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Abstract
Off-policy multi-step reinforcement learning
algorithms consist of conservative and non-
conservative algorithms: the former actively cut
traces, whereas the latter do not. Recently, Munos
et al. (2016) proved the convergence of conser-
vative algorithms to an optimal Q-function. In
contrast, non-conservative algorithms are thought
to be unsafe and have a limited or no theoreti-
cal guarantee. Nonetheless, recent studies have
shown that non-conservative algorithms empiri-
cally outperform conservative ones. Motivated
by the empirical results and the lack of theory,
we carry out theoretical analyses of Peng’s Q(λ),
a representative example of non-conservative al-
gorithms. We prove that it also converges to an
optimal policy provided that the behavior policy
slowly tracks a greedy policy in a way similar
to conservative policy iteration. Such a result
has been conjectured to be true but has not been
proven. We also experiment with Peng’s Q(λ)
in complex continuous control tasks, confirming
that Peng’s Q(λ) often outperforms conservative
algorithms despite its simplicity. These results
indicate that Peng’s Q(λ), which was thought to
be unsafe, is a theoretically-sound and practically
effective algorithm.

1. Introduction
Q-learning is a canonical algorithm in reinforcement learn-
ing (RL) (Watkins, 1989). It is a single-step algorithm, in
that it only uses individual transitions to update value esti-
mates. Many multi-step generalisations of Q-learning have
been proposed, which allow temporally-extended trajecto-
ries to be used in the updating of values (Bertsekas & Ioffe,
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1996; Watkins, 1989; Peng & Williams, 1994; 1996; Precup
et al., 2000; Harutyunyan et al., 2016; Munos et al., 2016;
Rowland et al., 2020), potentially leading to more efficient
credit assignment. Indeed, multi-step algorithms have often
been observed to outperform single-step algorithms for con-
trol in a variety of RL tasks (Mousavi et al., 2017; Harb &
Precup, 2017; Hessel et al., 2018; Barth-Maron et al., 2018;
Kapturowski et al., 2018; Daley & Amato, 2019).

However, using multi-step algorithms for RL comes with
both theoretical and practical difficulties. The discrepancy
between the policy that generated the data to be learnt from
(the behavior policy) and the policy being learnt about (the
target policy) can lead to complex, non-convergent behavior
in these algorithms, and so must be considered carefully.
There are two main approaches to deal with this discrepancy
(cf. Table 1). Conservative methods ensure convergence is
guaranteed no matter what behavior policy is used, typically
by truncating the trajectories used for learning. By contrast,
non-conservative methods typically do not truncate trajecto-
ries, and as a result do not come with generic convergence
guarantees. Nevertheless, non-conservative methods have
consistently been found to outperform conservative methods
in practical large-scale applications. Thus, there is a clear
gap in our understanding about non-conservative methods;
why do they so work well in practice, but lack the guarantees
of their conservative counterparts?

In this paper, we address this question by studying a rep-
resentative non-conservative algorithm, Peng’s Q(λ) (Peng
& Williams, 1994; 1996, PQL), in more realistic learning
settings. Our results show that while PQL does not learn
optimal policies under arbitrary behavior policies, a con-
vergence guarantee can be recovered if the behavior policy
tracks the target policy, as is often the case in practice. This
represents a closing of the gap between the strong empirical
performance of non-conservative methods and their previ-
ous lack of theoretical guarantees.

More concretely, our primary theoretical contributions bring
new understanding to PQL, and are summarized as follows:

• A proof that PQL with a fixed behavior policy converges
to a ”biased” (i.e., different from Q∗) fixed-point.

• Analysis of the quality of the resulting policy.
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Table 1. List of off-policy multi-step algorithms for control. Harutyunyan’s Q(λ), Tree-backup, Watkins’ Q(λ), and Peng’s Q(λ) are
abbreviated as HQL, TBL, WQL, and PQL, respectively (cf. Section 3.2 for details of the algorithms). Conservative column indicates if
an algorithm is conservative or not (cf. Section 4). Convergence column indicates the convergence of algorithms to any fixed point,
whereas Convergence to Q∗ column indicates the convergence of algorithms to the optimal Q-function Q∗. X indicates new results in the
present paper. PQL converges to a biased fixed-point when the behavior policy is fixed. It converges to Q∗ when a behavior policy is
updated appropriately. (An exact condition is given in Section 5.)

Algorithm Conservative Convergence Convergence to Q∗

α-TRACE (ROWLAND ET AL., 2020) NO ? ?
C-TRACE (ROWLAND ET AL., 2020) NO ? ?
HQL (HARUTYUNYAN ET AL., 2016) NO X(WITH SMALL λ) X(WITH SMALL λ)
RETRACE (MUNOS ET AL., 2016) YES X X
TBL (PRECUP ET AL., 2000) YES X X
UNCORRECTED n-STEP RETURN NO ? ?
WQL (WATKINS, 1989) YES X X
PQL (PENG & WILLIAMS, 1994) NO X (BIASED) X (CF. CAPTION)

• Convergence of PQL to an optimal policy when using
appropriate behavior policy updates.

• Error propagation analysis when using approximations.

In addition to these theoretical insights, we validate the em-
pirical performance of PQL through extensive experiments.
Our focus is on continuous control tasks, where one encoun-
ters many technical challenges that do not exist in discrete
control tasks (cf. Section 7.2). They are also accessible to
a wider range of readers. We show that PQL can be easily
extended to popular off-policy actor-critic algorithms such
as DDPG, TD3 and SAC (Lillicrap et al., 2016; Fujimoto
et al., 2018; Haarnoja et al., 2018). Over a large subset of
tasks, PQL consistently outperforms other conservative and
non-conservative baseline alternatives.

