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WHEN BANDITS GO ROTTING ...

CHAPITRE 1
L'origine des séismes et des
éruptions volcaniques

CHAPITRE 8

Le fonctionnement du systeme
nerveux

-

CHAPITRE 2

. . CHAPITRE 4
Les changements climatiques

, La nutrition a I'échelle cellulaire
actuels et leurs conséquences d eliec

CHAPITRE 3

Les impacts des activités
humaines sur I'environnement



RESTED ROTTING BANDITS ARE ...

Stochastic bandits ...

> K arms

> At eachround t, agent pulls arm i and receives a noisy reward r, < |, + €,

(¢,i.i.d. ; o-sub-gaussian)

> Maximize cumulative reward: [E lzt _ rt]

... with rotting arms

4 { ,ul-} are non-increasing functions of N; ,the number of pulls of arm i at time ¢

» L 2 max max p(n) —pun+1)

ieK n<T
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BACK TO THE EXAMPLE

Bandit Platform

K arms K topics that can be revised, every time a topic is
selected, a question is generated
Maximize cum. reward | maximize number of questions that students do not

master

Observations 7 r, = 0 if answer is correct, r» = 1 is answer is
wrong

Rotting rewards the student acquires knowledge over time

5 5 5 5

01 2 3 4 5 01 2 3 4 5 01 2 3 4 5
Ni.: N> ; N3 ; Ny,




NOISELESS




OPTIMAL ORACLE POLICY [HEIDARI, 2016]

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Algorithm 1 Ay (Heidari et al., 2016) 1 11
1: fort«+1,2,...do N
2:  SELECT : argmax;cx ti(NV; 1) _
3: end for ) 3\0' g()-
—14 | —14 |
0) 10000 0 10000
N 1,1 N, 2,1



OPTIMAL ORACLE POLICY [HEIDARI, 2016]

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

= N;7 optimal num. of pulls by T —
m UP={i: N/7 < N;r} 30 S0 I
m OP = {i: N7 > N/r}

0 Nl, t 10000 0 Nz, t 10000

T T

— Z ll’i*(t)(N;‘(t),t) - Z Mi(t)(Ni(t),t)
t=1 .

— Z Z “'L Z Z e

1€UP s= N7r 1€ OP s= N*T—I—l

*order does not matter!



DETERMINISTIC CASE (¢ = 0) [HEIDARI, 2016]

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Greedy oracle policy
i*(t) = argmax 1; (Vi ¢)
(/

m Greedy policy: select the arm with largest /ast known value

i(t) = argmax p;(V; ; — 1)
1

RT(’II') < KL

= \We pay for regret only once per arm Algorithm 2 A, (Heidari et al., 2016)

11 1 1: fort<— K+1,K+2,...do

2: iEfI.JECT s argmax;cx pi(N; ¢ — 1)
3: end 1or

— Q]

20 30

—14 | —11 |

0 10000 0 10000
N, Ny, ¢






Noisy case [Levine et al., 2017]

Sliding-window Average of h most recent observations

1 h
zt _EZTZ zt_]
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Noisy case [Levine et al., 2017]

71=1
2 2
<o g0l
—2% 10000 —2% 10000
Nl,t Nz,t

h = 3000 (high bias, low variance)
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Noisy case [Levine et al., 2017]

0 Nl,t 10000 0 Nz,t 10000

h = 3 (low bias, high variance)
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Noisy case [Levine et al., 2017]

Sliding-window Average of h most recent observations

1 h
zt _EZTZ zt_]

Jj=1

0 Nl,t 10000 0 Nz,t 10000

h = 100 (ok bias, ok variance)
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wSWA |[Levine et al., 2017]

shie@ee.technion.ac.il
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THE FAILURE OF wSWA

Sample last
Arm 1 0 0
Arm 2 1 1
Arm 3 1 0

( = \
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FILTERING ON EXPANDING WINDOW AVERAGE

