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Abstract

Most successful self-supervised learning methods are
trained to align the representations of two independent views
from the data. State-of-the-art methods in video are inspired
by image techniques, where these two views are similarly
extracted by cropping and augmenting the resulting crop.
However, these methods miss a crucial element in the video
domain: time. We introduce BraVe, a self-supervised learn-
ing framework for video. In BraVe, one of the views has
access to a narrow temporal window of the video while the
other view has a broad access to the video content. Our
models learn to generalise from the narrow view to the gen-
eral content of the video. Furthermore, BraVe processes the
views with different backbones, enabling the use of alterna-
tive augmentations or modalities into the broad view such as
optical flow, randomly convolved RGB frames, audio or their
combinations. We demonstrate that BraVe achieves state-
of-the-art results in self-supervised representation learning
on standard video and audio classification benchmarks in-
cluding UCF101, HMDB51, Kinetics, ESC-50 and AudioSet.

1. Introduction

Over the past few years, self-supervised methods have rev-
olutionized the field of representation learning [18, 37, 69].
These methods directly learn from data without the need
for manually defined labels that are hard to get at scale.
Doing so, one can successfully leverage large amounts of
uncurated data to improve representations. Even more im-
portantly, self-supervised learning enables richer training
tasks to be defined, compared to the standard approach of
trying to categorize diverse visual inputs into a fixed set of
categories. This has led to self-supervised representations
outperforming supervised ones on downstream tasks [34].
Video is a natural domain for self-supervised learning since
data is rich and abundant but hard to annotate at scale due to
the additional temporal complexity. However, most methods
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Figure 1. Given a narrow view corresponding to a video clip of a
few seconds, BraVe is tasked with predicting a broad view that
spans a longer temporal context of the video in different modalities
(here visual and audio). Solving that task requires the representation
to extrapolate what happened before, during and after the narrow
view, and results in state-of-the-art video representations.

in the video domain take direct inspiration from methods
developed for images without fully taking advantage of its
distinctly different dimension: time.

In particular, one common aspect of self-supervised meth-
ods for images is to extract two views from a given instance
using the same general augmentation procedure, feed them
into a shared backbone, and extract a supervisory signal
from the fact that these two views originate from the same
source. This is true for most recent approaches irrespec-
tive of their underlying learning principle: contrastive ap-
proaches [18], clustering-based method [14], or regression
algorithms [69]. The same principle has been followed in
the video domain [3, 68]. Specifically, most video methods
extract the different views from a source video clip in a sym-
metric fashion with respect to time: all extracted views have
the same temporal extent in the video [3, 45, 68]. However,
doing so does not benefit from learning from information
contained at different time scales.

In this paper, we introduce an algorithm dubbed



“Broaden your Views” (BraVe), that breaks this symme-
try in order to improve representation learning from videos.
In detail, given a narrow view corresponding to a video clip
of a few seconds, BraVe learns a representation by predict-
ing a broad view that spans the longer temporal context of the
full video clip as illustrated in Figure 1. Solving such a task
requires extrapolating to the general context in which a given
event occurs. In the example of Figure 1, one has to predict
what happened before the person is in the sky (they probably
jumped with the help of some device, given the height), as
well as what is going to happen next (they will probably fall
down somewhere soft) in order to solve the task. This task
arguably requires a good understanding of the structure of
events and is therefore a promising task for learning repre-
sentations. While related local-to-global proxy tasks have
been studied in the image domain via network architectural
designs [8, 38] or multi-size cropping [18], applying these
techniques to videos is not straightforward, because of the
increased computational complexity incurred by the time
dimension and the artifacts introduced when doing similar
resize operations in spatio-temporal volumes. To address
this challenge, we propose to process broad views with a
dedicated model. We demonstrate that under a fixed com-
putational budget, learning from the supervision provided
by our broad views performs better than alternatives relying
on symmetric augmentation procedures. Our algorithm is
simple and does not require a cumbersome creation of ex-
plicit negatives as in contrastive methods. Instead we use
a direct regression-based approach inspired by BYOL [29],
where the views are processed by dedicated backbones and
regress each other. Breaking the symmetry enables the use
of stronger augmentations and different modalities for the
broad view, which improves the quality of the final represen-
tations.

Contributions. We make the following contributions:
(i) We propose a novel framework for representation learning,
called BraVe, which generates views at different time scales
and learns representations via simple regression across views,
(ii) We explore using different augmentations and modalities
in the broad view such as audio, flow or randomly convolved
RGB frames. (iii) We evaluate this framework in the video
domain, both with and without audio as an auxiliary supervi-
sory signal, where we obtain state-of-the-art results on video
and audio classification benchmarks UCF101, HMDB51,
Kinetics, ESC-50 and AudioSet.

2. Related work
Image-based self-supervised learning. Most successful
self-supervised methods learn a representation by defining
a pretext task, whose resolution typically entails learning
useful representations [14, 15, 20, 21, 28, 59, 62, 90]. In
particular, contrastive methods have provided spectacular

performance [9, 18, 22, 34, 37, 40, 47, 56, 79, 80]. Con-
trastive methods learn by pulling representations of different
transformations of the same image (positive instances) closer,
and pushing representations of different images (negatives)
apart [9, 60]. The main drawbacks of contrastive approaches
are that they require a careful choice of positive and negative
pairs [80] and that they often rely on large number of such
negatives, inducing a high computational cost [18]. Alter-
natives to the contrastive approach, such as clustering and
regression, avoid the need and cost of multiple negatives.
Clustering-based methods [4, 7, 10, 14, 15, 39, 78, 86] alter-
nate between learning representations using clusters as tar-
gets, and clustering using the current representations (either
online or offline). Most related to our work are regression-
based methods that instead try to directly regress a represen-
tation extracted from a different view of the image [27, 69].
BraVe is directly inspired from [29] but the views come
from different modalities and augmentations, are processed
by dedicated backbones and regress each other.

