after <i>člasse</i>	développé par Lelivrescolaire.fr	Se connecter S'inscrire
	Le site qu'il te faut pour réviser. G	ratuitement.
	4ème 3ème Seconde 1ère L 1ère ES Classe ces pays selon leur contribution au budget of the second of the	tière S Bac L Bac ES Bac S européen. Déplace cet élément L'Espagne
S'inscrire	gratuitement Découvrir →	Je suis parent Je suis enseignant

HOW DIFFICULT ARE ROTTING BANDITS?

https://www.afterclasse.fr

Michal Valko

with J. Seznec, A. Locatelli, A. Carpentier, A. Lazaric

WHEN BANDITS GO ROTTING ...

CHAPITRE 1 L'origine des séismes et des éruptions volcaniques

CHAPITRE 2

Les changements climatiques actuels et leurs conséquences

2 days before the national exam

CHAPITRE 3

Les impacts des activités humaines sur l'environnement

CHAPITRE 8

Le fonctionnement du système nerveux

CHAPITRE 4

La nutrition à l'échelle cellulaire

RESTED ROTTING BANDITS ARE ...

Stochastic bandits ...

- ▶ K arms
- At each round t, agent pulls arm i and receives a noisy reward $r_t \leftarrow \mu_i + \varepsilon_t$ (ε_t i.i.d.; σ -sub-gaussian)
- ▶ *Maximize cumulative reward:* $\mathbb{E}\left[\sum_{t \leq T} r_t\right]$

... with rotting arms

 \blacktriangleright { μ_i } are *non-increasing* functions of $N_{i,t}$ the *number of pulls of arm i* at time *t*

$$L \triangleq \max_{i \in K} \max_{n \le T} \mu_i(n) - \mu_i(n+1)$$

BACK TO THE EXAMPLE

Bandit	Platform
K arms	K topics that can be revised, every time a topic is
	selected, a question is generated
Maximize cum. reward	maximize number of questions that students do not
	master
Observations r_t	$r_t = 0$ if answer is correct, $r_t = 1$ is answer is
	wrong
Rotting rewards	the student acquires knowledge over time

NOISELESS

 $\varepsilon = 0$

OPTIMAL ORACLE POLICY [HEIDARI, 2016]

OPTIMAL ORACLE POLICY [HEIDARI, 2016]

$$R_T(\pi) = \sum_{t=1}^T \mu_{i^\star(t)}(N_{i^\star(t),t}^\star) - \sum_{t=1}^T \mu_{i(t)}(N_{i(t),t})$$

$$\stackrel{*}{=} \sum_{i \in \mathsf{UP}} \sum_{s=N_{i,T}^{\pi}+1}^{N_{i,T}^\star} \mu_i(s) - \sum_{i \in \mathsf{OP}} \sum_{s=N_{i,T}^{\star}+1}^{N_{i,T}^\star} \mu_i(s)$$

*order *does not* matter!

DETERMINISTIC CASE ($\varepsilon = 0$) [HEIDARI, 2016]

Greedy *oracle* policy

$$i^{\star}(t) = rg\max_{i} \mu_{i}(N_{i,t})$$

Greedy policy: select the arm with largest last known value

$$i(t) = \arg\max_{i} \mu_i (N_{i,t} - 1)$$

$$R_T(\pi) \leq KL$$

 \Rightarrow We pay for regret only *once per arm*

Algorithm 2 A_2	(Heidari et al., 2016)
-------------------	------------------------

- 1: for $t \leftarrow K+1, K+2, \dots$ do
- 2: SELECT : $\operatorname{arg} \max_{i \in \mathcal{K}} \mu_i(N_{i,t} 1)$
- 3: end for

NOISE

Sliding-window Average of *h* most recent observations

$$\widehat{\mu}_{i}^{h}(N_{i,t}) = \frac{1}{h} \sum_{j=1}^{h} r_{i}(N_{i,t} - j)$$

Sliding-window Average of *h* most recent observations

h = 3000 (high bias, low variance)

Sliding-window Average of *h* most recent observations

$$\widehat{\mu}_{i}^{h}(N_{i,t}) = \frac{1}{h} \sum_{j=1}^{h} r_{i}(N_{i,t} - j)$$

h = 3 (low bias, high variance)

Sliding-window Average of *h* most recent observations

$$\widehat{\mu}_{i}^{h}(N_{i,t}) = \frac{1}{h} \sum_{j=1}^{h} r_{i}(N_{i,t} - j)$$

h = 100 (ok bias, ok variance)

wSWA [Levine et al., 2017]

shie@ee.technion.ac.il

THE FAILURE OF wSWA

Won't we benefit from a data-adaptive window ?

