1 — yP¥Y~L(PT — P#))K“Q7r expansion

term (PT— P~
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Taylor expansion of RL objective

e We care about policy optimization
maXV7T (20) g m(alzy)Q" (xg, a)
acA

e Can apply similar expansions to value function
o Make use of results from the Q-function
o K-th order expansion

V™ (@o) = (Y Li(m, p)) + of|m — S+
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Example: Zero-order expansion

e /ero-order

Lo(m, ) = V(o)
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Example: First-order expansion

e First-order
m(a|x
Ly(m,p) = E [( (4l ) = 1)@“(:1:,(1)]
(z,a)~plao [\ H(a|Z)

e Can be estimated by samples (z,a) ~ u|zg
o Surrogate objective for TRPO, PPO, MPO...

Schulman et al 2015, 2017; Abdolmaleki et al, 2018



Example: Second-order expansion

e Second-order

Lrw= E [(ﬂ(a.|x)_1) (W(a’|z’)

(z,a)~p|xg
(z',a")~p|x

e Nested expectation
o First sample (z,a) ~ ulzg
o Then sample (2',a") ~ ulx
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Example: K-th order expansion

e General K-th order 7T(C7J(rb')’$(fa'))

K
@ ]a)

L (7, 1) = B ), e e [Tlies — 1)Q"(z'), ™))

e Nested expectation

o Sample all pairs sequentially
o Can be estimated from a single trajectory
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Generalized TRPO

e Generalized objective
max ZL’“ ), |m— | <e

o With general K
o Optimize via backprop and first-order SGD
o Theorem 2. Monotonic improvement

o With large K optimize the exact objective

lim ZLk VW(CIZ()) V'LL(ZIZ())

K—o0
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Trade-off of K

max Z Li(m, ), |m—p|l <e
Large bias Small bias
Small variance Large variance ?
Small K Large K
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Variance reduction for K-th order

e Replace Q-function estimate by advantage estimate

o Theorem 3. For general K

Eo
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o



Effect of high-order expansions

e Tabular MDP
o Can calculate
exact error
e Measure the error
o /Zero-order
o First-order
o Second-order
e [Exact vs. Sample
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TRPO as off-policy evaluation

e Taylor expansions naturally relate to off-policy
evaluation

Z Li(m, 1) + VFE(zg) = V™ (x0)

k=1
e All quantities on LHS are from behavior policy

e LHS becomes more accurate with large K
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Background on off-policy evaluation

e Return-based off-policy evaluation
o Retrace operator R."
o Evaluate by iterating the operator
lim (R7*)"Q = Q"
K—oo
e Trace coefficient c(z, a)
o Special case c(z,a) = A
o Converge only when |7r — lu| < €

Harutyunyan et al, 2016; Munos et al, 2016
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Connections to off-policy evaluation

e K-th order Taylor expansion is off-policy evaluation
o Theorem 4. Equivalence

K
K-th order )y ()X + Z U, = (Rf’“)KQ“ e [terating
expansion 1 operator
Of O-func K times

e Convergence
o LHS: Taylor expansion convergence
o RHS: operator contraction
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Experiments: Second-order new algorithm

e Benchmark: Atari-57 games

e Metric: mean normalized scores
o See more in paper

e Baseline distributed algorithm
o Centralized learner 7
o Distributed actors

e Actors sync from learner periodically
o Actors slightly lag behind learner
o No explicit trust region (to ensure throughput) (o)
o Examples: IMPALA, R2D2 Espeholt et al, 2018; Kapturowski et al, 2018




Asynchronous actor-critic

5

® Learner + actors both —— second-order
—— first-order (PPO)
placed On Same TPU —e— zero-order
o Near on-policy?
T = o
e Actor-critic updates
o Zero-order

© FI rSt_O rd e r (P PO) i " 100Numblzor of Frzz:?nes (lfllsitl)lions)300 » e
o Second-order

N w >

Mean Human-normalized

-
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Distributed actor-critic: IMPALA
agent

Learner on GPU
Actors on CPUs
Create artificial
updates

Actor-critic updates
o First-order

o V-trace

o Second-order

Mean Human-normalized

w
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—— second-order(deep net)
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—— first-order(deep net)
-=- second-order(shallow net)
--=- v-trace(shallow net)

--=~ first-order(shallow net)
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Distributed Q-learning: R2D2 agent

e LeameronGPU . e
e Actorson CPUs 5. 200
e Q-learning 5
o Zero-order g s
o First-order =5
o Retrace o
o Second-order Number of Frames (Millions)
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Take-home messages

e Taylor expansions generalize TRPO
o Generalized policy optimization objective
o Introduce non-linearity beyond first-order
e Taylor expansions — off-policy evaluation
o Taylor expansions «—— a special variant of
Retrace
e Empirical gains on distributed algorithms
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Thank you! Please come to our poster

e Special thanks to Mark Rowland for insightful
comments

e Many thanks to DeepMind teams for technical
support
o Special thanks to Florent Altche
o Special thanks to other DeepMind teams for
developments of great distributed agents
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