Video-based self-supervised learning. In the video do-
main, the pretext tasks for self-supervision have included
predicting the future in pixel space by minimising an MSE
loss [63, 75, 83] or adversarial losses [53, 82]. However, the
predictions of these models are usually blurred and cannot
go beyond predicting short clips into the future. To avoid
these difficulties, other works focus on learning representa-
tions in a more abstract space, by using pretext tasks that
predict the temporal order of video frames [57] or the ar-
row of time [85]. In this direction also, video contrastive
methods have been very successful [19, 31, 32, 68]. In addi-
tion to data augmentations used for images, these works use
temporal cues to build positive pairs. Yet the costs of train-
ing such systems are significant and complex hard-negative
mining strategies are needed to improve the training effi-
ciency [23]. Our method circumvents the use of negatives,
considerably alleviating the training complexity while ob-
taining state-of-the-art performance on popular video bench-
marks. Furthermore, our approach may leverage predictive
tasks, such as predicting other crops in the video or optical
flow, reminiscent of earlier predictive work [75, 84]; but
predicting in a learned feature space by building on a more
recent self-supervised approach [29].

Audio-video self-supervised learning. Video and audio
have been used as a rich source of self-supervision [4, 5, 6,
45, 58, 61, 64, 71]. A simple but effective approach to train
representations consists in classifying whether a video clip
and an audio sample correspond to each other [5, 6, 45, 61,
71]. Some works propose to use language obtained from
speech recognition as an additional supervisory signal [2,
3, 52, 54, 55, 70, 72, 77]. Related to ours, recent work
finds that distilling flow and audio into a RGB encoder leads
to strong representations [67], using an evolutionary search
algorithm on the loss function. In contrast with this approach,
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Figure 2. BraVe. Given a narrow view xn spanning a few seconds at high resolution and broad views x1b and x2b covering a larger temporal
extent in the video for different modalities, we train independent networks running on the narrow and the broad views to mutually regress
each other. This is done by defining two regression losses: Ln→b to predict a broad view from the narrow view, and Lb→n enforcing the
other way around. To avoid collapse of the learned representations, we introduce three stages of processing as previously done in BYOL [29]:
backbone networks (fn for the narrow view and f1

b , f
2
b for the broad views), projector networks (gn and g1b , g

2
b ) and predictor networks (hn

and h1
b , h

2
b). For the broad views, we consider both visual modalities (RGB frames or optical flow) and audio modality.

our framework does not require to define modality-specific
losses, is simpler to train (no need to balance the losses), and
obtains better performance across the board.

3. Broaden Your Views for Self-Supervised
Video Learning

In this section, we detail our approach dubbed BraVe for
learning self-supervised state-of-the-art representations from
a large set of videos, as measured by performance when
transferring to downstream tasks. BraVe, illustrated in
Figure 2, learns by direct regression from a high resolution
narrow view that only spans a short clip to a lower resolution
broader view which covers a larger temporal context of the
video. Multiple options can be considered for the broad
view: it can either come from the same modality as the
narrow view (RGB in our case) or a different one such as
flow or audio. Multiple views can also be combined to
further improve performance. Next, we formally describe
the learning framework in Section 3.1 and provide intuition
why this may be a good self-supervised objective. Then, in
Section 3.2, we describe the components and views we use
in practice in two standard settings: learning from (i) visual
signals alone, and from (ii) visual and audio modalities.

3.1. The BraVe learning framework

General overview. Given a video x that can be composed
of multiple modalities, we randomly extract two complemen-
tary views: a narrow view xn that spans a short timeframe
in the video (around 1-3 seconds) and a broad view xb that

covers a larger extent of the video (around 5-10 seconds).
Details on how these views are obtained are given in Sec-
tion 3.2. By introducing this temporal asymmetry in the
creation of the views, the proposed task consists in extrapo-
lating the full context of the video (the broad view) from only
a small portion of the video (the narrow view) as illustrated
in Figure 1. We hypothesize that to solve this task, good
representations must be learned, which can then be useful
for semantic downstream tasks. More formally, we train
networks to minimize the training loss L defined for a given
video x as follows:

L(x) = Ln→b(x)︸ ︷︷ ︸
Narrow→Broad

+ Lb→n(x)︸ ︷︷ ︸
Broad→Narrow

. (1)

This loss is composed of two terms: (i) a prediction loss
from the narrow to the broad view, and (ii) a complementary
loss to regress the narrow view from the broad view.
BraVe: losses and architectures. For simplicity and com-
putational purposes, we opt for simple regression losses for
Ln→b and Lb→n. This is indeed simpler than standard con-
trastive losses that require large batches and therefore high
compute to work well [18]. One challenge however, is the
risk of collapse, since a trivial solution could be to always
predict a constant which would lead to perfect regression
losses across views. To avoid this, we draw inspiration from
recent work [29, 30] in the way we design our networks and
losses, as detailed next.

As illustrated in Figure 2, we first define a backbone
network fn whose role is to extract a representation from the
narrow view xn. Similarly, we define a backbone network



fb acting on the broad view xb. Note that in our framework,
the parameters and even the underlying architectures of fn
and fb can differ since they act on views of a different nature.
These representations are then respectively transformed by
projectors gn and gb, projecting fn(xn) and fb(xb) to yield
the narrow embedding zn = gn(fn(xn)) and the broad one
zb = gb(fb(xb)). Inspired by [29], we then define a third
stage of processing called the narrow view predictor hn that
takes the projected embedding from the narrow view zn
and produces a prediction hn(zn) that is used to regress the
broad view zb using the following loss:

Ln→b(x) =

∥∥∥∥ hn(zn)

‖hn(zn)‖2
− sg

[
zb
‖zb‖2

]∥∥∥∥2
2

, (2)

where sg[·] denotes the “stop gradient” operator, which op-
erates on its input as the identity, but has zero partial deriva-
tives. Since the loss Ln→b only depends on the networks
associated with the narrow view, we also define a loss to
provide training signal for the broad view network. To that
end, we introduce a broad view predictor hb that takes the
projected embedding from the broad view zb and produces
a prediction hb(zb) that is used to regress the narrow view
embedding zn using the following loss:

Lb→n(x) =

∥∥∥∥ hb(zb)