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Algorithm 4 FEWA 1.0
Input: K. o0,
1: fort+—~ K+1,K+2,...do
2 O ¢ s 0.5;
3: h+1
4: K1+ K
5 do OO
6: Khi1 ¢ {i € Kn | AlF(N;+) > maxjex ZZ;‘(NN) — 2¢(h, &) }
7: h+—h+1
s:  while h < min;ex, Ni —0.51
9: SELECT : {i € Kp|h > N}
10: end for |
2 3
Sample old last
Arm 1 0 0 O
Arm 2 0 0 O 0 0 0 O 0 O 0 0 O
Arm 3 X X 0 0 0 0

16



UPPER BOUNDS

Worst-case upper bound

= Ry (7) | < Co/RTTog(T) + K1

Problem-dependent upper bound

k()] < 3 o 18D

=4 Ai’hi-,i_T_1

Same as for the

..... deterministic case

Comparison w/ wSWA

E [RT (][WSWA)] = 0 (L'36*BK1BT25)

Comparison w/ wSWA

Pure worst-case strategy

A, Difference between the average of the h first overpulls of arm i and the
l

worst reward pulled by the optimal policy

h;fT High-probability upper bound on the number of overpulls for FEWA

17




UPPER BOUNDS

Worst-case upper bound

- [RT (ﬂF)] < Co\/KT log(T) + KL

Problem-dependent upper bound

[k )] < 3 o LoD

iex Ai’hi-,i_T_1

A;, = A; on a stationary bandit problem

Ai,h;T—l is a problem-dependent quantity

18

Comparison w/ wSWA

E [RT (”wSWA)] = 0 (L"36*PK\3T3)

Comparison w/ wSWA

Pure worst-case strategy




Proof sketch (for the instance-independent bound)

Lemma: if you pass, you can’t be too bad | { h
. v il s 0.5 1 4c (h, 5t)
_,. > C 2\ 4 T 'y ‘
pi (Nie) 2 max p1i(Nig) — de(h, o) 00 _—

RT(ﬂ) ZleUP Z —Nﬂ 1:“1( ) B ZzeOP Z s=N¥+ lﬂi(s) -0.5]

1. Same (total) number of over-pulls than under-pulls

2. The summand in the first sums upper bounded the largest not selected value at the end max y; (NJ T)
JEXK

3. Reward is decreasing: maX;c o }; (N ) < MaXje o Y (N >

4. For an over-pulled arm i, the contribution of /; over-pulls to the regret is bounded by the lemma

h (max oty (Nr) = 1 (Nl-,t)> <h (max oty (N ) =l (M—,J) < dhclh, 57) < 0 <, [ log é)

5. Jensen’s inequality #;, = T/K (worst case), and get Ry (7)) = O <\/ KT log T)

19



Simulations: 2-arms with noise 6 = 1, L (decay)variable

— FEWA(2=0.06, 5y=2)
o 3501 — wSWA(@=0.02)
= —— wSWA(a=0.2)

i p— (\ @) [\ @) W
- ) o ) -
< < o o o

W
<

-
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WHERE ARE WE NOW? Closes the open problem

Rotting bandits are not harder/than stochastic bandits

G g\/ K T) worst-case bound
O (logT) problem-dependent bound

FEWA, a policy

anytime
a new data-adaptive window mechanism
agnostic/adaptive to L

EFF-FEWA, a policy

with FEWA's regret guarantees
logarithmic space and time complexity

21



WHAT IS NEXT? FEWA'S LIMITS

> Complex filtering expanding dynamics

® Isis possible to have an index policy?

N0, (log T) bound — 4 times UCBI's bound.

® (Can we do better?

> How about all these different non-stationarity settings?

