Exploiting Structure of Uncertainty for Efficient Matroid Semi-Bandits

PIERRE PERRAULT^{1,2}, VIANNEY PERCHET^{2,3}, MICHAL VALKO¹

¹SEQUEL TEAM, INRIA LILLE ²CMLA, ENS PARIS-SACLAY ³CRITEO RESEARCH

CHALLENGE AND CONTRIBUTION

Optimism: Play $\underset{Empiric}{\operatorname{Arg\,max}} \underbrace{L} + \underbrace{F}_{Bonus}$

Issue: Inefficient for accurate F when the action space $\mathcal A$ is combinatorial.

Contribution: Efficient and accurate enough approximation algorithm for \mathcal{A} given by a *matroid*.

SETTING

Semi-bandit feedback: $X_{i,t}$ revealed $\forall i \in A_t$. Rewards: $X \in \mathbb{R}^n$, means: $\mathbb{E}[X] \triangleq \mu^*$, action space: \mathcal{A} . Purpose: Design policy minimizing the expected regret

$$R_T \triangleq \mathbb{E}\left[\sum_{t \leq T} \left(\mathbf{e}_{A^*} - \mathbf{e}_{A_t}\right)^{\mathsf{T}} \boldsymbol{\mu}^*\right].$$

Example: Building a spanning tree for network routing [1].

SEMI-BANDITS CONFIDENCE REGIONS

Many algorithms [2, 3, 4, 5] minimize R_T applying OFU principle with a confidence region \mathcal{C}_t around $\overline{\mu}_{i,t-1}$ (so that $\mu^\star \in \mathcal{C}_t$ w.h.p.).

Empirical average: $\overline{\mu}_{i,t-1} \triangleq \frac{1}{N_{i,t}} \sum_{u \leq t-1} \mathbb{I}\{i \in A_u\} X_{i,u}$.

Optimism in Face of Uncertainty (OFU) principle: at each round, solve the bilinear program

$$(\boldsymbol{\mu}_t, A_t) \in \underset{\boldsymbol{\mu} \in \mathcal{C}_t, A \in \mathcal{A}}{\operatorname{arg \, max}} \, \mathbf{e}_A^\mathsf{T} \boldsymbol{\mu} .$$
 (1)

 \mathcal{C}_t is generally of the form

$$C_t = \overline{\boldsymbol{\mu}}_{t-1} + \left\{ \boldsymbol{\delta} \in \mathbb{R}^n, \left\| (g_{i,t}(\delta_i))_i \right\|_p \le 1 \right\}, \tag{2}$$

- $g_{i,t}$ is convex, such that $g_{i,t}(0) = g'_{i,t}(0) = 0$.
- $p \in \{1, \infty\}$.

Examples of C_t :

- Cartesian product of intervals
- Ellipsoid
- Sub-Gaussian based
- $\blacksquare kl \text{ ball}$

SUBMODULAR MAXIMIZATION

We want to maximize

$$A \mapsto \max_{\boldsymbol{\mu} \in \mathcal{C}_t} \mathbf{e}_A^\mathsf{T} \boldsymbol{\mu} = \mathbf{e}_A^\mathsf{T} \overline{\boldsymbol{\mu}}_{t-1} + \max_{\boldsymbol{\mu} \in \mathcal{C}_t - \overline{\boldsymbol{\mu}}_{t-1}} \mathbf{e}_A^\mathsf{T} \boldsymbol{\mu} = L(A) + F(A).$$

Theorem. If C_t is of the form (2), then F is

- $linear if p = \infty$,
- submodular if p = 1.

Example 1.
$$g_{i,t}(\delta) = \delta^2 \alpha_{i,t}$$
. $F(A) = \sqrt{\mathbf{e}_A^{\mathsf{T}} \left(\frac{1}{\alpha_{i,t}}\right)_i}$.

Remark: L + F is either linear or submodular. In the first case, maximization is efficient, in the second it is NP-Hard.

APPROXIMATION GUARANTEES

How to approximately and efficiently maximize L+F?

Remark: Standard 1 - 1/e-approximition [6] is not satisfying (gives linear regret), since for a very tight confidence region C_t , one expects an approximation factor close to 1.

$\mathcal{A} = \mathcal{I}$ is the family of *independent sets*

Algorithm LOCALSEARCH for maximizing L + F on \mathcal{I} .

Input: $L, F, \mathcal{I}, m, \varepsilon > 0$.
Initialization: $S_{init} \in \arg\max$

Initialization: $S_{\text{init}} \in \arg \max_{A \in \mathcal{I}} L(A)$.

if $S_{\text{init}} = \emptyset$ then

if $\exists \{x\} \in \mathcal{I} \text{ such that } (L+F)(\{x\}) > 0 \text{ then } S_0 \in \arg\max_{\{x\} \in \mathcal{I}, (L+F)(\{x\}) > 0} L(\{x\}).$

 $\begin{array}{c} \textbf{else} \\ \textbf{Output} \ \emptyset \end{array}$

end if

else

 $S_0 \leftarrow S_{\text{init}}$

end if $S \leftarrow S_0$.

Repeatedly perform one of the following local improvements **while** possible:

• Delete an element:

if $\exists x \in S$ such that $(L+F)(S \setminus \{x\}) > (L+F)(S) + \frac{\varepsilon}{m}F(S)$, then $S \leftarrow S \setminus \{x\}$. end if

• Add an element:

if $\exists y \in [n] \backslash S$, $S \cup \{y\} \in \mathcal{I}$, such that $(L+F)(S \cup \{y\}) > (L+F)(S) + \frac{\varepsilon}{m}F(S)$, then $S \leftarrow S \cup \{y\}$.

end if

• Swap a pair of elements:

if $\exists (x,y) \in S \times [n] \setminus S$, $S \setminus \{x\} \cup \{y\} \in \mathcal{I}$, such that $(L+F)(S \setminus \{x\} \cup \{y\}) > (L+F)(S) + \frac{\varepsilon}{m} F(S)$ then $S \leftarrow S \setminus \{x\} \cup \{y\}$ end if

end while

Output: S.

