General parallel optimization WITHOUT a metric

Xuedong Shang, Emilie Kaufmann, Michal Valko

ALT - 23 March 2019

Any gradient information? No! Also called zero-order optimization.

Assumption: Known Lipschitz constant? No!

Assumption: Bayesian Gaussian priors? No!

(before discussing the minimal assumptions, let us set the) Setting

Goal: Maximize $f : \mathcal{X} \to \mathbb{R}$ given a budget of *n* evaluations.

Challenge: f has an unknown smoothness.

Protocol: At round *t*, select x_t , observe y_t such that

$$\mathbb{E}[y_t|x_t] = f(x_t) \qquad |y_t - x_t| \leq 1$$

After *n* rounds, return x(n).

Loss: $r_n \triangleq \sup_{x \in \mathcal{X}} f(x) - f(x(n))$ (simple regret)

Minimal assumptions

• We want minimal assumptions.

• The smoothness of f is defined with respect to a partitioning \mathcal{P} of the search space \mathcal{X} . No metric! (Grill et al., 2015)

Minimal assumptions . Step 1 . Partitioning

- For any **depth** h, \mathcal{X} is partitioned in K^h cells $(\mathcal{P}_{h,i})_{0 \leq K^h-1}$.
- *K*-ary tree \mathcal{T} where depth h = 0 is the whole \mathcal{X} .

An example of partitioning in one dimension with K = 3.

Use the partitioning to explore (uniformly) f

Tree search

Optimizing becomes a **tree search** on the partition \mathcal{P} .

How to explore the tree smartly? (Track x^* as deep as possible)

Tree search

Optimizing becomes a **tree search** on the partition \mathcal{P} .

The assumption and the smoothness

Assumption (Grill et al., 2015)

For some global optimum x^* , there exists $\nu > 0$ and $\rho \in (0, 1)$ such that $\forall h \in \mathbb{N}$, $\forall x \in \mathcal{P}_{h, i_h^*}$,

$$f(x) \geq f(x^*) - \frac{\nu \rho^h}{\nu \rho^h}.$$

- The smoothness is local, around a x^* .
- This guarantees that the algorithm will not under-estimate by more than νρ^h the value of optimal cell P_{h,i^{*}_h} if it observes f(x) with x ∈ P_{h,i^{*}_h}.
- Now for the opposite question: How much non-optimal cells have values $\nu \rho^h$ -close to optimal and therefore indiscernible from it? Let us **count** them!

The smoothness and the near-optimal dimension

Definition

For any $\nu > 0$, C > 1, and $\rho \in (0, 1)$, the **near-optimality dimension** $d(\nu, C, \rho)$ of f with respect to the partitioning \mathcal{P} , is

$$\boldsymbol{d}(\nu,\boldsymbol{C},\rho) \triangleq \inf \Big\{ \boldsymbol{d}' \in \mathbb{R}^+ : \forall h \geq 0, \ \mathcal{N}_h(3\nu\rho^h) \leq \boldsymbol{C}\rho^{-\boldsymbol{d}'h} \Big\}.$$

The smoothness and the near-optimal dimension

Definition

For any $\nu > 0$, C > 1, and $\rho \in (0, 1)$, the **near-optimality dimension** $d(\nu, C, \rho)$ of f with respect to the partitioning \mathcal{P} , is

$$\boldsymbol{d}(\boldsymbol{\nu},\boldsymbol{C},\boldsymbol{\rho}) \triangleq \inf \Big\{ \boldsymbol{d}' \in \mathbb{R}^+ : \forall h \geq 0, \ \mathcal{N}_h(3\boldsymbol{\nu}\boldsymbol{\rho}^h) \leq \boldsymbol{C}\boldsymbol{\rho}^{-\boldsymbol{d}'\boldsymbol{h}} \Big\}.$$

- $\mathcal{N}_h(\varepsilon)$ is the number of cells $\mathcal{P}_{h,i}$ of depth h such that $\sup_{x \in \mathcal{P}_{h,i}} f(x) \ge f(x^*) \varepsilon$.
- $\mathcal{N}_h(3\nu\rho^h)$ explodes exponentially w.r.t **d**.