FILTERING ON EXPANDING WINDOW AVERAGE (THE MIDNIGHT FEWA)

Algorithm 4 FEWA	- 1.0⊤			
Input: K, σ, α	_	Т		Т
1: for $t \leftarrow K + 1, K + 2, \dots$ do	0.5			
2: $\delta_t \leftarrow \frac{1}{Kt^{lpha}}$	0.3			
$3: h \leftarrow 1$				
4: $\mathcal{K}_1 \leftarrow \mathcal{K}$			⊥ _	
5: do	0.0	t		•
6: $\mathcal{K}_{h+1} \leftarrow \left\{ i \in \mathcal{K}_h \widehat{\mu}_i^h(N_{i,t}) \ge \max_{j \in \mathcal{K}} \widehat{\mu}_j^h(N_{j,t}) - 2c(h, \delta_t) \right\}$				
7: $h \leftarrow h + 1$				
8: while $h \leq \min_{i \in \mathcal{K}_h} N_{i,t}$	-0.5			
9: SELECT : $\{i \in \mathcal{K}_h \mid h > N_{i,t}\}$				
10: end for		L		
	_	1	2	3
		T		\mathcal{L}

Sample	old																			last
Arm 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
Arm 2	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	1	1
Arm 3	Χ	Χ	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0

NOL!Same as for the
deterministic caseWorst-case upper bound
$$\mathbb{E}\left[R_T\left(\pi_F\right)\right] \leq C\sigma\sqrt{KT\log(T)} + KL$$
Comparison w/ wSWA
 $\mathbb{E}\left[R_T(\pi_{wSWA})\right] = \tilde{O}\left(L^{1/3}\sigma^{2/3}K^{1/3}T^{2/3}\right)$

Problem-dependent upper bound

$$\mathbb{E}\left[R_T\left(\pi_{\mathrm{F}}\right)\right] \leq \sum_{i \in \mathcal{K}} O\left(\frac{\log(T)}{\Delta_{i,h_{i,T}^+-1}}\right)$$

Comparison w/ wSWA

Pure worst-case strategy

- $\Delta_{i,h}$ Difference between the average of the h first overpulls of arm i and the worst reward pulled by the optimal policy
- $h_{i,T}^+$ High-probability upper bound on the number of overpulls for FEWA

UPPER BOUNDS

Worst-case upper bound

$$\mathbb{E}\left[R_T(\pi_{\rm F})\right] \le C\sigma\sqrt{KT\log(T)} + KL$$

Comparison w/ wSWA
$$\mathbb{E}\left[R_T(\pi_{\text{wSWA}})\right] = \tilde{O}\left(L^{1/3}\sigma^{2/3}K^{1/3}T^{2/3}\right)$$

Problem-dependent upper bound

$$\mathbb{E}\left[R_T(\pi_{\mathrm{F}})\right] \leq \sum_{i \in \mathcal{K}} O\left(\frac{\log(T)}{\Delta_{i,h_{i,T}^+-1}}\right)$$

Comparison w/ wSWA

Pure worst-case strategy

 $\Delta_{i,h} = \Delta_i$ on a stationary bandit problem $\Delta_{i,h_{i,T}^+-1}$ is a problem-dependent quantity

Proof sketch (for the instance-independent bound)