2. Notation and Definitions
For a finite set A and an arbitrary set B, we let ∆A and
BA be the probability simplex over A and the set of all
mappings from A to B, respectively.

Markov Decision Processes (MDP). We consider an
MDP defined by a tuple 〈X,A,P,P0,R, γ〉, where X is
the finite state space, A the finite action space,P : X×A→
∆X the state transition probability kernel, P0 ∈ ∆X the
initial state distribution, R the (conditional) reward dis-
tribution, and γ ∈ [0, 1) the discount factor (Puterman,
1994). We let r ∈ RX×A be a reward function defined by
r(x, a) :=

∫
r′R(dr′|x, a).

On the Finiteness of the State and Action Spaces.
While we assume both X and A to be finite, most of theoret-
ical results in the paper hold in continuous state spaces with
appropriate measure-theoretic considerations. The finiteness

assumption on the action space is necessary to guarantee
the existence of the optimal policy (Puterman, 1994). In
Appendix B, we discuss assumptions necessary to extend
our theoretical results to continuous action spaces.

Policy and Value Functions. Suppose a policy π : X→
∆A. We consider the standard RL setup where an agent
interacts with an environment, generating a sequence of
state-action-reward tuples (Xt, At, Rt)t≥0 with At being
an action sampled from some policy; throughout, we denote
random variables by upper cases. Define G =

∑∞
t=0 γ

tRt
as the cumulative return. The state-value and Q-functions
are defined by V π(x) := E[G|X0 = x, π] and Qπ(x, a) :=
E[G|X0 = x,A0 = a, π], respectively, where the condition-
ing by π means At ∼ π(·|Xt).

Evaluation and Control. Two key tasks in RL are eval-
uation and control. The problem of evaluation is to learn
the Q-function of a fixed policy. The aim in the control
setting is to learn an optimal policy π∗ defined as to satisfy
V π∗ := V ∗ ≥ V π,∀π (the inequality is point-wise, i.e.,
V ∗(x) ≥ V π(x) for all x ∈ X). Similarly to V ∗, we let
Q∗ denote the optimal Q-function Qπ∗ . As a greedy policy
with respect to Q∗ is optimal, it suffices to learn Q∗. In
this paper, we are particularly interested in the off-policy
control setting, where an agent collects data with a behavior
policy µ, which is not necessarily the agent’s current policy
π. On-policy settings are a special case where π = µ.

3. Multi-step RL Algorithms and Operators
Operators play a crucial role in RL since all value-based
RL algorithms (exactly or approximately) update a Q-
function based on the recursion Qk+1 := OkQk, where
Ok : RX×A → RX×A is an operator that characterizes
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each algorithm. In this section, we review multi-step RL
algorithms and their operators.

Basic Operators. Assume we have a fixed policy π. With
an abuse of notations, we define operators π : RX×A → RX

and P : RX → RX×A by

(πQ)(x) :=
∑
a∈A π(a|x)Q(x, a), and

(PV )(x, a) :=
∑
y∈X P(y|x, a)V (y)

for any Q ∈ RX×A and V ∈ RX, respectively (hereafter,
we omit ”for any...” in definitions of operators for brevity).
We define their composite Pπ := Pπ. As a result, the
Bellman operator T π : RX×A → RX×A is defined by
T πQ := r + γPπQ. For a function Q ∈ RX×A, we
let G(Q) be the set of all greedy policies1 with respect
to Q. The Bellman optimality operator T is defined by
T Q = T πQQ with πQ ∈ G(Q)2. Q-learning approximates
the value iteration (VI) updates Qk+1 := T Qk.

3.1. On-policy Multi-step Operators for Control

We first introduce on-policy multi-step operators for control.

Modified Policy Iteration (MPI). MPI uses the recursion
Qk+1 := T πkn Qk for Q-function updates (Puterman & Shin,
1978), where πk ∈ G(Qk). The n-step return operator
T πn : RX×A → RX×A is defined by T πn Q := (T π)

n
Q.

λ-Policy Iteration (λ-PI). λ-PI uses the recursion
Qk+1 := T πkλ Qk for Q-function updates (Bertsekas &
Ioffe, 1996), where πk ∈ G(Qk). The λ-return operator
T πλ : RX×A → RX×A is defined as

T πλ Q := (1− λ)
∑∞
n=1 λ

n−1T πn Q

= Q+ (I − γλPπ)
−1

(T πQ−Q),

where (I − γλPπ)
−1

:=
∑∞
t=0(γλPπ)

t, and λ ∈ [0, 1].

3.2. Off-policy Multi-step Operators for Control

Next, we explain off-policy multi-step operators for control.
We note that on-policy algorithms in the last subsection can
be converted to off-policy versions by using importance
sampling (Precup et al., 2000; Casella & Berger, 2002).

Uncorrected n-step Return. For a sequence of behavior
policies (µ)k≥0, the uncorrected n-step return algorithm
uses the recursion Qk+1 := N µk,πk

n Qk for Q-function up-
dates (Hessel et al., 2018; Kapturowski et al., 2018), where
πk ∈ G(Qk). Here, the uncorrected n-step return operator
N µ,π
n is defined for any policies π and µ by

N µ,π
n Q := (T µ)

n−1T πQ.
1Note that there may be multiple greedy policies due to ties.
2Note that this definition is independent of the choice of πQ.

