Exploiting Structure of Uncertainty for Efficient

Matroid Semi-Bandits

PIERRE PERRAULT!'?, VIANNEY PERCHET?®, MICHAL VALKO!

'SEQUEL TEAM, INRIA LIiLLE °CMLA, ENS PARIS-SACLAY °CRITEO RESEARCH

CHALLENGE AND CONTRIBUTION APPROXIMATION GUARANTEES

Optimism: Play argmax L b6 + F

Empiric  Bonus

x Issue: Inefficient for accurate F
when the action space A is combinatorial.

J Contribution: Efhicient and accu-

rate enough approximation algorithm for
A given by a matroid.

SETTING

Semi-bandit feedback: X;; revealed Vi € A;.
Rewards: X € R™, means: E[X] £ p*, action space: A.
Purpose: Design policy minimizing the expected regret
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Example: Building a spanning tree for network routing [1].

SEMI-BANDITS CONFIDENCE REGIONS

Many algorithms [2, 3, 4, 5] minimize Ry applying OFU
principle with a confidence region C; around ; , | (so that
p* € C w.h.p.).
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Empirical average: 11, , 1 = 5~ > <, 1 H{i € Au}Xiu.

Optimism in Face of Uncertainty (OFU) principle: at
each round, solve the bilinear program

(py, Ay) € argmax ey . (1)
HECt,AEA

C; is generally of the form

Ct =y + {5 c R", H(gi,t((si))in < 1} : (2)
e g, is convex, such that g; :(0) = g¢.,(0) =0
e pc{l,o0}.

Examples of C;:

Cartesian product of intervals
B Ellipsoid
B Sub-Gaussian based
M %l ball

SUBMODULAR MAXIMIZATION

We want to maximize

A maxejyu=eym, 1+ max ey yu=L(A)+F(A).

peCy peCe—p,_ 4
Theorem. IfC; is of the form (2), then F is

e [inear if p = 00,
o submodular if p = 1.

Polymatroid defined by
A~ maxuec,—m, ; €Al

=\

4

Example 1. g; () = 6%, 4. F(A) = \/ef4 (ait) .

Remark: I + F' is either linear or submodular. In the first
case, maximization is efficient, in the second it is NP-Hard.

How to approximately and efficiently maximize L + F?

Remark: Standard 1 — 1/e-approximition [6] is not satifying
(gives linear regret), since for a very tight confidence region
C:, one expects an approximation factor close to 1.

A =7 is the family of independent sets

Algorithm LOCALSEARCH for maximizing L + F on 7.
Input: L, F,Z, m, e > 0.
Initialization: Si.i; € argmax 4.7 L(A4).
if Sinit — @ then
if 3{x} € Z such that (L + F)({z}) > 0 then

So € arg IMAX e, (L+F)({z})>0 L({z}).
else

Output ()

end if
else

S0 < Sinit
end if
S <+ So.
Repeatedly perform one of the following local improve-
ments while possible:

e Delete an element:
if dx € S such that
(L+ F)(S\{z}) > (L+ F)(S) + 5 F(5),
then S < S\ {z}.
end if

e Add an element:
if Jy € [n|]\S, SU{y} € Z, such that
(L+ F)(SU{y}) > (L+F)(S) + £ F(S),
then S < SU{y}.
end if

e Swap a pair of elements:
if d(x,y) € Sx[n]\S, S\ {zx}U{y} € Z, such that
(L +F)(S\{z} U{y}) > (L+F)(S) + 5 F(S5)
then S < S\ {z} U{y} end if

end while
Output: S.

Theorem. This algorithm outputs S € L such that
L(S)+2(14+¢)F(S)>L(O)+ F(O), VYOEe€eLTL.

Its complezity is O (m*nlog (mt)) (for e = 0.1 fized).

1,2}

{1,2,3}
b

(3}

A = B is the family of bases

Algorithm GREEDY for maximizing L + F' on B.

Input: L, F', 71, m.

Initialization: S < 0.

for i € [k] do
T € argmax,gg sufzyez (L +F) (SU{z}).
S+ Su{x}.

end for

Output: S.

Theorem. Algorithm outputs S € B such that
L(S)+2F(S)> L(O)+ F(O), YO e B.

Its complexity 1s O (mn).
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BUDGETED MATROID SEMI-BANDITS

Goal: Minimize

S
Lo+ Fy)
Approximation Lagrangian:
LR()\, S) 2 Ll(S) — /{Fl(S) — A (LQ(S) -+ KJFQ(S)) ]
Remark .

e For A > 0,

min £(\, A) and \* — X\ have the same sign.
AcA

e For a k—approximation algorithms outputing S (with
objective function —L),

min L, (A, A) < L(A,S) < min L(A, A).

AcA - AeA
AN Ly,—F u
Thus,a lower bound A1 on A* = min yany ool B and an upper

_I_
bound Ay on minge 4 (Egig;:g&g) can be computed.

Algorithm Binary search for minimizing the ratio
(L1 — F1)" /(L2 + F).
Input: Ly, Ly, F}, F5, ALGO,, n > 0.

5 4 "?Qi?g)}féggg)}) with B = ALGO, (Lo + kF3).

A+ Ay € A\ {0} arbitrary.
if £.(0,A4) > 0 then

L1(A)—F1(A
A1 %O, Ao 4 LQEA;JerEAg'
while )\2 — )\1 Z 0 do
)\ < A1t+A2

2

S < ALGOL(—L(A,+)).
if £.(\,5) >0 then
)\1 — A
else
)\2 — A
A+ S.
end if
end while
end if
Output: A.

Theorem. Algorithm outputs A such that

Li(A) - (k+mF(AY .
( Lo(A) + nF5(A) )9’

the complexity is of order log(mt/n) times the complexity
of ALGO,.

EXPERIMENTS
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Figure 1: Cumulative regret for the minimum spanning
tree setting in up to 10° rounds, averaged over 100 inde-
pendent simulations. Left: for A = B. Right: for A =17.
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