
with J. Seznec, A. Locatelli, A. Carpentier, A. Lazaric 

HOW DIFFICULT ARE ROTTING BANDITS?

Michal Valko

https://www.afterclasse.fr



WHEN BANDITS GO ROTTING …

�2

2 days before the national exam 



RESTED ROTTING BANDITS ARE …

�3

Stochastic bandits …

  arms 

 At each round   , agent pulls arm   and receives a noisy reward    
(  i.i.d. ;  -sub-gaussian) 

Maximize cumulative reward:  

K
t i rt ← μi + εt

εt σ
𝔼 [∑t≤T rt]

… with rotting arms

 are non-increasing functions of  the number of pulls of arm  at time   

                                                  

{μi} Ni,t i t
L ≜ max

i∈K
max
n≤T

μi(n) − μi(n + 1)



BACK TO THE EXAMPLE

�4

Back to the Example 5

Bandit Platform
K arms K topics that can be revised, every time a topic is

selected, a question is generated
Maximize cum. reward maximize number of questions that students do not

master
Observations rt rt = 0 if answer is correct, rt = 1 is answer is

wrong
Rotting rewards the student acquires knowledge over time

Lazaric – Rotting Bandits



NOISELESS 
 ε = 0



OPTIMAL ORACLE POLICY [HEIDARI, 2016]

�6



OPTIMAL ORACLE POLICY [HEIDARI, 2016]

�7



DETERMINISTIC CASE ( )  [HEIDARI, 2016]ε = 0

�8



NOISE



Noisy case [Levine et al., 2017]

�10

Noisy Case [Levine et al., 2017]
9

Sliding-window Average of h most recent observations

bµh
i (Ni,t) =

1

h

hX

j=1

ri(Ni,t � j)

Lazaric – Rotting Bandits



Noisy case [Levine et al., 2017]

�11

Noisy Case [Levine et al., 2017]
9

Sliding-window Average of h most recent observations

bµh
i (Ni,t) =

1

h

hX

j=1

ri(Ni,t � j)

Lazaric – Rotting Bandits



Noisy case [Levine et al., 2017]

�12

Noisy Case [Levine et al., 2017]
9

Sliding-window Average of h most recent observations

bµh
i (Ni,t) =

1

h

hX

j=1

ri(Ni,t � j)

Lazaric – Rotting Bandits



Noisy case [Levine et al., 2017]

�13

Noisy Case [Levine et al., 2017]
9

Sliding-window Average of h most recent observations

bµh
i (Ni,t) =

1

h

hX

j=1

ri(Ni,t � j)

Lazaric – Rotting Bandits



wSWA [Levine et al., 2017]

�14

Noisy Case [Levine et al., 2017]
10

Sliding-window Average of h most recent observations

Regret due to the bias eO(LKh)

Regret due to the variance eO(�Th�1/2)

Optimizing h (knowing �, L), and T ) gives

RT (⇡)  eO(K1/3
T

2/3)

) Is really rotting bandit more difficult than stochastic bandit (regret eO(
p
T ))?

Lazaric – Rotting Bandits



THE FAILURE OF wSWA

�15

Won’t we benefit from a data-adaptive window ?



FILTERING ON EXPANDING WINDOW AVERAGE  
(THE MIDNIGHT FEWA)

�16



UPPER BOUNDS 

�17

Worst-case upper bound

𝔼 [RT (πF)] ≤ Cσ KT log(T ) + KL 𝔼 [RT (πwSWA)] = Õ (L1/3σ2/3K1/3T2/3)
Comparison w/ wSWA

Problem-dependent upper bound

𝔼 [RT (πF)] ≤ ∑
i∈𝒦

O ( log(T )
Δi,h+

i,T−1 )
Δi,h

h+
i,T High-probability upper bound on the number of overpulls for FEWA

Difference between the average of the h first overpulls of arm i and the 
worst reward pulled by the optimal policy

Comparison w/ wSWA
Pure worst-case strategy

Same as for the 
deterministic case

No L!