Peng’s Q(λ) (PQL) For a sequence of behavior policies
(µ)k≥0, PQL uses the recursion Qk+1 := N µk,πk

λ Qk for
Q-function updates (Peng & Williams, 1994; 1996), where
πk ∈ G(Qk). Here, the PQL operator N µ,π

λ is defined for
any policies π and µ by

N µ,π
λ Q := (1− λ)

∑∞
n=1 λ

n−1N µ,π
n Q , (1)

where λ ∈ [0, 1]. Note that PQL is a generalization of λ-PI
because it reduces to λ-PI when µk = πk. In other words,
PQL is λ-PI with one additional degree of freedom in µk.

General Retrace. We next introduce a general version of
the Retrace operator (Munos et al., 2016), from which other
operators are obtained as special cases.

For a behavior policy µ and a target policy π, we let Pcµ :
RX×A → RX×A be an operator defined by

(PcµQ)(x, a) :=
∑

(y,b)∈X×A

P(y|x, a)c(y, b)µ(b|y)Q(y, b),

where c is an arbitrary non-negative function over X×A
whose choice depends on an algorithm. Note that for any
n, ((Pcµ)nQ)(x, a) can be estimated off-policy with data
collected under the behavior policy µ.

A general Retrace operator Rcµ,πλ : RX×A → RX×A is
obtained by replacing Pπ of (I − γλPπ)

−1 in the λ-return
operator T πλ with Pcµ. Concretely,

Rcµ,πλ Q := Q+ (I − γλPcµ)
−1

(T πQ−Q).

The general Retrace algorithm updates its Q-function by
Qk+1 := Rckµk,πkλ Qk, where (ck)k≥0 is a sequence of
arbitrary non-negative functions over X ×A, (µk)k≥0 is
an arbitrary sequence of behavior policies, and (πk)k≥0 is
a sequence of target policies that depends on an algorithm.
Given the choices of ck and πk in Table 2, we recover a few
known algorithms (Watkins, 1989; Peng & Williams, 1994;
1996; Precup et al., 2000; Harutyunyan et al., 2016; Munos
et al., 2016; Rowland et al., 2020).

The general Retrace algorithm is off-policy as
(Rckµk,πkλ Qk)(x0, a0) can be estimated off-policy by
the following estimator given a trajectory (xt, at, rt)t≥0

collected under µk:

Qk(x0, a0) +

∞∑
t=0

( t∏
u=1

c(xu, au)
)
γtλtδt, (2)

where
∏0
u=1 c(xu, au) := 1, and δt is the TD error rt +

γ(πkQk)(xt+1)−Qk(xt, at) at time step t.

4. Conservative and Non-conservative
Multi-step RL Algorithms

Munos et al. (2016) showed that the following conditions
suffice for the convergence of the general Retrace to Q∗:
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Table 2. Choices of ck and πk in off-policy multi-step operators
for control. See Section 3.2 for details. The same abbrevi-
ations as those in Table 1 are used. For brevity, we defined
πQk ∈ G(Qk). We denote πk(a|x)/µk(a|x) by ρk(x, a) and
(1− α) + απQk (a|x)/µk(a|x) by ρ̃k(x, a). α-trace and C-trace
look the same in the table, but C-trace adaptively changes α so
that the trace length matches to a target trace length.

Algorithm ck πk

α-TRACE min{1, ρ̃k} απQk + (1− α)µk
C-TRACE min{1, ρ̃k} απQk + (1− α)µk

HQL 1 πQk
RETRACE min{1, ρk} ANY

TBL πk ANY
WQL min{1, ρk} πQk
PQL 1 λπQk + (1− λ)µk

1. ck(x, a) ∈ [0, πk(a|x)/µk(a|x)] for any k and (x, a) ∈
X×A.

2. πk satisfies some greediness condition, such as ε-
greediness with decreasing ε as k increases; cf. Munos
et al. (2016) for further details.

We call algorithms that satisfy the first condition conserva-
tive algorithms for reasons to be explained below. Other-
wise, we call the algorithms non-conservative. See Table 1
for the classification of algorithms. The uncorrected n-step
return algorithm can also be viewed as a non-conservative
algorithm with non-Markovian traces that depend also on
the past.

Conservativeness, Theoretical Guarantees, and Empiri-
cal Performance of Algorithms. Recall that in the gen-
eral Retrace update estimator (2), the effect of the TD er-
ror δt is attenuated by

∏t
u=1 c(xu, au) in addition to γtλt.

Hence, from the backward view (Sutton & Barto, 1998),
the first condition intuitively requires that the trace must be
cut if a sub-trajectory (x0, a0, . . . , xt, at) is unlikely under
πk relative to µk. As a result, conservative algorithms only
carry out safe updates to Q-functions.

As shown in (Munos et al., 2016), such conservative updates
enable a convergence guarantee of general conservative al-
gorithms. However, Rowland et al. (2020) observed that it
often results in frequent trace cuts, and conservative algo-
rithms usually benefit less from multi-step updates.

In contrast, non-conservative algorithms accumulate TD
errors without carefully cutting traces. As a result, non-
conservative algorithms might perform poorly. As we show
later (Proposition 5), it is the case at least for Harutyunyan’s
Q(λ) (Harutyunyan et al. (2016), HQL), an instance of non-
conservative algorithms, when a behavior policy is fixed.
Nonetheless, non-conservative algorithms are known to per-

form well in practice (Hessel et al., 2018; Kapturowski et al.,
2018; Daley & Amato, 2019). To understand its reason, it is
important to characterize what kind of updates to the behav-
ior policy entail the convergence of the overall algorithm.
In the following sections, we take a step forward along this
direction. We establish the convergence guarantee of PQL
under two setups: (1) when the behavior policy is fixed; (2)
when the behavior policy is updated in an appropriate way.

