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Reducing the input size

» CNNs for images are typically fed with large images that
have some redundant structures. Can we exploit this for reducing
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»p We propose to introduce a representation which:
- Reduces the spatial resolution and dimensionality
- Preserves the input and is predefined, for natural images

Gabor wavelets and modulus

» We consider the Gabor wavelets, that have a good trade-oft
between space and frequency localization.
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p We observe that a translation 4 of x by a leads to a phase
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» The enveloppe is more invariant to translations: ideal for A .

multiplication:

First order Scattering Transform
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p The first order scattering is the succession of a wavelet transform,

a point modulus and a spatial averaging.

Sx={|lxxjgl *ds,x*xPste,

p It is similar to a SIFT with appropriate wavelets.
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p It compresses the input image:

#Sxr (1 + #6J)

H#x 2/

J 1 2 3 4
Compression ratio 2,2 1,1 0,39 0,13

Information preservation

» We propose a simple algorithm for reconstructing order via MSE
minimization:

r = arginf ||ST — Sy||

p We observe that the first order Scattering does not lead to
a significant loss when reconstructing:

Orlgmal

» We empirically observe that the loss of image details is due to
the windowed averaging.

Classification performances
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» We replace the initial block of a ResNet by the order-1 Scattering:

Hparams Top 5 Top 1

Order 1,2 + ScatResNet-10 12,8M 88,6 68,7
Order 1 + ScatResnet-10 11,4M 87,7 67,7
Order 1 + WideScatResNet-50 107,2M 92.8 76,2
Order 1 + ScatResNet-50 27,.8M 92.0 74.5
ResNet-50 (pytorch) 25,6 M 92,9 76,1
ResNet-101 (pytorch) 45,4M 93,6 77,4
WideResNet-50 68,.9M 94.0 77,9

Detection performances

Resnet
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» We ablated the initial layers of a pre-trained ScatResNet.

p Our detection experiments demonstrate the spatial localisation of
image details is preserved.
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mAP
Faster-RCNN Order 1 + ScatResNet-50 73.3
Faster—RCNN ResNet-50 (ours) 70,5
Faster—RCNN ResNet-101 (ours) 72.5
Faster-RCNN VGG-16 70,2
CcOCO AP
Faster-RCNN Order 1 + ScatResNet-50 32.2
Faster—RCNN ResNet-50 (ours) 31,0
Faster—RCNN ResNet-101 (ours) 34.5
Faster-RCNN VGG-16 29.2
Detectron 41.8

Speed performances

p Implemented via pytorch, we observe several savings:

o
b , Speed Max Im Speed Max Im
Architecture , . .
(64 images) Single gpu (4 images)  (Coco)
Order 1 + ScatResNet-50 0,072 175 0,073 9
ResNet-50 0,095 120 0,104 7
ResNet-101 0,158 70 0,182 2
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Conclusion

p Compress inputs and obtain a limited loss for supervised tasks

p Allows several memory and computation savings without learning.

p We applied no learning as the signals are natural images: can
we learn better filters than wavelets for reducing a signal?
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