‖hb(zb)‖2
− sg

[
zn
‖zn‖2

]∥∥∥∥2
2

. (3)

The role of these predictors is crucial to avoid collapse as
found in [29], which we confirm experimentally. The same
is true for the stop gradient operator. Differently from [29],
we do not use exponential moving averages (EMA) on the
weights of the network that process the view being regressed.
Unlike [29], who required the moving average for improved
performance, we find that this is not necessary in our case.
Intuitions about what needs to be learned by BraVe.
While the proposed approach avoids plain collapse of the
representations, it is also important to question what needs
to be learned in order for the loss (1) to be optimized. In
particular, we want the narrow backbone to learn to predict
the full context represented by the broad view. However, one
challenge is to prevent the broad backbone from instead sim-
ply learning to throw the broad information away and only
keeping the signal contained in the narrow view. To avoid
this, we sample the narrow and broad views independently
in time when they come from the same visual modality so
that it is difficult for the broad backbone to predict what the
narrow view is going to be. By doing so, we argue that the
best solution to solve the task is for the narrow backbone to
extrapolate what is happening in the broad view. We empiri-
cally verify the importance of this independent sampling in
our experiments in section 4.
Dealing with multiple views and modalities. BraVe can
be extended to handle K broad views (with K > 1) com-
ing from different modalities. To do so and as illustrated in

Figure 2, we keep a single narrow backbone network fn but
introduce specific narrow projectors and predictors for each
broad views: {(g1n,h1n), · · · , (gKn , hKn )}. Each additional
broad view xkb has its own set of backbone, projector and
predictor : fkb , g

k
b and hkb , respectively. Given this, all regres-

sion losses are simply aggregated over all pairs composed
by the narrow view xn and the different broad views {xkb}k:

L(x) =
K∑

k=1

Lk
n→b(x) + Lk

b→n(x). (4)

When using different modalities, the risk for the broad net-
work to only focus on the narrow view is reduced due to the
modality gap between the two views. Furthermore, when
using audio, syncing helps slightly as previously observed in
visual-audio work [45]. We verify this experimentally and
report the results in Appendix D.
Final loss. Given a large set of videos {xi}Ni=1, we train our
model to minimize:

min
fn,gn,hn
fb,gb,hb

N∑
i=1

L(xi). (5)

Next, we provide more details on the specific components
that are used when BraVe is applied in the unimodal setting
and the multimodal setting; as well as how the narrow and
broad views are constructed in each case.

3.2. Broad views from visual and audio modalities

In our framework, we regress the representation of a broad
backbone which sees a larger context of the video. The broad
view is meant to provide information about the full video clip
including more temporal context, in order to supervise the
narrow backbone fn. As the different views are processed
by different backbones, we can apply a different set of pre-
processing and augmentation functions to any of the views.
In this section, we first describe the set of transformations
that we use when training with visual inputs alone, and then
when training with both visual and audio inputs.
Visual modalities. When sampling the broad view from the
visual modalities, we aim to cover a large temporal context,
the full clip. Accessing more temporal context typically
means increasing the number of frames, and thus introducing
extra computational complexity. To avoid this overhead, we
decrease the spatial resolution of the broad view in order
to keep the number of pixels constant. In Section 4 we
show the effectiveness of trading temporal context for spatial
resolution in the broad view. By keeping the computational
cost fixed, we ensure that our method is computationally
competitive with alternative self-supervised approaches.

Additionally to the temporal sampling, the set of transfor-
mations we consider for use on the narrow and broad views
are motivated from two complementary perspectives. First,



we can design the transformations Tb used for the broad
view to extract specific features from the input modality,
sought to enrich the learned representations fn(xn) with a
certain type of information. Second, similarly to the use
of augmentations in a wide number of machine learning
approaches, and in particular in contrastive and regression-
based self-supervised learning approaches, we also employ
such stochastic transformations to enforce invariance or
equivariance constraints on the learned representations. In
contrast to the use of augmentations in these self-supervised
frameworks however, we emphasize that we do not impose
that the set of transformations Tn used on the narrow view be
the same as the set of transformations Tb used on the broad
views. To explore this, we employ a recently introduced aug-
mentation procedure relying on random convolutions [88],
by which we augment only the broad view.

Alternatively, we can use optical flow as substitute of
RGB in the broad view, which is reminiscent of [76], where
the flow network is used to teach the RGB network. Optical
flow from sequential images can provide supervision to em-
phasize motion in the learned representations extracted from
the source, which has shown to be important for predicting
actions [32, 73, 84]. Optical flow can be extracted using
an off-the-shelf unsupervised flow extraction algorithm. As
flow is computed once for the full dataset, its computational
overhead is negligible compared to training time.
Audio modalities. Our framework can leverage audio as
supervisory signal in the broad view. We can either use a
single audio broad view or combine a visual broad view and
an audio broad view for stronger self-supervision. Audio is a
strong supervisory signal, and has been extensively used for
self-supervision in videos as it strongly correlates with the
visual content, while being easier to process computationally.
As pre-processing, we extract spectrograms from consec-
utive short-time windows on the waveform using Fourier
transforms. This approach has been shown to be very effec-
tive in obtaining state-of-the-art performance on supervised
[24, 44] and unsupervised [3, 41, 42] approaches. For this
reason, we encode the audio using a log-mel spectrogram
representation as xb ∈ RTs×D where Ts is the number of
spectrogram frames and D denotes the number of features.
Similar to the unimodal setting, we experiment with enlarg-
ing the temporal window for the extraction of the audio view,
compared with the temporal window of the narrow video
view, seeking to increase the amount of context information
present in the supervisory signal. Finally, as explained in the
previous section, we make sure that the visual narrow view
and the audio broad view are in sync at their starting point.

4. Experiments
In this section, we evaluate BraVe and compare its perfor-
mance against relevant state-of-the-art methods trained on
similar data and modalities.