5. Theoretical Analysis of Peng’s Q(λ)
In this section, we analyze Peng’s Q(λ). We start with
the exact case where there is no update errors in value
functions. Later, we will consider the approximate case
when accounting for update errors. The following lemma is
particularly useful in theoretical analyses as well as practical
implementations.
Lemma 1 (Harutyunyan et al., 2016). The PQL operator
can be rewritten in the following forms:

N µ,π
λ Q = Q+ (I − γλPµ)

−1
(
T λµ+(1−λ)πQ−Q

)
= (I − γλPµ)

−1
(r + γ(1− λ)PπQ) .

Proof. This is proven in (Harutyunyan et al., 2016), but we
provided a proof in Appendix C for completeness.

5.1. Exact Case with a Fixed Behavior Policy

We now analyze PQL with a fixed behavior policy µ. While
the behavior policy is not fixed in a practical situation, the
analysis shows a trade-off between bias and convergence
rate. This trade-off is analogous to the bias-contraction-
rate trade-off of off-policy multi-step algorithms for policy
evaluation (Rowland et al., 2020) and sheds some light on
important properties of PQL.

Concretely, we analyze the following algorithm:

πk ∈ G(Qk) and Qk+1 := N µ,πk
λ Qk. (3)

Harutyunyan et al. (2016) has proven that a fixed point
of the PQL operator coincides with the unique fixed point
of λT µ + (1 − λ)T , which is guaranteed to exist since
λT µ + (1 − λ)T is a contraction with modulus γ under
L∞-norm (see Appendix A for details about the contraction
and other notions).

The existence of a fixed point does not imply the conver-
gence of PQL, and we need to show that the distance be-
tween Qk and the fixed point is decreasing. With the fol-
lowing theorem, we show that PQL does converge.
Theorem 2. Let π† be a policy such that Qλµ+(1−λ)π† ≥
Qλµ+(1−λ)π for any policy π, where the inequality is point-
wise. Then, π† ∈ G(Qλµ+(1−λ)π†), andQk of PQL (3) uni-
formly converges to Qλµ+(1−λ)π† with the rate βk, where
β := γ(1− λ)/(1− γλ).
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Proof. See Appendix E.

We build intuitions about the bias-convergence-rate trade-
off implied in Theorem 2. When λ increases, the fixed point
is Qλµ+(1−λ)π† , whose bias against Q∗ arguably increases;
at the same time, the contraction rate β decreases, so that
the contraction is faster.

Remark 1. In Section 7.6 of (Sutton & Barto, 1998), it is
conjectured that PQL with a fixed policy would converge
to a hybrid of Qµ and Q∗. Theorem 2 gives an answer
to this conjecture and shows that Sutton & Barto (1998)’s
conjecture is not necessarily true. Rather, the theorem shows
that PQL converges to the Q-function of the best policy
among policies of the form λµ+ (1− λ)π.

5.2. Approximate Case with a Fixed Behavior Policy

In practice, value-update errors are inevitable due to e.g.,
finite-sample estimations and function approximation errors.
In this subsection, we provide the error propagation analysis
of PQL with a fixed behavior policy. As we will see, the
analysis depicts a trade-off between fixed point bias and
error tolerance.

We analyze the following algorithm:

πk ∈ G(Qk) and Qk+1 := N µ,πk
λ Qk + εk ,

where εk ∈ RX×A denotes the value-update error at itera-
tion k. For simplicity, we use ρk := λµ + (1 − λ)πk and
ρ† := λµ+ (1− λ)π† in this subsection.

Remark 2. We emphasize that εk should be rather un-
derstood as Qk+1 −N µ,πk

λ Qk ,the difference between the
function Qk+1 at k + 1-th iteration and the ideal update
N µ,πk
λ Qk . In practice, Qk+1 is obtained by first construct-

ing a sample estimate N µ,πk
λ Qk and then fitting a paramet-

ric model to it by, for example, the square loss minimization.
As a result, εk typically consists of estimation error and
function approximation error.

In Section 5.1, we showed limk→∞Qk = Qλµ+(1−λ)π†

when εk(x, a) = 0 at every (x, a) ∈ X × A, and π† ∈
G(Qλµ+(1−λ)π†). Therefore, πk is an approximation to π†,
and thus it is natural to define V ρ† − V ρk as the loss of
using πk rather than π†. The following theorem provides an
upper bound for the loss.

Theorem 3. For any K, the following holds:

‖V ρ† − V ρK‖∞ ≤ O(βK) +
2

1− γ

K−1∑
k=0

βK−k−1‖εk‖∞ ,

where ‖·‖∞ is the L∞-norm defined for any real-valued
function f by ‖f‖∞ := maxv|f(v)|.

Proof. See Appendix G.

Remark 3. In Theorem 3, we provide an upper bound of
the L∞-norm of V ρ† − V ρK . As a result, the L∞-norm of
εk appears in the upper-bound. However in Appendix G, we
prove a point-wise upper-bound of V ρ† − V ρK , from which
an Lp-norm upper-bound can be obtained in a straightfor-
ward way (e.g., see Lemma 6 of Scherrer et al. (2015)). For
simplicity, we present the L∞-norm upper-bound.