UPPER BOUNDS 

�18

Worst-case upper bound

𝔼 [RT (πF)] ≤ Cσ KT log(T ) + KL 𝔼 [RT (πwSWA)] = Õ (L1/3σ2/3K1/3T2/3)
Comparison w/ wSWA

Problem-dependent upper bound

𝔼 [RT (πF)] ≤ ∑
i∈𝒦

O ( log(T )
Δi,h+

i,T−1 )
Δi,h = Δi on a stationary bandit problem

is a problem-dependent quantity

Comparison w/ wSWA
Pure worst-case strategy

Δi,h+
i,T−1



Proof sketch (for the instance-independent bound)

�19

1. Same (total) number of over-pulls than under-pulls 

2. The summand in the first sums upper bounded the largest not selected value at the end     

3. Reward is decreasing:   

max
j∈𝒦

μj (Nj,T)
maxj∈𝒦 μj (Nj,T) ≤ maxj∈𝒦 μj (Nj,t)

RT(π) = ∑i∈UP ∑N⋆
i,T

s=Nπ
i,T+1 μi(s) − ∑i∈OP ∑Nπ

i,T
s=N⋆

i,T+1 μi(s)

4. For an over-pulled arm  , the contribution of   over-pulls to the regret is bounded by the lemma  
 

5. Jensen’s inequality   (worst case), and get   

i hi

hi = T/K RT(πF) = 𝒪 ( KT log T)

hi (maxj∈𝒦 μj (Nj,T) − μ hi
i (Ni,t)) ≤ hi (maxj∈𝒦 μj (Nj,t) − μ hi

i (Ni,t)) ≤ 4hic(hi, δT) ≤ 𝒪 ( hi log 1
δT )

 4c (h, δt)
Lemma: if you pass, you can’t be too bad



10−1 100 101

L
0

50

100

150

200

250

300

350

400

A
ve
ra
ge
 re
gr
eW
 a
W T
 
10

4

)(WA(α 0.06, δ0  2)
w6WA(α 0.02)
w6WA(α 0.2)

�20

Simulations: 2-arms with noise   (decay)variableσ = 1, L



WHERE ARE WE NOW?

�21

1 

3 EFF-FEWA, a policy 

   ✅ with FEWA’s regret guarantees  
   ✅ logarithmic space and time complexity 

Rotting bandits are not harder than stochastic bandits 

   ✅                     worst-case bound  
   ✅                      problem-dependent bound�̃� (log T)

�̃� ( KT)

2 
FEWA, a policy  

   ✅ anytime  
   ✅ a new data-adaptive window mechanism   
   ✅ agnostic/adaptive to L

Closes the open problem



WHAT IS NEXT? FEWA’S LIMITS

Complex filtering expanding dynamics 

Is is possible to have an index policy? 

  bound   4 times UCB1’s bound.  

Can we do better? 

How about all these different non-stationarity settings?

𝒪 (log T) →

�22



RAW-UCB: rotting adaptive window UCB

�23

Rewards are decreasing:    is a UCB for the future value 

RAW-UCB selects the minimum (tightest) one (on  ) as index of the arm 

Searching better! (for bias/variance tradeoff over window size  )   

Index policy!

̂μh
i (Ni,t) + c(h, δt)

h

h



RAW-UCB vs. FEWA

�24

10−1 100 101

L
0

2 0 0

4 0 0

6 0 0

8 0 0

A
ve
Ua
ge
 Ue
gU
eW
 a
W T
 
10

4

)(WA(α 0.06, δ0  2)
X8CB(α 1)
)(WA(α 4, δ0  2)
X8CB(α 4)

Better than FEWA’s  “if you pass, you are not too bad”



Stochastic non-stationary bandits 

�25

  are functions of round    - restless 

Minimize cumulative regret w.r.t. the optimal strategy:   

Unlearnable (w.r.t. a difficult oracle) if   can changes at every round.  