4.1. Experimental setting

Video-only experiments. In the video-only setting, we con-
duct our experiments on the Kinetics-600 dataset [16]. The
dataset has 600 action classes and contains 447k videos at
the time of submission, 362k in the train set.
Audio-video experiments. In the crossmodal training set-
ting, we use the AudioSet [25] as pre-training dataset. The
dataset has 527 action classes and contains 1.9M videos in
the training set at the time of submission.
Architectures. For spatiotemporal volumes such as the se-
quences of RGB or flow frames, unless specified otherwise,
we use the TSM-ResNet50 (TSM-50) [49] architecture for
the narrow backbone. For the broad visual backbone we
always use a TSM-50 backbone. Video inputs are sampled
at 12.5 frames per second (FPS). Unless stated otherwise,
we train the narrow backbone on inputs of 16 frames (1.3
seconds) at resolution 224×224, and the broad backbone on
inputs of 64 frames at 6.25 FPS (10s) at resolution 112×112.
To see how our method scales to different and bigger archi-
tectures, we also experiment with different backbones for the
narrow network with the R(2+1)D architecture [81], R3D
architecture [33] and TSM with twice the number of chan-
nels in each layer (TSM-50x2). We also introduce a video
variant of the recent NF-Net-F0 architecture [13], by apply-
ing the TSM on it (details in Appendix C), which we call
TSM-NF-F0. We use these networks only for the narrow
view and always use TSM-50 in the broad view. For the
broad backbone processing log-mel spectrograms, we use
ResNet-50 [36]. All models are trained using a two-layer
MLP for the projector heads (gn and gb) with a hidden layer
of dimension 512, and a three-layer MLP for the predictor
heads (hn and hb) with hidden layers of dimensions 4096.
We use batch normalization after each hidden layer. We use
128 as the output dimension of projectors and predictors.
Feature extraction. For flow extraction, we use the TV-
L1 [89] algorithm. We use 80 bins for extracting log-mel
spectrograms.
Augmentations. We sample and augment all the visual
views independently. For any narrow view, we uniformly
sample a temporal offset between 0 and T − τn, where T is
the duration of the video clip and τn denotes the length of
the narrow view. We extract the view starting at this offset.
For the broad view, we randomly sample the offset between
0 and T . We pad any broad view of insufficient length with a
clip extracted from the start of the video sample (i.e. looping
over the sequence). For all visual modalities (including the
flow), we use random cropping and horizontal flipping. For
the RGB views, we additionally employ gaussian blurring
as well as scale and color jittering. We also explore the
use of random convolutions as an augmentation procedure.
Following [48], we use He initialization [35] for the weights
and fixed zero bias, sampling the size of the kernel uniformly
across odd values ranging from 1 to 11. For audio, we use



the same starting point as the narrow view, but extend it for a
longer time window. If necessary, similarly to the RGB case,
we pad the broad audio view with audio extracted from the
start of the audio clip. See Appendix A.2 for further details.
Self-supervised training details. We discard labels at train-
ing time, and only use them for downstream evaluation.
Unless stated otherwise, we employ a batch size of 512 and
train for 300k steps, setting the initial learning rate to 0.002.
We train all models using AdamW [50], with 5000 warm
up steps and cosine learning rate schedule [51]. Following
BYOL [29], we multiply the learning rate for all predictors
(hn and hb) by 10. For batch norm layers, we use a decay
rate of 0.9 and epsilon of 1e-5. We use weight-decay of 0.01.
More details are given in Appendix A.1.

4.2. Downstream tasks

We use two standard settings to evaluate the quality of
the learned visual representations from the narrow backbone
fn: in the linear setting, we train a linear layer over frozen
features extracted by fn; in the fine-tuning setting, we train
fn and the classifier head end-to-end. During evaluation,
we always use 32 frames as inputs at 12.5 FPS, irrespec-
tive of the pre-training regime, to be comparable to pre-
vious work. We evaluate video representations using the
HMDB51 dataset [46], the UCF101 dataset [74] and the
Kinetics-600 [17] validation set. The HMBD51 dataset con-
tains 5K videos, corresponding to 51 classes. The UCF101
dataset contains 13K videos, corresponding to 101 classes.
The Kinetics-600 validation set contains 28k videos. We
also evaluate the learned audio representations from the cor-
responding broad backbone, fb, on both the test set of the
AudioSet dataset (20K samples, 527 classes) as well as the
smaller ESC-50 dataset [66] (2K samples, 50 classes). Fol-
lowing standard procedure, we report top-1 accuracy for all
datasets except for Audioset where we report the mean aver-
age precision [41]. For the datasets that have official splits
(3 for UCF101/HMDB51 and 5 for ESC-50), we follow the
standard procedure where split#1 serves as the validation set
and the average accuracy over all splits is then reported.
Linear setting. For HMDB51, UCF101 and ESC-50, we
extract representations from 10 epochs worth of augmented
samples using the learned narrow backbone, and we train a
linear SVM using scikit-learn [65] on these frozen features.
For Kinetics-600 and AudioSet which are larger, we instead
train the linear classifier using the Adam optimizer [43]. In
all cases, we use the same augmentations as during unsuper-
vised pre-training except for gaussian blur. Full details are
provided in Appendix B. At test time, we average the pre-
diction over 30 clips (10 temporal clips each with 3 spatial
crops) as done in [68]. For AudioSet, we follow [41] and
use a fully-connected classifier, with one hidden layer of 512
units, in place of the linear classifier.
Fine-tuning setting. In this setting, we add a single, ran-

Table 1. Importance of the broad view. We evaluate the impact
of the temporal extent of the narrow (τn) and broad (τb) views.
Mb is the modality used in the broad view. RC stands for random
convolutions. K600 stands for Kinetics-600 and AS for AudioSet.

Dataset Mb τn τb HMDB51 UCF101

K600 RGB+RC 10s 10s 56.7 78.3
K600 RGB+RC 1.3s 1.3s 57.4 87.6
K600 RGB+RC 1.3s 5s 61.7 89.0
K600 RGB+RC 1.3s 10s 63.3 89.5

AS Audio 1.3s 1.3s 67.6 92.0
AS Audio 1.3s 5s 68.1 92.4
AS Audio 1.3s 10s 67.1 92.4

Table 2. Visual transformation for the broad view. We compare
various augmentations for the visual input of the broad view, when
pre-training on Kinetics-600. We use τn = 1.3s (narrow extent)
and τb = 10s (broad extent). RC stands for random convolutions.