As we have already explained the bias-convergence-rate
trade-off, for now we ignore the O(βK) term and focus on
the error term. For simplicity, we assume ‖εk‖∞ = ε for
every k. Then,

2

1− γ

K−1∑
k=0

βK−k−1‖εk‖∞ = O

(
1− γλ

(1− γ)2
ε

)
,

In contrast, an analogous result of λ-PI is O(ε/(1 − γ)2)
(Scherrer, 2013). When λ = 0, these results coincide,
which is expected since both λ-PI and PQL degenerate
to value iteration. When λ = 1, PQL’s error depen-
dency is O(ε/(1 − γ)), which is significantly better than
O(ε/(1 − γ)2). However in this case, PQL is completely
biased and converges to Qµ. At intermediate values of λ,
PQL achieves a trade-off between error tolerance with bias
by changing λ.

5.3. Approximate Case with Behavior Policy Updates

Previously, we have analyzed PQL with a fixed behavior
policy. However, in practice, the behavior policy is updated
along with the target policy. Besides, value-update errors are
inevitable in complex tasks. As a result, PQL may behave
quite differently in a practical scenario. This motivates our
analysis for the following algorithm:3

Qk+1 := N µk,πk
λ Qk + εk (4)

µk := απk + (1− α)µk−1,

where πk ∈ G(Qk), and α ∈ [1 − λ, 1]. Note that when
α = 1, this algorithm reduces to λ-PI as a special case.
Though this behavior policy update closely resembles to
that of conservative policy iteration (Kakade & Langford,
2002), here we require α ≥ 1− λ.

This algorithm has the following performance guarantee.

Theorem 4. For any K, the following holds:

‖V ∗ − V πK‖∞ ≤ O(ζK) +
2

1− γ

K−1∑
l=0

ζK−l−1‖εl‖∞ ,

where ζ := 1− α+ αγ. Hence, PQL with behavior policy
updates converges to the optimal policy with the rate ζK .

3This algorithm updates the behavior policy after each applica-
tion of the PQL operator. In Appendix F, we analyze a case where
the behavior policy is updated after multiple applications of the
PQL operator.
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Proof. See Appendix H.

Remark 4. As noted in Remark 3, we can derive an Lp-
norm upper-bound of V ∗− V πK given its point-wise upper-
bound. In Appendix H, we actually provide its point-wise
upper-bound.

Remark 5. Our results differ from existing work on off-
policy learning and multi-step methods in several impor-
tant respects. Munos et al. (2016) also analyse multi-step
off-policy algorithms, but focus on identifying conditions
for algorithms to be conservative, and provide asymptotic
convergence guarantees of Qk in the tabular setting under
any choice of behaviour policies. In contrast, our analy-
sis focuses on non-conservative algorithms, and provides
a finite-time error bound for V ∗ − V πk that incorporates
approximation in the algorithm steps. In this regard, these
results bear similarity with earlier analysis of multi-step
on-policy algorithms such as λ-policy iteration (Scherrer,
2013). The central distinction is that our analysis clarifies
what conditions are sufficient in non-conservative off-policy
algorithms to retain convergence of V πk to V ∗.

The first term on the right hand side shows the convergence
of PQL with behavior policy updates in an exact case, i.e.,
‖εk‖∞ = 0 for any k. It states that the fastest convergence
rate is γK (achieved when α = 1), which is the same as
the convergence rate of VI (Munos, 2005), policy iteration
(Munos, 2003), MPI (Scherrer et al., 2012; 2015), and λ-
PI (Scherrer, 2013). When α 6= 1, the convergence rate
coincides with that of conservative policy iteration (Scher-
rer, 2014). However we are not aware of a similar result
of conservative λ-PI, which would be an analogue of PQL
considered here. Theorem 4 also provides the error depen-
dency of PQL (the second term on the right hand side). It
coincides with the previous result of the above algorithms
when α = 1, as one would expect, since PQL with α = 1
is precisely λ-PI. Nonetheless PQL allows some degree of
off-policiness when α 6= 1.

5.4. Oscillatory Behavior of HQL

In this section, we have proven the convergence of ex-
act PQL (i.e., no value-update errors). However, the fol-
lowing proposition shows that exact HQL, an instance of
non-conservative algorithms, does not converge in an MDP
when the behavior policy is fixed. Nonetheless, in the same
MDP, setting the behavior policy µk to a greedy policy
πk ∈ G(Qk) guarantees the convergence.

Proposition 5. There is an MDP such that when exact HQL
is run with a fixed policy µk = µ for all k, λ = 1, and
Q0 = Qµ, HQL’s Q-function Qk oscillates between two
functions, and its greedy policy πk oscillate between optimal
and sub-optimal policies. Contrarily, if µk ∈ G(Qk), HQL
converges to an optimal policy.

Proof. A proof of the first claim is given in Appendix D.
The second claim immediately follows by noting that if
µk = πk ∈ G(Qk), HQL is λ-PI, which is known to con-
verge (Bertsekas & Ioffe, 1996).

While this result is specialized to HQL, it sheds light on an
important aspect of non-conservative algorithms in general:

While non-conservative algorithms may perform
poorly when the behavior policy is fixed, they may

converge to Q∗ when the behavior policy is updated.

The above captures a critical aspect of how algorithms be-
have in practice, where the behavior policy is continuously
updated.

6. Deep RL Implementations
We next show that Peng’s Q(λ) can be conveniently imple-
mented with established off-policy deep RL algorithms. Our
experiments focus on continuous control problems where
the action space A = [−1, 1]m. A primary motivation for
considering continuous control benchmarks (e.g., (Brock-
man et al., 2016; Tassa et al., 2020)) is that they are usually
more accessible to a wider RL research community, com-
pared to challenging discrete control benchmarks such as
Atari games (Bellemare et al., 2013).

