

DeepMind

ICML 2020 Paper 941

Taylor Expansion Policy Optimization

Yunhao Tang (Columbia University), Michal Valko (DeepMind), Rémi Munos (DeepMind)

Take-away messages

- Generalized formulation of TRPO
 - High-order objective → new algorithm !!!
 - \circ First-order objective \rightarrow TRPO
- Connections between TRPO vs. off-policy evaluation \circ TRPO $\leftarrow \rightarrow$ special variant of Retrace $Q(\lambda)$
- Performance gains on large-scale algorithms
 Distributed IMPALA & R2D2

Intuitions of high-order expansions

• Estimating value-function with off-policy data requires full IS

• First-order: one-step deviation (TRPO, PPO, MPO...)

• Second-order: two-step deviation

Π

Background: Taylor expansions

- Consider a real function $f(x), x \in \mathbb{R}$
- Fixing a reference point ${\mathcal X}_0$
- Any point could be evaluated with the expansion $f(x) = \sum_{i=0}^{k} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + o((x - x_0)^{k+1})$
- Can we do Taylor expansion of Q-function and value-function?

Notations

- State space and action space $x_t \in \mathcal{X}, a_t \in \mathcal{A}$
- Policy
 - \circ Target policy \mathcal{T}
 - \circ Behavior policy μ
- Matrix & vector quantities

 - Reward and Q-function R, Q^π ∈ ℝ^{|X||A|}
 Matrix equality Q^π = (I − γP^π)⁻¹R

Taylor expansions of Q-function

• Useful matrix equality

$$(I - A)^{-1} = (I - B)^{-1} + (I - B)^{-1}(A - B)(I - A)^{-1}$$

- Expanding the Q-function equality w.r.t. μ $Q^{\pi} = (I - \gamma P^{\pi})^{-1} R$ $= Q^{\mu} + (I - \gamma P^{\mu})^{-1} (P^{\pi} - P^{\mu}) Q^{\mu}$
- Can recursively apply the above expansion

Taylor expansion of Q-function

• Theorem 1. Generic Taylor expansion

$$Q^{\pi} - Q^{\mu} = \sum_{k=1}^{K} \left(\gamma (I - \gamma P^{\mu})^{-1} (P^{\pi} - P^{\mu}) \right)^{k} Q^{\mu} \longleftarrow$$

Residual $\longrightarrow + \left(\gamma (I - \gamma P^{\mu})^{-1} (P^{\pi} - P^{\mu}) \right)^{K+1} Q^{\pi}$
term $(P^{\pi} - P^{\mu})^{K}$

Taylor expansion of RL objective

• We care about policy optimization

$$\max_{\pi} V^{\pi}(x_0) = \sum_{a \in \mathcal{A}} \pi(a|x_0) Q^{\pi}(x_0, a)$$

- Can apply similar expansions to value function
 Make use of results from the Q-function
 - K-th order expansion

$$V^{\pi}(x_0) = \left(\sum_{k=0}^{K} L_k(\pi, \mu)\right) + o(|\pi - \mu|^{K+1})$$

Example: Zero-order expansion

• Zero-order

 $L_0(\pi,\mu) = V^{\mu}(x_0)$

Example: First-order expansion

• First-order

$$L_1(\pi, \mu) = \mathbb{E}_{(x,a) \sim \mu | x_0} \left[\left(\frac{\pi(a|x)}{\mu(a|x)} - 1 \right) Q^{\mu}(x,a) \right]$$

• Can be estimated by samples $(x, a) \sim \mu | x_0$ • Surrogate objective for TRPO, PPO, MPO...

Schulman et al 2015, 2017; Abdolmaleki et al, 2018

Example: Second-order expansion

• Second-order

$$L_{2}(\pi,\mu) = \mathbb{E}_{\substack{(x,a) \sim \mu \mid x_{0} \\ (x',a') \sim \mu \mid x}} \left[\left(\frac{\pi(a|x)}{\mu(a|x)} - 1 \right) \left(\frac{\pi(a'|x')}{\mu(a'|x')} - 1 \right) Q^{\mu}(x',a') \right]$$

 $\pi(a|x)$

 $\mu(a|x)$

• Nested expectation

• First sample
$$(x, a) \sim \mu | x_0$$

• Then sample $(x', a') \sim \mu | x$

 $\pi(a'|x')$

 $\mu(a'|x')$

 $Q^{\mu}(x',a)$

Example: K-th order expansion

• General K-th order

$$L_K(\pi,\mu) = \mathbb{E}_{(x^{(i)},a^{(i)})_{1 \le i \le K}} \left[\prod_{i=1}^K \left(\frac{\pi(a^{(i)} | x^{(i)})}{\mu(a^{(i)} | x^{(i)})} - 1 \right) Q^{\mu}(x^{(K)},a^{(K)}) \right]$$