Mb HMDB51 UCF101

RGB 59.6 87.8
RGB+RC 63.3 89.5

Flow 65.9 91.6

domly initialized, linear layer at the output of the narrow
backbone. We initialize the narrow backbone’s weights with
those learned using BraVe, and we fine-tune this architec-
ture end-to-end. Following previous work, we perform this
evaluation on the HMDB51 and UCF101 datasets. We use
the same test time procedure as for the linear setting. Details
are given in Appendix B.

4.3. Ablation study

In this section, we study the effect of the different compo-
nents of BraVe on the performance of the narrow backbone
fn. Specifically, we study four main elements: (i) the ef-
fect of the temporal extents of the narrow and broad views,
(ii) the improvements brought by different choices of trans-
formations for the visual modality, (iii) the importance of
having separate weights for the narrow view and the broad
view network components and (iv) the effect of temporally
syncing the narrow view and the broad view. By default,
we conduct this analysis using the HMDB51 and UCF101
benchmarks in the linear setting.
Importance of the broad view. We study the effect of
the temporal extent of the narrow and broad views in the
RGB-only setting (using random convolutions RGB+RC
for the broad view) and the multimodal setting (using audio
spectrogram for the broad view). We report results in Table 1.
First, in the unimodal setting, we find that for a narrow view
extent τn of 1.3s, performance improves significantly across
the two downstream tasks as we increase the duration of
the broad view τb from 1.3s to 10s, (e.g. from 57.4 to 63.3



Table 3. Weight sharing. We explore the effect of sharing weights
across different components of the models. Models are trained on
the Kinetics-600 dataset using RGB visual input in the broad view.

Separate Separate Separate HMDB51 UCF101Backbone Projector Predictor

3 3 3 59.6 87.8
7 3 3 56.4 86.5
7 7 3 51.4 82.5
7 7 7 51.8 83.0

Table 4. Sync study. Effect of syncing the narrow and broad views.

Dataset Sync Mb HMDB51 UCF101 K600

K600 7 RGB+RC 63.3 89.5 66.9
K600 3 RGB+RC 65.0 86.8 60.0

on HMDB51). This empirically supports our intuition that
broader views can provide better supervision. Second, we
find that using temporally large views of 10s for both the
narrow view and the broad view degrades performance, as
the task becomes significantly easier and we are unlikely
to get rich embeddings. In the multimodal setting, we find
that increasing the context from 1.3s to 5s also brings an
improvement, although it is smaller than in the visual setting.
We do not see further improvements when extending the
broad view to 10s, and hence choose 5s for the temporal
extent of the audio broad view.
Visual transformation for the broad view. In Table 2, we
investigate the effect of using different visual inputs in the
broad view. First, we see that using Random Convolutions
(RC) [88] on the RGB frames significantly improves perfor-
mance, compared to using standard RGB frames. BraVe
enables the use of such an aggressive augmentation since it
has a dedicated backbone for that view. Moreover, only using
this augmentation on the broad view ensures that the back-
bone trained on the narrow view does not suffer from shift
in distribution of intensities [88]. Furthermore, using optical
flow for the broad view leads to further improvement when
compared to using RC augmentation. This demonstrates a
surprisingly high effectiveness of leveraging hand-designed
feature extraction process, probably because this allows im-
portant factors – here motion and segmentation information
– to be included in the desired representation.
Weight sharing. In Table 3, we study the effect of shar-
ing weights across the different components of our model.
First, we observe a significant decrease in performance when
sharing the backbone networks. In this case, to solve the
task we propose, the single backbone may need to split its
capacity to extract features useful for both prediction tasks,
from the narrow to the broad, and vice versa; which visibly
hurts performance on the downstream task. While we could
increase the capacity of the shared backbone, this would not

provide the flexibility of separate backbones for processing
different broad modalities and views. Next, we see an even
larger drop, when additionally sharing the projector. Finally,
when sharing all components, the important performance
gap overall compared with our approach confirms our in-
tuition that integrating information from local and global
temporal context by only doing data augmentation as in the
image case [18] is not a good strategy for videos, and further
highlights the benefit of our proposed approach.
Syncing views. In Table 4, we study the effect of having the
same temporal starting point for the narrow and the broad
view. As expected, when using a broad visual modality, sync-
ing significantly decreases performance in UCF101 (−2.7%)
and Kinetics-600 (−6.9%) but slightly benefits HMDB51
(+1.7%). We hypothesise that when both views are in sync,
the broad network can simply focus its prediction only on
the narrow view since the relative position of the views is
deterministic hence making the self-supervised task easier
as explained in the intuition paragraph of Section 3.1. As
such, the network specialises in predicting short clips which
would explain the slight improvement on the short clips of
HMDB51 and the important decrease in performance for
Kinetics and UCF101 that have longer clips.

4.4. Comparison with the state-of-the-art

We compare BraVe against the state-of-the-art for self-
supervised video representation learning in Table 5. Note
that when evaluating in visual tasks, we only use the RGB
modality to be comparable to previous work.
Visual only on Kinetics600. In the setting where we use
only the video modality combined with random convolutions
in the broad view, we find that our TSM-50 model outper-
forms the current state-of-the-art CVRL approach [68] on
UCF101 finetuning, and on HMDB51 linear and finetuning,
despite having less parameters in our network (23.5M ver-
sus 33.3M). When integrating the flow modality we further
increase the performance on UCF101 and HMDB51 to set a
new state-of-the-art when training only from Kinetics-600
from the visual modality alone. On the Kinetics-600 linear
evaluation, we obtain lower performance (66.9 versus 70.4)
that we hypothesize is due to the advantage of contrastive-
based approaches for such in-domain tasks. We also compare
to using the same backbone (R3D50) as CVRL but observe
slightly worse performance that we hypothesize to be due to
our setting being more adapted to TSM-50.
Multimodal on AudioSet. We also compare our approach
in the multimodal (visual and audio modalities) setting by
training BraVe on AudioSet. In that setting, we train for
620k steps instead of 300k, as AudioSet is significantly
larger than Kinetics-600. We also increase the number of
input frames of the narrow network from 16 to 32 frames
(at 12.5FPS) and the number of input frames of the broad
network from 64 (at 6.25FPS) to 128 (at 12.5FPS) during



Table 5. Comparison of learnt representations against the state-of-the-art. We report the performance in the linear and fine-tuning (FT)
settings, on three vision benchmarks: UCF101, HMDB51, Kinetics-600 (K600); as well as on two audio benchmarks: ESC-50 and AudioSet
(AS). K400 is Kinetics-400, YT8M is Youtube-8M [1], IG65M is Instagram-65M [26]. We specify dataset sizes in years. We denote the
modalities M used for training by: V for RGB, F for flow and A for audio. All models use only RGB for the visual downstream tasks.