6.1. Off-policy Actor-critic Algorithms

Off-policy actor-critic algorithms maintain a policy πθ(a|x)
with parameter θ and a Q-function critic Qφ(x, a) with
parameter φ. For the policy, a popular choice is the point
mass distribution πθ(a|x) = δ(a− πθ(x)), where πθ(x) ∈
RA (Lillicrap et al., 2016; Fujimoto et al., 2018; Barth-
Maron et al., 2018). The algorithm collects data with an
exploratory behavior policy µ and saves tuples (xt, at, rt)
into a replay buffer D. At each training iteration, the critic
Qφ(x, a) is updated by minimizing squared errors against
a Q-function target ED

[
(Qφ(x, a)−Qtarget(x, a))2

]
. The

policy is updated via the deterministic policy gradient θ ←
θ+αEµ [∇θQφ(x, πθ(x))] (Silver et al., 2014). See further
details in Appendix J.

6.2. Implementations of Multi-step Operators

While approximate estimates to T Q(x, a) are arguably the
simplest to implement, it only myopically looks ahead for
one step. Usually, the learning can be significantly sped
up when the targets are constructed with multi-step opera-
tors. (See, e.g, empirical examples in (Hessel et al., 2018;
Barth-Maron et al., 2018; Kapturowski et al., 2018) and the-
oretical insights in (Rowland et al., 2020)) For example, the
uncorrected n-step operator is estimated as follows (Hes-
sel et al., 2018): given a n-step trajectory (xi, ai, ri)

n
i=0,
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the target at (x0, a0) is computed as Qtarget(x0, a0) =∑n−1
i=0 γ

ir0 + γnQφ−(xn, πθ−(xn)). Similar estimates
could be derived for all multi-step operators introduced
in Section 3, especially Peng’s Q(λ). We present full details
in Appendix J.

Desirable empirical properties of Peng’s Q(λ). The es-
timates of Peng’s Q(λ) do not require importance sampling
ratios π(a|x)

µ(a|x) . This is especially valuable for continuous
control, where the policy could be deterministic, in which
case algorithms such as Retrace (Munos et al., 2016) cuts
traces immediately. Even when policies are stochastic and
traces based on IS ratios are not cut immediately, prior work
suggests that the trace cuts are usually pessimistic especially
for high-dimensional action space (see, e.g., (Wang et al.,
2017) for implementation techniques to mitigate the issue).

7. Experiments
To build better intuitions about Peng’s Q(λ), we start with
tabular examples in Section 7.1. We will see that the empiri-
cal properties of Peng’s Q(λ) echo the theoretical analysis in
previous sections. In Section 7.2, we evaluate Peng’s Q(λ)
in the deep RL contexts. We combine Peng’s Q(λ) with
baseline deep RL algorithms and compare its performance
against alternative operators.

7.1. A tabular example

Tree MDP. We consider toy examples with a tree MDP
of depth D. The MDPs are binary trees, with each node
corresponding to a state. Starting from any non-leaf state,
the two actions a ∈ {L,R} transition the agent to one of
its child nodes with probability one. Each episode lasts for
D steps and the agent always starts at the root node. The
rewards are zero everywhere except r = 1 at the leftmost
leaf node and r = 0.5 at the rightmost leaf node. The
behavior policy µ is µ(L|x) = 0.3, µ(R|x) = 0.7 for all
states x.

Note that there is a sub-optimal policy of collecting r = 0.5
at the rightmost leaf. The behavior policy is by design
biased towards taking right moves, such that it is easy for
the agent to learn the sub-optimal policy. The optimal policy
is to take left moves and collect r = 1. Throughout training,
we optimize the target policy π while fixing the behavior
policy µ. This echos the theoretical setup in Section 5.2.
See Appendix J for further details on the setup.

Results. In Figure 1(a), we show the performance of dif-
ferent algorithms after 10, 000 iterations as a function of the
MDP’s tree depth D. When D = 2, all algorithms achieve
the optimal performance; when λ = 1, as D increases, the
fixed point bias of Peng’s Q(λ) hurts the performance dras-

(a) Final performance (b) Learning curves

Figure 1. Performance on tree MDPs. Figure(a) shows how perfor-
mance (after 10, 000 iterations) changes as a function of tree depth
D; Figure(b) shows the learning curves of different operators.

tically. This is less severe for λ = 0.5, whose performance
decays less quickly. On the other hand, both Retrace and the
one-step operator learn the optimal policy even for D ≤ 6.
However, when D increases, it becomes difficult to sample
the optimal trajectory. As such, the sparse rewards make
it difficult to learn meaningful Q-functions in a reasonable
amount of time, unless the return signals get propagated
effectively (i.e,. do not cut traces). This is shown in Fig-
ure 1(a), where Peng’s Q(λ) with λ = 1 is the only method
that finds a policy with non-zero expected return.

Similar observations are made in Figure 1(b), where we
compare Peng’s Q(λ) for various λ under D = 10 (solid
lines) and D = 5 (dotted lines). Small λ corresponds to
less bias in the Q-function fixed points and should asymp-
totically converge to higher performance, but its ineffective
reward signal propagation hinders policy improvement in a
reasonable time when D is large; on the other hand, large λ
suffers sub-optimality when D is small, but its initial policy
improvement is substantially expedited when the D is large.