- 1. Same (total) number of over-pulls than under-pulls
- 2. The summand in the first sums upper bounded the largest not selected value at the end $\max_{j \in \mathscr{X}} \mu_j \left(N_{j,T} \right)$
- 3. Reward is decreasing: $\max_{j \in \mathscr{K}} \mu_j \left(N_{j,T} \right) \le \max_{j \in \mathscr{K}} \mu_j \left(N_{j,t} \right)$
- 4. For an over-pulled arm *i*, the contribution of h_i over-pulls to the regret is bounded by the lemma

$$h_i\left(\max_{j\in\mathscr{K}}\mu_j\left(N_{j,T}\right) - \overline{\mu}_i^{h_i}\left(N_{i,t}\right)\right) \le h_i\left(\max_{j\in\mathscr{K}}\mu_j\left(N_{j,t}\right) - \overline{\mu}_i^{h_i}\left(N_{i,t}\right)\right) \le 4h_i c(h_i, \delta_T) \le \mathcal{O}\left(\sqrt{h_i \log \frac{1}{\delta_T}}\right)$$

5. Jensen's inequality $h_i = T/K$ (worst case), and get $R_T(\pi_F) = \mathcal{O}\left(\sqrt{KT \log T}\right)$

Simulations: 2-arms with noise $\sigma = 1$, L (decay)variable

WHERE ARE WE NOW?

2

3

Closes the open problem

Rotting bandits are not harder than stochastic bandits

- $\vec{O} \quad \tilde{O} \left(\sqrt{KT} \right) \text{ worst-case bound} \\ \vec{O} \quad \tilde{O} \left(\log T \right) \quad \text{problem-dependent bound}$
- FEWA, a policy
 - **anytime**
 - **V** a new data-adaptive window mechanism
 - \checkmark agnostic/adaptive to L

EFF-FEWA, a policy

- with FEWA's regret guarantees
- **V** logarithmic space and time complexity

WHAT IS NEXT? FEWA'S LIMITS

- Complex filtering expanding dynamics
 - Is is possible to have an index policy?
- ▶ $\mathcal{O}(\log T)$ bound → 4 times UCB1's bound.
 - Can we do better?
- How about all these different non-stationarity settings?

RAW-UCB: rotting adaptive window UCB

RAW-UCB vs. FEWA $\overline{\mu}_{i}^{h}(N_{i,t}) \geq \max_{i \in \mathcal{K}} \mu_{i}(N_{i,t}) - 2c(h, \delta_{t})$ Better than FEWA's "if you pass, you are not too bad" FEWA($\alpha = 0.06, \delta_0 = 2$) $XUCB(\alpha = 1)$ Average regret at $T = 10^4$ 0 FEWA($\alpha = 4, \delta_0 = 2$) $XUCB(\alpha = 4)$ $0 \mid 0$ $0 \mid 0$ $0 \mid 0$ 0 10^{-1} 10^{0} 10^{1} L

Stochastic non-stationary bandits

- **\triangleright** { μ_i } are functions of round *t* restless
- Minimize cumulative regret w.r.t. the optimal strategy: $\sum_{t < T} \mu_{i_t^*}(t) \mu_{i_t}(t)$
- **Unlearnable (w.r.t. a difficult oracle) if** μ_i can changes at every round.

- Common settings
 - μ_i is piece-wise stationary with Υ_T pieces (*Garivier & Moulines*, 2011)
 - μ_i has a permitted amount of change V_T (Besbes et al., 2014) $\sum_{t \leq T} \max_{i \in \mathcal{K}} |\mu_i(t) + 1 - \mu_i(t)| \leq V_T$

Lower bounds (with the rotting property)

- 1. Piece-wise stationary problem with $\Upsilon 1$ equally spaced breakpoints
- 2. At each breakpoint, the (unknown) best arm is at a distance $\Delta = \mathcal{O}\left(\sqrt{K\Upsilon/T}\right)$ from the others
- 3. The learner will do at least $O(T/(K\Upsilon))$ mistakes on each suboptimal arm on each batch

PROBLEM DEPENDENT GUARANTEES

EXP3.S (Auer et al. 2002b), an adversarial algorithm, matches the two minimax rates. Can we get a problem-dependent bound?