22



RAW-UCB: rotting adaptive window UCB




RAW-UCB vs. FEWA

— FEWA(a=0.06, 5,=2)
—— XUCB(a=1)

FEWA(a =4, 5, =2)
—— XUCB(a=4)

10*
-
\

o)
=

Average regret at T
) ~
- -




Stochastic non-stationary bandits

P { /,ti} are functions of round ¢ - restless

> Minimize cumulative regret w.r.t. the optimal strategy: Zt <7 Mix(1) = p; (1)

» Unlearnable (w.r.t. a difficult oracle) if 4. can changes at every round.
> Common settings

® .. is piece-wise stationary with Y - pieces (Garivier & Moulines, 2011)

¢ .. has a permitted amount of change V. (Besbes et al., 2014)

<7 MaAXje 5 lp(t)+ 1 —pu(@®| < Vy

25



Lower bounds (with the rotting property)

1. Piece-wise stationary problem with Y — 1 equally spaced breakpoints

2. At each breakpoint, the (unknown) best arm is at a distance
A = @( KY/T) from the others

3. The learner will do at least O (T/ (K Y)) mistakes on each suboptimal arm on
each batch

4. The learner suffers at least @ K YT

Y ,is fixed
_ Y ) <V2/3K—1/3T1/3>
Piece-wise stationary rate: Variational budget rate:
1/3y71/32/3
@< KYTT) 6 (K'"PViPT)
(Garivier & Moulines, 2011) (Besbes et al. , 2014)

26



PROBLEM DEPENDENT GUARANTEES

EXP3.S (Auer et al. 2002b), an adversarial algorithm, matches the two minimax rates.
Can we get a problem-dependent bound?

Theorem 31.2 (Lattimore & Szepesvari, 2019): Let z a policy suffering

R (¢) on a 2-arms stationary bandits problem p. Then, for T large

enough, there exists a piece-wise stationary problem y' such that z
suffers:

Ry(u') =

Bandit Algorith
22RT( ,l/l) andi gorithms

vvvvvvvvvvvvvvvvvvvvvvvvv

Corollary: No!

Why? consider a “quick” increase of the suboptimal arm such that the algorithm
cannot notice it.

Quick = Inversely proportional to the sub-optimal arm pulling rate (R (x)/A).

27



WHAT ARE THE “BENEFITS” OF BEING STOCHASTIC ?

With no extra properties, what gives? What can be improved?

« Agnostic to Y rand V- (Auer et al., 2019b) - tomorrow!

What would we need to recover problem-dependent bound?
Lat/Sze’s bible counter-example has 2 properties:
1. The best arm does not change when the suboptimal arm increases

® .... but for the short time it becomes the best!

® Note: Mukherjee et Maillard (2019) consider a setup where all the reward moves
significantly at each breakpoint. They get PD guarantees!

2. The suboptimal arm is increasing

® And what in the case when the rewards never increase?

28



RAW-UCB does not need to know in which setup it is

RAW-UCB without knowing 7', V,-nor Y

Variational budget

= [RT ( ”R)] <0 ( 5213 K1/3V}/3T2/3)

E Ry ()| < 6 (oy/RYT)

N (1 [ |

[E[R ] 22320 logT @( 10gT)

iex k=1

problem-dependent bound!

29



SKETCH OF PROOFS

Lemma 3. On favorable event &, if RAW-UCB selects an arm 1 € IC at round

t, for < N, ¢, the average of its h last pulls cannot deviate significantly
from the best available arm at that round, 1.e.,

Which one is useful? [ (mg,t) > max wi(t) — 2c(h, 0z).

Piecewise stationary bandits

> We choose h such that we include all the sample from the
current stationary batch

» On each batch, the proof is then similar to UCBI's.

30



SKETCH OF PROOFS

Lemma 3. On favorable event &, if RAW-UCB selects an arm 1 € IC at round

t, for < N, ¢, the average of its h last pulls cannot deviate significantly
from the best available arm at that round, 1.e.,

Which one is useful? @l (mg,t) > max wi(t) — 2c(h, 0z).

Variational budget bandits

1. We design Y batches of equal length

2. We choose h such that we include all the sample from the current designed batch.

3. We split the regret into two sums

The regret due to the variance of j7 f‘(nX, f) (Lemma 3) : O (VKTY)
The regret due to the bias of j© f‘(nX, f) compared to the current value: (VA 17Y)

4. We choose Y = @(V%/ STY3K=173) adequately

31



RAW CONCLUSIONS

2 0 (
UCB-li ng restless bandits
No change-detection routine
Ga
Ag

with the %
)( rested AND r¢
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