7.2. Deep RL experiments

Evaluations. We evaluate performance over environ-
ments with a number of different physics simulation back-
ends, such as MuJoCo (Todorov et al., 2012) based Deep-
Mind (DM) control suite (Tassa et al., 2020) and an open
sourced simulator Bullet physics (Coumans & Bai, 2016–
2019). Due to space limit, below we only show results
for DM control suite and provide a more complete set of
evaluations in Appendix J.

Baseline comparison. We use TD3 (Fujimoto et al.,
2018) as the base algorithm.4 We compare with a few multi-
step baselines: (1) one-step (also the base algorithm); (2)

4TD3 reasonably echoes the theoretical setup in Section 5.3:
both the behavior and target policies are near-greedy policy
(slowly) trying to maximize Qk, and Q-value updates are per-
formed by using data obtained by following the behavior policy
and stored in the replay buffer.
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Figure 2. Evaluation of baseline algorithms over standard DM control domains. The first row shows results on standard benchmarks; the
second row shows results on sparse reward variants of the benchmarks. Four task names are labeled at the bottom. In each plot, x-axis
shows the number of training steps and y-axis shows the performance. In standard benchmarks, Peng’s Q(λ) generally performs more
stably than other algorithms; in sparse reward benchmarks, Peng’s Q(λ) outperforms all other algorithms across all presented tasks.

Uncorrected n-step with a fixed n; (3) Peng’s Q(λ) with
a fixed λ; (4) Retrace and C-trace. Among all baselines,
uncorrected n-step operator is the most commonly used
non-conservative operator while Retrace is a representative
conservative operator. See Appendix J for more details. All
algorithms are trained with a fixed number of steps and
results are averaged across 5 random seeds.

Standard benchmark results. In the top row of Figure 2,
we show evaluations on standard benchmarks. Across most
tasks, Peng’s Q(λ) performs more stably than other baseline
algorithms. We see that Peng’s Q(λ) learns generally as fast
as other baselines, and in some cases significantly faster
than others. Note that though Peng’s Q(λ) does not neces-
sarily obtain the best learning performance per each task,
it consistently ranks as the top two algorithms (with ties).
This is in contrast to baseline algorithms whose performance
rank might vary drastically across tasks. For example, the
one-step TD3 performs well in CheetahRun while performs
poorly in WalkerWalk. Also, both Ctrace and Retrace gener-
ally significantly perform more poorly. We provide further
analysis in Appendix J.

Sparse rewards results. In the bottom row of Figure 2,
we show evaluations on sparse reward variants of the bench-
mark tasks. See details on these environments in Appendix J.
Sparse rewards are challenging for deep RL algorithms, as

it is more difficult to numerically propagate learning signals
across time steps. Accordingly, sparse rewards are natural
benchmarks for operator-based algorithms. Across all tasks,
Peng’s Q(λ) consistently outperforms other baselines. In a
few cases, uncorrected n-step also outperforms the baseline
TD3 – we speculate that this is because the former propa-
gates the learning signal more efficiently, which is critical
for sparse rewards. Compared to uncorrected n-step, Peng’s
Q(λ) seems to achieve a better trade-off between efficient
propagation of learning signals and fixed point biases, which
leads to relatively stable and consistent performance gains
across all selected benchmark tasks.

7.3. Additional deep RL experiments

Maximum-entropy RL. In Appendix I, we show how
Peng’s Q(λ) could be extended to maximum-entorpy RL
(Ziebart et al., 2008; Fox et al., 2016; Haarnoja et al., 2017;
2018). We combine multi-step operators with maximum-
entropy deep RL algorithms such as SAC (Haarnoja et al.,
2018) and show performance gains over benchmark tasks.
See Appendix J for further details.

Ablation study on λ. In Appendix J, we provide an abla-
tion study on the effect of λ. We show that the performance
of Peng’s Q(λ) depends on the choice of λ. Nevertheless,
we find that a single λ can usually lead to fairly uniform



Revisiting Peng’s Q(λ) for Modern Reinforcement Learning

performance gains across a large number of benchmarks.

8. Conclusion
In this paper, we have studied the non-conservative off-
policy algorithm Peng’s Q(λ), and shown that while in the
worst case its convergence guarantees are less strong than
conservative algorithms such as Retrace, convergence guar-
antees to the optimal policy are recovered when the behavior
policy closely tracks the target policy. This has important
consequences for deep RL theory and practice, as this con-
dition often holds when agents are trained through replay
buffers, and serves to close the gap between the strong
empirical performance observed with non-conservative al-
gorithms in deep RL, and their previous lack of theory.

We expect this to have several important consequences for
deep RL theory and practice. Firstly, these results make
clear that the degree of off-policyness is an important quan-
tity that has real impact on the success of deep RL algo-
rithms, and incorporating quantities related to this into the
analysis of off-policy algorithms will be important for de-
veloping theoretical understanding of deep RL. Secondly,
these findings add weight to growing empirical work high-
lighting that quantities such as replay buffer size and replay
ratio are crucial to the success of deep RL agents (Zhang
& Sutton, 2017; Daley & Amato, 2019; Fedus et al., 2020),
and deserve further attention.

We believe the analysis presented in this paper is an
important step towards a deeper understanding of non-
conservative methods, and there are several open questions
suitable for future work. For example, the convergence
guarantee in Theorem 4 requires α ≥ 1− λ. However we
conjecture that this assumption can be lifted. Besides, while
we did not analyze the concentrability coefficients of PQL,
Scherrer (2014) reports that conservative policy iteration,
which is analogous to PQL, has a better concentrability co-
efficients. Finally, careful error propagation analyses of
gap-increasing algorithms (Azar et al., 2012; Kozuno et al.,
2019) and policy-update-regularized algorithms (Vieillard
et al., 2020) show a slow update of policies confer the sta-
bility against errors on algorithms. In PQL with behavior
policy updates, we expect a similar result when α takes an
intermediate value.
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A. Preliminaries for Theoretical Analyses
In this appendix, we explain important notions we used in our theoretical analyses.