Theorem 31.2 (Lattimore & Szepesvari, 2019): Let π a policy suffering $R_T(\mu)$ on a 2-arms stationary bandits problem μ . Then, for T large enough, there exists a piece-wise stationary problem μ' such that π suffers:

 $R_T(\mu') \ge \frac{T}{22R_T(\mu)}$

Bandit Algorithms

Tor Lattimore and Csaba Szepesvári

Draft of Thursday 27th June, 2019 Revision: 8b22b8b6131c37e388d5e3b2eecf0b4ff5d7db92

Corollary: No!

Any minimax optimal policy suffers $\mathcal{O}\left(\sqrt{T}\right)$ problem-dependent regret

<u>Why?</u> consider a "quick" increase of the suboptimal arm such that the algorithm cannot notice it.

Quick = Inversely proportional to the sub-optimal arm pulling rate ($R_T(\mu)/\Delta$).

WHAT ARE THE "BENEFITS" OF BEING STOCHASTIC ?

With no extra properties, what gives? What can be improved?

• Agnostic to Υ_T and V_T (Auer et al., 2019b) - tomorrow!

What would we need to recover problem-dependent bound?

Lat/Sze's bible counter-example has 2 properties:

- 1. The best arm does not change when the suboptimal arm increases
 - but for the short time it becomes the best!
 - Note: Mukherjee et Maillard (2019) consider a setup where all the reward moves significantly at each breakpoint. They get PD guarantees!
- 2. The suboptimal arm is increasing
 - And what in the case when the rewards never <u>increase</u>?

RAW-UCB does not need to know in which setup it is

RAW-UCB without knowing T, V_T nor Υ_T

Variational budget

$$\mathbb{E}\left[R_T\left(\pi_{\mathrm{R}}\right)\right] \leq \tilde{\mathcal{O}}\left(\sigma^{2/3}K^{1/3}V_T^{1/3}T^{2/3}\right)$$

Piecewise stationary

$$\mathbb{E}\left[R_{T}\left(\pi_{R}\right)\right] \leq \tilde{\mathcal{O}}\left(\sigma\sqrt{K\Upsilon_{T}T}\right)$$
$$\mathbb{E}\left[R_{T}\left(\pi_{R}\right)\right] \leq \sum_{i\in\mathscr{K}}\sum_{k=1}^{\Upsilon_{T}}\frac{32\sigma^{2}\log T}{\Delta_{i,h}} + \mathcal{O}\left(\sqrt{\log T}\right)$$
problem-dependent bound!

SKETCH OF PROOFS

Lemma 3. On favorable event ξ_t , if RAW-UCB selects an arm $i \in \mathcal{K}$ at round t, for any $h \leq N_{i,t}$, the average of its h last pulls cannot deviate significantly from the best available arm at that round, i.e.,

Which one is useful? $\overline{\mu}_i^h(\pi_R, t) \ge \max_{i \in \mathcal{K}} \mu_i(t) - 2c(h, \delta_t).$

Piecewise stationary bandits

- We choose h such that we include all the sample from the current stationary batch
- ▶ On each batch, the proof is then similar to UCB1's.

SKETCH OF PROOFS

Lemma 3. On favorable event ξ_t , if RAW-UCB selects an arm $i \in \mathcal{K}$ at round t, for any $h \leq N_{i,t}$, the average of its h last pulls cannot deviate significantly from the best available arm at that round, i.e.,

Which one is useful?
$$\overline{\mu}_i^h(\pi_R, t) \ge \max_{i \in \mathcal{K}} \mu_i(t) - 2c(h, \delta_t).$$

Variational budget bandits

- 1. We design Υ batches of equal length
- 2. We choose h such that we include all the sample from the current designed batch.
- 3. We split the regret into two sums The regret due to the variance of $\overline{\mu}_i^h(\pi_X, t)$ (Lemma 3) : $\tilde{\mathcal{O}}(\sqrt{KT\Upsilon})$ The regret due to the bias of $\overline{\mu}_i^h(\pi_X, t)$ compared to the current value: $\tilde{\mathcal{O}}(V_T T/\Upsilon)$
- 4. We choose $\Upsilon = \tilde{\mathcal{O}}(V_T^{2/3}T^{1/3}K^{-1/3})$ adequately

RAW CONCLUSIONS

