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Setting
• Objective: Find a maximum of an unknown function f : X → R with noisy observations.
• At each round t, a learner

• evaluates a point xt ∈ X and observes rt , f(xt) + εt,
• recommends a point x(t).

• Performance measure: simple regret , f? − f(x(n)).

Measure of complexity
Definition 1 (near-optimality dimension w.r.t.P)

d(ν, ρ) , inf{d′ ∈ R+ : ∃C > 0,∀h ≥ 0,Nh(3νρh) ≤ Cρ−d
′h}.

where Nh(3νρh) is the number of cells Ph,i s.t. supx∈Ph,i
f(x) ≥ f? − 3νρh.

Interpretation: d(ν, ρ) controls the amount of near-optimal cells→ measures how much infor-
mation P gives us about f .

→ Examples of functions with different d values

f(x∗) f(x∗)− cℓ(x, x∗)

f(x∗)− ℓ(x, x∗)

f(x∗)− η

x∗

same upper and lower envelope f(x) = 1−√x+ (−x2 +√x) · (sin(1/x2) + 1)/2
d = 0 d = 1

2

Contributions
Context: Non-trivial to provide a sublinear re-
gret bound for HOO under Assumption 1.
→We propose POO on top of HCT with an anal-

ysis under Assumption 1.

How and Why
How it works?
• HCT traverses an optimistic path Pt by repeat-
edly selecting cells that have a larger U -value
until a leaf or a node that is sampled less than
τh(t) times.
• POO launches several instances of HCT in par-
allel with different smoothness and selects the
instance with the best performance.

Why it works?
• HOO could induce a very deep covering tree,
while producing too many neither near-optimal
nor sub-optimal nodes.
• HCT, while having a limited depth, has the pos-
sibility to control the number of such nodes.
• Few HCT instances are needed - O(log n).
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Standard partitioning
Hierarchical bandits rely on a standard hi-
erarchical partitioning P = {Ph,i} defined
recursively as

P0,1 , X ,Ph,i , ∪K−1j=0 Ph+1,Ki−j .

h=0

h=2

h=1

Assumptions
Assumption 1 Let x? be a global maximizer and i?h be
the index of the only cell at depth h that contains x?.
There exist ν > 0, ρ ∈ (0, 1) s.t.

∀h ≥ 0, ∀x ∈ Ph,i?
h
, f(x) ≥ f? − νρh.

It is a one-side local Lipschitz-type of assumption
that naturally covers large class of functions. It is con-
straining f only along the optimal path and does not
rely on any metric!

→ Previous algorithms that depend on a metric:

global local

known Zooming, HOO DOO, HCT

unknown TaxonomyZoom SOO, StoSOO, ATB

→ POO(HCT) and POO(HOO):
unknown local smoothness without metric!

Algorithms
HCT

Parameters: ν ρ, c, P, δ
Initialization:
T1 ← {(0, 1), (1, 1), (1, 2)}
H(1)← 1, U1,1(1)← U1,2(1)← +∞

for t = 1 · · ·n do
if t = 2dlog(t)e then
Update the whole covering tree Tt

end if
(ht, it), Pt ← OptTraverse(Tt)
Evaluate xht,it and obtain rt
Update µ̂ht,it(t) and Uht,it(t)
UpdateB(Tt, Pt, (ht, it))
Compute τht

(t)
if Tht,it(t) ≥ τht

(t) and (ht, it) is a
leaf then

Expand((ht, it))
end if

end for

POO(HCT)

Parameters: K, P, ρmax, νmax

Initialization:
Dmax ← lnK/ ln (1/ρmax)
n← 0, N ← 1, S ← {(νmax, ρmax)}

while budget still available do
while N ≥ 1

2Dmax ln (n/(lnn)) do
for i← 1, . . . , N do
s←

(
νmax, ρmax

2N/(2i+1)
)

Start HCT(s) run for n
N times

end for
n← 2n, N ← 2N

end while
Run each HCT(s) once
n← n+N

end while
s? ← argmaxs∈S µ̂[s]
Output: A point sampled u.a.r. from
the points evaluated by HCT(s?)

Analysis
Theorem 1 Assume that function f satisfies Assumption 1. Then, using the recommendation strat-
egy x(n) ∼ U({x1, . . . , xn}), the simple regret of HCT after n rounds is bounded as

E[SHCT
n ] ≤ O

(
(log n)1/(d+2)n−1/(d+2)

)
.

The previous result can then be plugged into POO’s analysis, helping us getting the following bound.

Theorem 2 The simple regret of POO(HCT) is bounded as

E[SPOO
n ] ≤ O

(
(log2 n)/n)1/(d(ν

?,ρ?)+2)
)
,

where (ν?, ρ?) is the couple of parameters corresponding to the best performing HCT instance.