Theorem. This algorithm outputs $S \in \mathcal{I}$ such that

$$L(S) + 2(1+\varepsilon)F(S) \ge L(O) + F(O), \quad \forall O \in \mathcal{I}.$$

Its complexity is $\mathcal{O}\left(m^2n\log\left(mt\right)\right)$ (for $\varepsilon=0.1$ fixed).

A = B is the family of *bases*

Algorithm Greedy for maximizing L + F on \mathcal{B} .

Input: L, F, \mathcal{I}, m .

Initialization: $S \leftarrow \emptyset$.

for $i \in [k]$ do $x \in \arg\max_{x \notin S, S \cup \{x\} \in \mathcal{I}} (L + F) (S \cup \{x\}).$

 $S \leftarrow S \cup \{x\}$. end for

Output: S.

Theorem. Algorithm outputs $S \in \mathcal{B}$ such that

$$L(S) + 2F(S) \ge L(O) + F(O), \quad \forall O \in \mathcal{B}.$$

Its complexity is $\mathcal{O}(mn)$.

BUDGETED MATROID SEMI-BANDITS

Goal: Minimize

$$\left(\frac{L_1-F_1}{L_2+F_2}\right)^+$$
.

Approximation Lagrangian:

$$\mathcal{L}_{\kappa}(\lambda, S) \triangleq L_1(S) - \kappa F_1(S) - \lambda \left(L_2(S) + \kappa F_2(S) \right),$$

Remark.

• For $\lambda \geq 0$,

$$\min_{A\in\mathcal{A}}\mathcal{L}(\lambda,A)$$
 and $\lambda^{\star}-\lambda$ have the same sign.

• For a κ -approximation algorithms outputing S (with objective function $-\mathcal{L}$),

$$\min_{A \in \mathcal{A}} \mathcal{L}_{\kappa}(\lambda, A) \leq \mathcal{L}_{\kappa}(\lambda, S) \leq \min_{A \in \mathcal{A}} \mathcal{L}(\lambda, A).$$

Thus,a lower bound λ_1 on $\lambda^* \triangleq \min\left(\frac{L_1 - F_1}{L_2 + F_2}\right)^+$, and an upper bound λ_2 on $\min_{A \in \mathcal{A}} \left(\frac{L_1(A) - \kappa F_1(A)}{L_2(A) + \kappa F_2(A)}\right)^+$ can be computed.

Algorithm Binary search for minimizing the ratio $(L_1 - F_1)^+ / (L_2 + F_2)$.

Input: L_1, L_2, F_1, F_2 , $ALGO_{\kappa}, \eta > 0$. $\delta \leftarrow \frac{\eta \min_{\{s\} \in \mathcal{A}} F_1(\{s\})}{L_2(B) + \kappa^2 F_2(B)}$ with $B = ALGO_{\kappa}(L_2 + \kappa F_2)$. $A \leftarrow A_0 \in \mathcal{A} \setminus \{\emptyset\}$ arbitrary.

if $\mathcal{L}_{\kappa}(0,A) > 0$ then $\lambda_1 \leftarrow 0, \quad \lambda_2 \leftarrow \frac{L_1(A) - F_1(A)}{L_2(A) + F_2(A)}$.

while $\lambda_2 - \lambda_1 \geq \delta \operatorname{do}$ $\lambda_1 + \lambda_2$

 $\lambda \leftarrow \frac{\lambda_1 + \lambda_2}{2} \cdot S \leftarrow \text{ALGO}_{\kappa}(-\mathcal{L}(\lambda, \cdot)).$ if $\mathcal{L}_{\kappa}(\lambda, S) \geq 0$ then

 $\lambda_1 \leftarrow \lambda.$ else

 $\lambda_2 \leftarrow \lambda$.

 $A \leftarrow S$. end if

end while

end if

Output: A.

Theorem. Algorithm outputs A such that

$$\left(\frac{L_1(A) - (\kappa + \eta)F_1(A)}{L_2(A) + \kappa F_2(A)}\right)^+ \le \lambda^*,$$

the complexity is of order $\log(mt/\eta)$ times the complexity of $ALGO_{\kappa}$.

EXPERIMENTS

Figure 1: Cumulative regret for the minimum spanning tree setting in up to 10^5 rounds, averaged over 100 independent simulations. Left: for $\mathcal{A} = \mathcal{B}$. Right: for $\mathcal{A} = \mathcal{I}$.

REFERENCES

- [1] Oliveira, C. A. and Pardalos, P. M. A survey of combinatorial optimization problems in multicast routing, 2005.
- [2] Chen, W., Wang, Y., Yuan, Y., and Wang, Q. Combinatorial Multi-Armed Bandit and Its Extension to Probabilistically Triggered Arms. jul 2014.
- [3] Kveton, B., Wen, Z., Ashkan, A., Eydgahi, H., and Eriksson, B. Matroid bandits: Fast combinatorial optimization with learning. In *Uncertainty in Artificial Intelligence*, 2014.
- [4] Combes, R., Shahi, M. S. T. M., Proutiere, A., and Others. Combinatorial bandits revisited. In *Advances in Neural Information Processing Systems*, pp. 2116–2124, 2015.
- 5] Degenne, R. and Perchet, V. Combinatorial semi-bandit with known covariance. dec 2016.
- [6] Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An analysis of approximations for maximizing submodular set functions-I. *Mathematical Programming*, 14(1):265–294, 1978.