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Black box optimization

: > Y

Also called zero-order optimization.
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Black box optimization
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Known Lipschitz constant?



Black box optimization
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Bayesian Gaussian priors?



Black box optimization
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We want minimal assumptions! What is the smoothness of 7
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Goal:

Challenge:

Protocol:

Loss:

(before discussing the minimal assumptions, let us set the) Settlng

Maximize f : X — R given a budget of n evaluations.

f has an unknown smoothness.

At round t, select x;, observe y; such that
IE[)’f|Xt] = f(Xt) ’)/t - Xt| <1

After n rounds, return x(n).

rn = supyey f(x) — f(x(n)) (simple regret)



Minimal assumptions

e We want minimal assumptions.

e The smoothness of f is defined with respect to a partitioning
P of the search space X. No metric! (Grill et al., 2015)
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Minimal assumptions . Step 1 . Partitioning

e For any depth h, X is partitioned in K" cells (Pp,)o<n_1-

e K-ary tree 7 where depth h = 0 is the whole X.

An example of partitioning in one dimension with K = 3.

X
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Use the partitioning to explore (uniformly) f




Tree search

Optimizing becomes a tree search on the partition P.

h=0 |
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How to explore the tree smartly? (Track x* as deep as possible)



Tree search

Optimizing becomes a tree search on the partition P.
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Opening a cell means evaluating all its K children cells.



The assumption and the smoothness

Assumption (Grill et al., 2015)

For some global optimum x*, there exists v > 0 and p € (0, 1)
such that Vh € N, Vx € Ppjx,

f(x) > F(x*) = vp.

e The smoothness is local, around a x*.

e This guarantees that the algorithm will not under-estimate by
more than 1//)’7 the value of optimal cell Ph,,-; if it observes
f(X) with x € Ph’,';,.

e Now for the opposite question: How much non-optimal cells
have values vp"-close to optimal and therefore indiscernible
from it? Let us count them!
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The smoothness and the near-optimal
dimension

Definition

Forany v >0, C > 1, and p € (0, 1), the near-optimality
dimension d(v, C, p) of f with respect to the partitioning P, is

d(v, C.p) £ inf{d € RY : Vh > 0, Nj(3vp") < Cp=9"},



The smoothness and the near-optimal
dimension

Definition

Forany v >0, C > 1, and p € (0, 1), the near-optimality
dimension d(v, C, p) of f with respect to the partitioning P, is

d(v, C.p) £ inf{d € RY : Vh > 0, Nj(3vp") < Cp=9"},

e Nj(¢) is the number of cells Py, ; of depth h such that
Supxep,, f(x) = f(x*) —e.

e N, (3vp") explodes exponentially w.r.t d.



Previous work

Previous algorithms that depend on a metric:

smoothness

global local

(v, p) known
(v, p) unknown

Zooming, HOO D00, HCT
TaxonomyZoom StoS00, SO0, ATB

We tackle unknown smoothness (v, p) without a metric:

POO (Grill et al., 2015) ~~ requires a base algorithm that
has upper-bounded cumulative regret

GPO (our algorithm) ~~ requires a base algorithm that has
upper-bounded simple regret
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The GPO algorithm

How it works?

~» We run several instances of the base algorithm over n/2.
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The GPO algorithm

Parameters: base algorithm A, n, P = {Ph i}, Pmax, Vmax
Initialization: Dpax < In K/ In(1/pmax)

Compute N = [(1/2)Dmax In((n/2)/In(n/2))]
Fori=1,....N

S (VmaX7 pmaXZN/(2i+1))
Run A(s) for |n/(2N)]| time steps — Xs

Output




The GPO algorithm

How it works?

~» We run several instances of the base algorithm over n/2.

~+ We use another n/2 to do a cross-validation.
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The GPO algorithm

Parameters: base algorithm A, n, P = {Ph i}, Pmax, Vmax
Initialization: Dpax < In K/ In(1/pmax)
Compute N = [(1/2)Dmax In((n/2)/In(n/2))]
Fori=1,....N

S (VmaX7 pmaXZN/(2i+1))

Run A(s) for |n/(2N)]| time steps — Xs

Get | n/(2N)] evaluations of f(xs) — average V|s]

s* <— argmax, V|[s]
Output x(n) + Xs*




The GPO algorithm

Theorem

If for all (v, p) the A(v, p) algorithm has its simple regret bounded

E[rf(y’p)} < aC((Iog n/n)l/(d+2)), (1)

for any function f satisfying our minimal assumptions with
parameters (v, p), then there exists a constant [3 that is
independent of Vmax and pmax such that

E[rﬁPO(A)] < BDmaX(VmaX/V*)Dmax(Uogz n)/n)l/(d+2)>,

for any function f satisfying our minimal assumptions with
parameters v* < Vmax and p* < pmax-
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The GPO algorithm

How it works?

~> The question now is whether there exists a base algorithm that
has simple regret guarantee (1) under our minimal assumptions.
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~» It is not clear whether HOO satisfies our needs. Worse, it is not
even clear that HOO has any regret bound under our minimal
assumptions, contrary to what is claimed by Grill et.al. (2015).
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The GPO algorithm

How it works?

~> The question now is whether there exists a base algorithm that
has simple regret guarantee (1) under our minimal assumptions.

~» It is not clear whether HOO satisfies our needs. Worse, it is not
even clear that HOO has any regret bound under our minimal
assumptions, contrary to what is claimed by Grill et.al. (2015).

~» HCT does! (Azar et.al., 2014): requires a refined analysis.
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The GPO algorithm

Theorem

The simple regret of HCT after n function evaluations under our
minimal assumptions satisfies

E[rch(V’p)] < aC((Iog n/n)l/(d+2)>.
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Takeaway messages:

e A general meta-algorithm that adapts to unknown local
smoothness that only requires the base algorithm to have
some simple regret guarantee.

o Refined HCT analysis showing that it is a valid candidate.

Thank youl!
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