((i) + (i))

- Nested expectation
 - Sample all pairs sequentially
 - Can be estimated from a single trajectory

Generalized TRPO

- Generalized objective $\max_{\pi} \sum_{k=1}^{K} L_k(\pi, \mu), \ |\pi - \mu| < \epsilon$
- With general K
 - Optimize via backprop and first-order SGD
 - Theorem 2. Monotonic improvement
- With large K, optimize the exact objective $\lim_{K \to \infty} \sum_{k=1}^{K} L_k(\pi, \mu) = V^{\pi}(x_0) - V^{\mu}(x_0)$

Trade-off of K

$$\max_{\pi} \sum_{k=1}^{K} L_k(\pi, \mu), \ |\pi - \mu| < \epsilon$$

Large bias Small variance Small bias Large variance ?

Small K

Large K

Variance reduction for K-th order

Replace Q-function estimate by advantage estimate
 Theorem 3. For general K

$$\mathbb{E}_{(x^{(i)},a^{(i)})_{1\leq i\leq K}} \left[\prod_{i=1}^{K} \left(\frac{\pi(a^{(i)}|x^{(i)})}{\mu(a^{(i)}|x^{(i)})} - 1 \right) A^{\mu}(x^{(K)},a^{(K)}) \right]$$

$$Q^{\mu}(x^{(K)},a^{(K)})$$

Effect of high-order expansions

- Tabular MDP

 Can calculate exact error
- Measure the error
 - Zero-order
 - First-order
 - Second-order
- Exact vs. Sample

TRPO as off-policy evaluation

• Taylor expansions naturally relate to off-policy evaluation

$$\sum_{k=1} L_k(\pi, \mu) + V^{\mu}(x_0) \approx V^{\pi}(x_0)$$

- All quantities on LHS are from behavior policy
- LHS becomes more accurate with large K

Background on off-policy evaluation

- Return-based off-policy evaluation
 - \circ Retrace operator $\mathcal{R}^{\pi,\mu}_c$
 - Evaluate by iterating the operator $\lim_{K \to \infty} (\mathcal{R}_c^{\pi,\mu})^K Q = Q^{\pi}$
- Trace coefficient c(x, a)• Special case $c(x, a) = \lambda$ • Converge only when $|\pi - \mu| < \epsilon$

Harutyunyan et al, 2016; Munos et al, 2016

Connections to off-policy evaluation

K-th order Taylor expansion is off-policy evaluation
 Theorem 4. Equivalence

K-th order
$$\longrightarrow Q^{\mu} + \sum_{k=1}^{K} U_k = (\mathcal{R}_1^{\pi,\mu})^K Q^{\mu} \longleftarrow$$
 Iterating operator
operator
K times

- Convergence
 - LHS: Taylor expansion convergence
 - RHS: operator contraction

Experiments: Second-order new algorithm

- Benchmark: Atari–57 games
- Metric: mean normalized scores
 See more in paper
- Baseline distributed algorithm
 - $\circ\,$ Centralized learner π
 - $\circ\,$ Distributed actors μ
- Actors sync from learner periodically
 - Actors slightly lag behind learner
 - No explicit trust region (to ensure throughput)
 - Examples: IMPALA, R2D2

Espeholt et al, 2018; Kapturowski et al, 2018

Asynchronous actor-critic

- Learner + actors both placed on same TPU • Near on-policy? $\pi \approx \mu$
- Actor-critic updates
 - Zero-order
 - First-order (PPO)
 - Second-order

Distributed actor-critic: IMPALA

• Learner on GPU

- Actors on CPUs
- Create artificial updates

- Actor-critic updates
 First-order
 - V-trace
 - Second-order

Distributed Q-learning: R2D2 agent

- Learner on GPU
- Actors on CPUs

- Q-learning
 - Zero-order
 - First-order
 - Retrace
 - Second-order

Take-home messages

- Taylor expansions generalize TRPO
 - Generalized policy optimization objective
 - Introduce non-linearity beyond first-order
- Taylor expansions → off-policy evaluation
 Taylor expansions ←→ a special variant of Retrace
- Empirical gains on distributed algorithms

Thank you! Please come to our poster

- Special thanks to **Mark Rowland** for insightful comments
- Many thanks to DeepMind teams for technical support
 - Special thanks to **Florent Altche**
 - Special thanks to other DeepMind teams for developments of great distributed agents