Previous work

Previous algorithms that depend on a metric:

smoothness	global	local
(u, ho) known	Zooming, HOO	DOO, HCT
(u, ho) unknown	TaxonomyZoom	StoSOO, SOO, ATB

We tackle **unknown** smoothness (ν, ρ) without a metric:

▶ POD (Grill et al., 2015) ~→ requires a base algorithm that has upper-bounded cumulative regret

► GPO (our algorithm) ~→ requires a base algorithm that has upper-bounded simple regret

How it works?

 \rightsquigarrow We run several instances of the base algorithm over n/2.

Parameters: base algorithm \mathcal{A} , n, $\mathcal{P} = \{\mathcal{P}_{h,i}\}, \rho_{max}, \nu_{max}$ **Initialization:** $D_{\max} \leftarrow \ln K / \ln(1/\rho_{\max})$ Compute $N = [(1/2)D_{\max} \ln((n/2)/\ln(n/2))]$ **For** i = 1, ..., N \blacktriangleright $s \leftarrow (\nu_{\max}, \rho_{\max}^{2N/(2i+1)})$ ▶ Run $\mathcal{A}(s)$ for |n/(2N)| time steps $\rightarrow \widetilde{x}_s$ Output

How it works?

 \rightsquigarrow We run several instances of the base algorithm over n/2.

 \rightsquigarrow We use another n/2 to do a **cross-validation**.

Parameters: base algorithm \mathcal{A} , n, $\mathcal{P} = \{\mathcal{P}_{h,i}\}, \rho_{max}, \nu_{max}\}$ **Initialization:** $D_{\max} \leftarrow \ln K / \ln(1/\rho_{\max})$ Compute $N = [(1/2)D_{max} \ln((n/2)/\ln(n/2))]$ For i = 1, ..., N \blacktriangleright $s \leftarrow (\nu_{\max}, \rho_{\max}^{2N/(2i+1)})$ ▶ Run $\mathcal{A}(s)$ for |n/(2N)| time steps $\rightarrow \widetilde{x}_s$ ▶ Get |n/(2N)| evaluations of $f(\tilde{x}_s) \rightarrow \text{average } V[s]$ $s^* \leftarrow \arg \max_s V[s]$ **Output** $x(n) \leftarrow \widetilde{x}_{s^*}$

Theorem

If for all (ν, ρ) the $\mathcal{A}(\nu, \rho)$ algorithm has its simple regret bounded as

$$\mathbb{E}\left[r_n^{\mathcal{A}(\nu,\rho)}\right] \le \alpha C\left(\left(\log n/n\right)^{1/(d+2)}\right),\tag{1}$$

for any function f satisfying our minimal assumptions with parameters (ν, ρ) , then there exists a constant β that is independent of ν_{\max} and ρ_{\max} such that

$$\mathbb{E}\left[r_n^{\text{GPO}(\mathcal{A})}\right] \leq \beta D_{\max}(\nu_{\max}/\nu^*)^{D_{\max}}\left(\left(\log^2 n\right)/n\right)^{1/(d+2)}\right),$$

for any function f satisfying our minimal assumptions with parameters $\nu^* \leq \nu_{\max}$ and $\rho^* \leq \rho_{\max}$.

How it works?

 \rightsquigarrow The question now is whether there exists a base algorithm that has simple regret guarantee (1) under our minimal assumptions.

How it works?

 \rightsquigarrow The question now is whether there exists a base algorithm that has simple regret guarantee (1) under our minimal assumptions.

→ It is not clear whether H00 satisfies our needs. Worse, it is not even clear that H00 has any regret bound under our minimal assumptions, contrary to what is claimed by **Grill et.al.** (2015).

How it works?

 \rightsquigarrow The question now is whether there exists a base algorithm that has simple regret guarantee (1) under our minimal assumptions.

→ It is not clear whether H00 satisfies our needs. Worse, it is not even clear that H00 has any regret bound under our minimal assumptions, contrary to what is claimed by **Grill et.al.** (2015).

→ HCT does! (Azar et.al., 2014): requires a refined analysis.

Theorem

The simple regret of HCT after n function evaluations under our minimal assumptions satisfies

$$\mathbb{E}[r_n^{HCT(\nu,\rho)}] \leq \alpha C\Big((\log n/n)^{1/(d+2)}\Big).$$

Takeaway messages:

- A general meta-algorithm that adapts to unknown local smoothness that only requires the base algorithm to have some simple regret guarantee.
- Refined HCT analysis showing that it is a valid candidate.

Thank you!