Common settings 

  is piece-wise stationary with   pieces (Garivier & Moulines, 2011) 

  has a permitted amount of change    (Besbes et al., 2014) 

   

{μi} t

∑t≤T μi⋆
t
(t) − μit(t)

μi

μi ΥT

μi VT

∑t≤T maxi∈𝒦 |μi(t) + 1 − μi(t) | ≤ VT



Lower bounds (with the rotting property)

1. Piece-wise stationary problem with   equally spaced breakpoints 

2. At each breakpoint, the (unknown) best arm is at a distance 

   from the others 

3. The learner will do at least    mistakes on each suboptimal arm on 
each batch 

4. The learner suffers at least   

Υ − 1

Δ = 𝒪 ( KΥ/T)
𝒪 (T/(KΥ))

𝒪 ( KΥT)

�26

Variational budget rate:   

   

(Besbes et al. , 2014)

𝒪 (K1/3V1/3
T T2/3)

ΥΔ = 𝒪
KΥ3

T
≤ VT

⟹ Υ = 𝒪 (V2/3
T K−1/3T1/3)

 Piece-wise stationary rate:   

  

(Garivier & Moulines, 2011)

𝒪 ( KΥTT)

  is fixedΥT

Worst value



PROBLEM DEPENDENT GUARANTEES

�27

EXP3.S (Auer et al. 2002b), an adversarial algorithm, matches the two minimax rates.  
Can we get a problem-dependent bound?

Theorem 31.2 (Lattimore & Szepesvari, 2019):  Let   a policy suffering 

  on a 2-arms stationary bandits problem  . Then, for T large 

enough, there exists a piece-wise stationary problem   such that   
suffers: 

  

π
RT(μ) μ

μ′� π

RT(μ′�) ≥
T

22RT(μ)

Corollary: No!  

Any minimax optimal policy suffers   problem-dependent regret 

Why?  consider a “quick” increase of the suboptimal arm such that the algorithm 
cannot notice it.  

Quick = Inversely proportional to the sub-optimal arm pulling rate ( ). 

 

𝒪 ( T)

RT(μ)/Δ



WHAT ARE THE “BENEFITS” OF BEING STOCHASTIC ? 

�28

With no extra properties, what gives? What can be improved? 

• Agnostic to   and    (Auer et al., 2019b) - tomorrow! 

What  would we need to recover problem-dependent bound? 

Lat/Sze’s bible counter-example has 2 properties: 

1. The best arm does not change when the suboptimal arm increases 

…. but for the short time it becomes the best! 

Note: Mukherjee et Maillard (2019) consider a setup where all the reward moves 
significantly at each breakpoint. They get PD guarantees! 

2. The suboptimal arm is increasing 

And what in the case when the rewards never increase?

ΥT VT



RAW-UCB does not need to know in which setup it is

�29

Variational budget

𝔼 [RT (πR)] ≤ �̃� (σ2/3K1/3V1/3
T T2/3)

RAW-UCB without knowing  ,   nor   T VT ΥT

minimax rate 

Piecewise stationary

𝔼 [RT (πR)] ≤ �̃� (σ KΥTT)
𝔼 [RT (πR)] ≤ ∑

i∈𝒦

ΥT

∑
k=1

32σ2 log T
Δi,h

+ 𝒪 ( log T)

minimax rate

problem-dependent bound!  



SKETCH OF PROOFS

�30

We choose h such that we include all the sample from the 
current stationary batch 

On each batch, the proof is then similar to UCB1's.

Which one is useful?

Piecewise stationary bandits



SKETCH OF PROOFS

�31

1. We design   batches of equal length 

2. We choose h such that we include all the sample from the current designed batch.  

3. We split the regret into two sums  
The regret due to the variance of   (Lemma 3) :   
The regret due to the bias of   compared to the current value: 

4. We choose   adequately  

Υ

μh
i (πX, t) �̃�( KTΥ)

μh
i (πX, t)

Υ = �̃�(V2/3
T T1/3K−1/3)

Variational budget bandits

�̃�(VTT/Υ)

Which one is useful?



RAW CONCLUSIONS

�32

1 

3 RAW-UCB solves rested OR restless rotting bandits 

   ✅ with the same tuning when reward is bounded  
   ❌ rested AND restless rotting bandits are incompatible

Rotting property makes restless bandits easier  
   ✅    problem-dependent bound𝒪 (log T)

2 UCB-like index is sufficient for rotting restless bandits 

   ✅ No random exploration, no passive forgetting, no change-detection routine  
   ✅ Gap-dependent and minimax bounds  
   ✅ Agnostic to  ,  ,    ΥT VT T