UCF101 HMDB51 K600 ESC-50 AS

Method Backbone (#params) Dataset Years M Linear FT Linear FT Linear Linear MLP

MEM-DPC [31] R-2D3D (32.6M) K400 0.07 VF 78.1 41.2 / /
VDIM [19] custom (17.3M) K600 0.1 V 79.7 49.2 / /
CoCLR [32] S3D (9.1M) K400 0.07 VF 74.5 87.9 46.1 54.6 / /
CVRL [68] R3D50 (33.3M) K600 0.1 V 90.6 93.4 59.7 68.0 70.4 / /

BraVe:V↔V (ours) TSM-50 (23.5M) K600 0.1 V 89.5 93.5 63.3 70.9 66.9 / /
BraVe:V↔F (ours) TSM-50 (23.5M) K600 0.1 VF 91.6 93.8 65.9 69.7 66.3 / /
BraVe:V↔V (ours) R3D50 (33.3M) K600 0.1 V 88.8 92.6 61.8 69.2 66.6 / /
BraVe:V↔F (ours) R3D50 (33.3M) K600 0.1 VF 91.1 93.4 65.6 70.6 65.6 / /

AVTS [45] MC3 (11.7M) AS 1 VA 89.0 61.6 80.6
ELo [67] R(2+1)D-50 (46.9M) YT8M 13 VFA 93.8 64.5 67.4
AVID [58] R(2+1)D-50 (46.9M) AS 1 VA 91.5 64.7 89.2
GDT [64] R(2+1)D-18 (33.3M) AS 1 VA 92.5 66.1 88.5
MMV [3] R(2+1)D-18 (33.3M) AS 1 VA 83.9 91.5 60.0 70.1 55.5 85.6 29.7
XDC [4] R(2+1)D-18 (33.3M) AS 1 VA 93.0 63.7 84.8
XDC [4] R(2+1)D-18 (33.3M) IG65M 21 VA 95.5 68.9 85.4

BraVe:V↔A (ours) R(2+1)D-18 (33.3M) AS 1 VA 89.9 94.1 64.8 71.1 63.6 90.4 34.7
BraVe:V↔A (ours) TSM-50 (23.5M) AS 1 VA 93.0 94.8 69.4 72.6 70.1 90.5 34.4
BraVe:V↔FA (ours) TSM-50 (23.5M) AS 1 VFA 93.1 95.4 70.0 74.6 69.3 90.1 34.5
BraVe:V↔FA (ours) R(2+1)D-50 (46.9M) AS 1 VFA 92.5 95.1 68.3 73.6 69.4 91.6 34.5
BraVe:V↔FA (ours) TSM-NF-F0 (71.5M) AS 1 VFA 94.1 95.8 71.4 73.1 72.6 90.2 34.5
BraVe:V↔FA (ours) TSM-50x2 (93.9M) AS 1 VFA 93.1 95.7 70.5 77.8 71.4 91.1 34.8

Supervised [11, 44, 67, 87] 96.8 71.5 75.9 82.4 94.7 43.9

pretraining. We use τb = 5s for the audio broad view. We
make four important observations. (i) Under this setting,
BraVe outperforms all state-of-the-art methods when using
the same pretraining data and same backbones. In particular,
when using R(2+1)D-18 we outperform the current state-of-
the-art XDC [4] on UCF101 (93.0 vs 94.1) and MMV [3] on
HMDB51 (71.1 vs 70.1). (ii) Interestingly, we observe that
BraVe benefits from using two broad views coming from
two different modalities, audio and flow (going from 94.8
to 95.4 on UCF101 and 72.6 to 74.6 on HMDB51 finetun-
ing regime). (iii) BraVe benefits from using larger visual
backbones. Our TSM-NF-F0 (71.5M parameters) sets a new
state-of-the-art on UCF101 finetuning (95.8) even beating
the best XDC model that is using 21 times more data. The
performance of this model is particularly striking in the linear
setting with 94.1 for UCF101 and 71.4 on HMDB51 which
is on par with the best previous finetuned results. This is an
important practical achievement as it enables the use of our
models off-the-shelf, without the need for fine-tuning. Our

TSM-50x2 model (93.9M parameters) is the best overall, set-
ting a new state-of-the-art on HMDB51 finetuning with 77.8
even outperforming the best supervised results published to
date (75.9 from [87]). (iv) When evaluating the performance
of the broad audio network we also significantly outperform
previous state-of-the-art on two challenging benchmarks,
ESC-50 and Audioset. Notably, we significantly improve
the performance in AudioSet, the hardest of the audio tasks.

5. Conclusion
In this paper, we introduced BraVe, a self-supervised

learning framework for video. Our method efficiently learns
its representation by supervising a temporally narrow view
with a general broad view, which can be either computed
from RGB, flow or audio. Our model achieves state-of-the-
art performance when trained on datasets such as Kinetics
or AudioSet. Notably, when trained with larger backbones,
BraVe outperforms the previous best supervised transfer
result on the challenging HMDB51 benchmark.
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Appendix

In this appendix, we provide additional details useful
for reproduction of the results. In Section A we present
the details of our training pipeline, including architecture
and hyperparameter details (A.1), data augmentation and
feature extraction (A.2). In Section B we detail the linear
and fine-tuning evaluation procedures. Section C describes
in more detail the TSM-NF-F0 architecture used in the paper.
Section D evaluates the importance of syncing video and
audio.

A. Pre-training details

A.1. Architecture and model hyperparameters

Each predictor is a three-layer MLP with hidden dimen-
sions of 4096; each projector is a two-layer MLP with hidden
dimension of 512. To train our models, we use the AdamW
optimizer [50] with cosine decay on the learning rate, with
5000 steps of linear warm up (starting from 0.0 to the ini-
tial learning rate value). All the models are trained with
initial learning rate 2 · 10−3 and batch size 512. We use
weight decay with value 0.01. Following [29], we multiply
the learning rate of the predictor MLPs by 10. We train
all models for 300k steps except for the models with audio
reported in Table 5, which are trained for 620k steps. We use
16 Cloud TPUs to train all models except for the TSM-50x2
and the R(2+1)D-50 which we train with 32 Cloud TPUs.

A.2. Data augmentation and feature extraction

RGB: Unless stated othwerwise, we subsample training
videos to 12.5 FPS. For the broad views of the visual only
models and the narrow view of the ablation using a 10s nar-
row view (first row, Table 1), we subsample training videos
to 6.25 FPS. In terms of spatial augmentations, we use ran-
dom cropping, random flipping, color jittering, scale jittering
and gaussian blurring; sampling their parameters indepen-
dently for each view. Given the original frame, cropping
is performed by sampling a bounding box with aspect ratio
ranging between 1

2 and 2.0 and area between 30% and 100%
of the full image. This bounding box is used to crop all
frames of the video consistently in time. We horizontally
flip all the frames with probability 0.5. With probability
of 0.8 we apply color randomization in brightness, satura-
tion, contrast and hue. This is done by adjusting brightness
and hue by an additive offset, each uniformly sampled in
respectively [−32/255, 32/255] and [−0.2, 0.2] on a per-
sample basis; and similarly, adjusting contrast and saturation
by a multiplicative factor, each sampled in [0.6, 1.4]. Af-
ter this preprocessing, we clip the pixel values in the range
[0, 1.0]. Furthermore, with probability 0.2, we convert the
RGB sequence to a grayscale sequence. Finally, we apply
gaussian blur with standard deviation σ uniformly sampled

in [0.1, 2.0] and with kernel size equal to 1
10 th of the crop

side.
Flow: Temporal sampling of the flow is performed similarly
to the RGB case for the broad view. In terms of spatial
augmentations, we use random cropping, sampling the crop
independently from the narrow view. We also horizontally
flip all the frames with probability 0.5. We resize the shortest
size of the original frame to 128 and uniformly sample a
112 × 112 crop. We find that scale jittering in flow does
not improve performance; as a result, we do not employ this
augmentation.
Random Convolutions: Following [88], we use He initial-
ization [35] for the weights, fixed zero bias and dimension-
preserving padding. We sample the size of the kernel uni-
formly across odd values ranging from 1 to 11. All sampling
of kernel size and weights is performed on a per-sample
basis. We refer the reader to the original paper for further
details and illustration of the augmentation procedure.
Spectrograms: The audio is sampled at 48k Hz. We take
80 bins of log-mel spectrograms extracted with Hanning
windows of size 320 (6.67 ms) at a stride of 160 (3.33 ms).

B. Downstream task evaluation
Linear evaluation on HMDB51, UCF101 and ESC-50.
For the linear evaluation on HMDB51, UCF101, and ESC-
50 we use the SVM implementation of SciKit-Learn [65].
For all three datasets, we use the same augmentations
as during the pre-training stage except for gaussian blur-
ring, and process 10 epochs worth of augmented sam-
ples. For each sample, we extract features using the pre-
trained backbone. When evaluating the TSM-50, R3D and
R(2+1)D visual backbones and the RN-50 audio backbone,
we find it helpful to rescale the features using a batch
norm layer with fixed scaling and offset parameters (re-
spectively of 1 and 0), collecting training statistics over
the extracted features. We sweep the value for the regular-
ization parameter of the SVM in the following set of val-
ues: {10−5, 3 · 10−5, 10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2}.
When evaluating TSM-NF-F0 and TSM-50x2, we find
it more effective to remove this normalization procedure.
In these cases, we sweep the value for the regulariza-
tion parameter of the SVM in the following set of values:
{1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08,
0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01}. For all models and
downstream tasks, we use the first split to pick the optimal
value and report the average of all the splits in that regime.
At test time, we do not apply any augmentation. We sub-
sample test videos to 12.5 FPS. For HMDB51 and UCF101,
given a test video, we resize the minimum side to 256 and
then average the predictions over 30 clips of size 224× 224
(10 temporal clips regularly spaced within the video each
providing 3 random spatial crops). For HMDB51 and UCF,
we use clips of 32 frames. For ESC-50 we use a single



window of 5s at test time. Finally, one special case is the
ablation with a 10s narrow view (first row, Table 1), which
is trained with 64 frames at 6.25 FPS and 112× 112 crops.
For fairness, we evaluate it with clips of size 112 × 112
(minimum side 128) of 64 frames subsampled at 6.25 FPS
(same frame rate than in training).

Finetuning evaluation on HMDB51 and UCF101. For
fine-tuning, we use the SGD optimizer with momentum set
to 0.9. We use a batch size of 256 for all methods except for
R(2+1)D-50 and TSM-50x2 where we use a smaller batch
size of 128 due to their high memory requirements. The
batch is distributed over 32 workers. Although we use cross
replica batch norm during pre-training (i.e. the statistics are
accumulated over the 32 workers), during finetuning, we
find it better to only compute statistics of batch norm within
each worker. We hypothesize that this has a regularization
effect on these small datasets. We use a linear warm up
for the learning rate for 50 epochs (starting from 0.0 to the
initial learning rate value). Learning rate is then decreased
using a cosine decay for 550 epochs. Weight decay is em-
ployed on the weights of the network (except bias and batch
norm parameters). We also apply dropout before the last
linear layer mapping the representation to the logits of the
classes. We cross validate the value of the initial learning
rate (taking values in {0.03, 0.1, 0.3}), the weight decay
(taking values in {0., 10−7}) and dropout rate (taking values
in {0.1, 0.5}). Similarly to the linear setting, we select hy-
perparameters on split 1 of each downstream task and report
averaged performance values across splits. We noticed that
TSM-NF-Net needed slightly different parameters (proba-
bly due to the fact that this model does not use any form
of normalization) so we adapted the range of the following
hyperparameters: higher value of dropout in {0.5, 0.8} and
smaller learning rate on HMDB51 in {0.01, 0.03}. The val-
ues of hyperparameters found for all networks are given in
Table 6. For training, we apply the following augmentation
procedure in this order: temporal sampling, scale jittering,
resizing the minimum side to 256, extracting a random crop
of 224 × 224 and random horizontal flipping. For tempo-
ral sampling, we randomly sample in time a subclip of 32
frames from the original video clip. For scale jittering, we
independently scale width and height by a value uniformly
sampled from [0.8, 1.2]. At test time, we resize the minimum
side to 256 and then average the predictions over 30 clips of
size 224 × 224 (10 temporal clips regularly spaced within
the video each providing 3 random spatial crops). We use
the same FPS as during pre-training, i.e. 12.5 FPS.

Linear evaluation on Kinetics600. Since Kinetics600 is
too large to fit in memory, we cannot use Scikit-Learn di-
rectly. Instead we train the linear layer for 80 epochs using
the SGD optimizer with momentum set to 0.99 with a batch

size of 256. We found it beneficial to apply batch norm
and L2 normalization before the linear layer. We use a
linear warm up for the learning rate for 5 epochs (starting
from 0.0 to the initial learning rate value). Weight decay
is employed on the linear layer’s weights (excluding bias
parameters). We also apply dropout just before the linear
layer (after batch norm and L2 normalization). We cross
validate the value of the initial learning rate (taking values in
np.logspace(-0.5, 0, 4)), the weight decay (tak-
ing values in {0., 10−8}) and dropout rate (taking values in
{0.0, 0.05}) on a small held out set from the training set (4K
videos). For training, we apply the following augmentations
in this order: temporal sampling, resizing the minimum side
to 256, extracting a random crop of 224× 224 and random
horizontal flipping. For temporal sampling, we randomly
sample in time a subclip of 32 frames from the original video
clip. At test time, we resize the minimum side to 256 and
then average the prediction over 30 clips of size 256× 256
(10 temporal clips linearly spaced within the video each with
3 spatial crops). We do not apply scale jittering or horizontal
flipping during test time. We use the same FPS as during
pre-training, i.e. 12.5 FPS. We report the top 1 accuracy on
the validation set of Kinetics600.

Shallow classifier evaluation on AudioSet. Following
the protocols in [3, 41, 42], we evaluate our audio repre-
sentations by training a shallow MLP on AudioSet. The
MLP has 1 hidden layer with 512 units, and is trained with
the Adam optimizer using a batch size of 512 for 20 epochs.
We use batch normalization layers on the frozen audio fea-
tures and after the hidden layer. A ReLU activation function
is applied after the second batch normalization. We use a
linear warm up of 5000 steps starting from 0.0 to the initial
learning rate of 2 × 10−4, which then decays following a
cosine function. At test time, we use 10 overlapping crops
of length 5s regularly spaced throughout the audio clip.

C. Architecture details about TSM-NF-F0

Normalizer Free Networks (NF-Nets in short) are a re-
cently introduced family of networks [12] that do not use
any form of normalization and are the current state-of-the-art
on the ImageNet benchmark [13]. We adapt this architec-
ture to video by applying the Temporal Shift Module [49]
algorithm. In details, we insert the temporal shift module in
all Normalizer Free blocks at the beginning of the residual
branch, following same approach as for ResNets [49]. In our
work, we use the smallest network out of the NF-Net family
(NF-Net-F0). As shown in Table 5 of the main paper, we
obtain remarkable performance in the linear setting when
using these networks even though their latent dimension is
not much larger than our TSM-RN50 (3072 vs 2048). This
may be due to the fact that these networks do not employ



Table 6. Hyperparameters for finetuning on HMDB51 and UCF101.

Method Backbone Dataset
HMDB51 UCF101

Dropout LR base Weight decay Dropout LR base Weight decay

BraVe:V↔V TSM-50 K600 0.5 0.3 10−7 0.1 0.3 10−7

BraVe:V↔F TSM-50 K600 0.1 0.1 10−7 0.5 0.1 0.0
BraVe:V↔V R3D50 K600 0.1 0.1 10−7 0.5 0.1 0.0
BraVe:V↔F R3D50 K600 0.5 0.3 10−7 0.5 0.1 10−7

BraVe:V↔A R(2+1)D-18 AS 0.5 0.1 10−7 0.1 0.1 0.0
BraVe:V↔A TSM-50 AS 0.5 0.3 0.0 0.5 0.3 0.0
BraVe:V↔FA TSM-50 AS 0.5 0.3 10−7 0.5 0.1 10−7

BraVe:V↔FA R(2+1)D-50 AS 0.1 0.1 10−7 0.1 0.1 10−7

BraVe:V↔FA TSM-NF-F0 AS 0.8 0.03 0.0 0.8 0.1 10−7

BraVe:V↔FA TSM-50x2 AS 0.1 0.1 0.0 0.1 0.1 10−7

Table 7. Sync study. Effect of syncing the narrow and broad views.

Dataset Sync Mb HMDB51 UCF101 K600

AS 7 Audio 67.2 92.1 69.0
AS 3 Audio 68.1 92.4 69.2

any form of normalizer which might make them more suited
for linear evaluation.

D. Syncing audio and video
Table 7 shows the performance of a model trained with

broad audio view when the narrow view and the broad view
start at the same temporal instant (sync) or are indepen-
dently randomly sampled in time (async). As discussed in
Section 3.1 in the paper, this experiment supports already
established evidence [45] that syncing audio and video is
beneficial for the resulting model in self-supervised learning.