Contraction and Monotonicity of Operators. An operator O from a normed space (F, ‖ · ‖) to another normed space
(F′, | · |) is said to be a contraction if there is a constant c ∈ [0, 1) such that ‖Of − Og‖ ≤ c|f − g|. This constant c is
sometimes called as modulus. For example, T : (RX×A, ‖·‖∞)→ (RX×A, ‖·‖∞) is a contraction with modulus γ. In the
main text, we usually meant a contraction under ‖·‖∞ and did not always mention which norm is considered.

A related notion is a non-expansion. If an operator O satisfies only ‖Of −Og‖ ≤ |f − g|, it is said to be a non-expansion.
For example, P is a non-expansion, as proven later.

Monotonicity is probably the most important property in our analyses. An operator O is said to be monotone if Of ≥ Og
for any f and g satisfying f ≥ g. For example, P is monotone: if V ≥ V ′ (point-wisely, i.e., V (x) ≥ V ′(x) at every x),
PV − PV ′ holds too, as one can easily confirm from

(PV − PV ′)(x, a) = E[V (X1)− V ′(X1)|X0 = x,A0 = a] ≥ 0.

Let 1 ∈ F be a constant function taking 1 everywhere. If a linear operator O : (F, ‖·‖∞)→ (F′, ‖·‖∞) is monotone and
satisfies O1 = c1 with a scalar c, we have ‖Of −Og‖∞ ≤ c‖f − g‖∞. Indeed,

Of −Og = O(f − g) ≤ O‖f − g‖∞1 = c‖f − g‖∞1 and Of −Og ≥ −c‖f − g‖∞1

imply ‖Of −Og‖∞ ≤ c‖f − g‖∞. Thus, P is non-expansive as P1 = 1. Note that (1 − γλ)(I − γλPπ)
−1 is also a

non-expansive operator for any π, as one can easily confirm.

B. On an Extension of Theoretical Results to Continuous Action Spaces
In this appendix, we explain how to extend our theoretical results to a case where both the state and action spaces are
continuous. We mainly follow Appendix B in (Puterman, 1994). We ask interested readers to refer to the textbook.

Notation. Let S and S′ be Polish spaces. We denote by B(S; c) the set of all Borel-measurable functions from S to a
bounded closed interval [−c, c], where c ∈ [0,∞); throughout this appendix, the Borel σ-algebra is always considered.
We denote by P(S) the set of all Borel probability measures on S. We say that a real-valued function f on S is upper
semicontinuous (usc) at a point p∗ if lim supn→∞ f(pn) ≤ f(p∗) for any sequence of points (pn)n≥0 converging to
p∗. We say that f is usc if it is usc at any point. We denote by U(S; c) the set of all usc functions from S to a
bounded closed interval [−c, c], where c ∈ [0,∞). We say that a stochastic kernel q : S → P(S′) is continuous if
limn→∞

∫
f(p′)q(dp′|pn) =

∫
f(p′)q(dp′|p) for any bounded continuous function f and any sequence of points (pn)n≥0

converging to p.

Main Discussion. We impose the following assumption on MDPs. It is necessary to guarantee that all functions in the
analyses are usc, as we shall explain soon.

Assumption 6. The state and action spaces are compact subsets of finite-dimensional Euclidean spaces equipped with
Borel σ-algebras. The reward function r is an usc function bounded by rmax, and the state transition probability kernel P is
continuous.

We first explain that there exists an optimal policy that is a measurable function from the state space X to the action space
A. Let Vmax := rmax/(1 − γ). We denote by M : U(X × A;Vmax) → U(X;Vmax) the max operator defined by
(MQ)(x) := maxa∈AQ(x, a) for any Q ∈ U(X ×A;Vmax). Theorem B.5 in Puterman (1994) guarantees thatMQ
is usc. Furthermore, Proposition B.4 in Puterman (1994) guarantees that PMQ is usc. It is easy to confirm that both
MQ and PMQ are bounded by Vmax. Since a sum of usc functions is again usc (Puterman, 1994, Proposition B.1.a),
r + γPMQ = T Q belongs to U(X×A;Vmax). Suppose the recursion Qk+1 := T Qk. Proposition B.1.e in Puterman
(1994) guarantees that limk→∞Qk = Q∗ is usc. Proposition B.4 in Puterman (1994) guarantees that there exists a
measurable function π∗ : X→ A such that Q∗(x, π∗(x)) = maxa∈AQ

∗(x, a). Accordingly, there exists an optimal policy
that is a measurable function from X to A.
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From the above discussion, it is easy to confirm that all Qk in the exact version of PQL (3) belong to U(X×A;Vmax) given
that the behavior policy µ is continuous. Therefore, the proof of Theorem 2 in Appendix E is valid under the assumption
that µ is continuous. We note that it is a weak assumption because the behavior policy µ is often continuous in practice.
Indeed, an action distribution µ(·|x) is frequently a normal distribution whose mean and diagonal covariance matrix are
continuous functions of a state x expressed by, for example, neural networks. As a result, as long as all elements of the
diagonal covariance matrix are bounded from below by some constant, the probability density function of µ(·|x) is bounded.
Therefore, the dominated convergence theorem can be used to show that µ is continuous. When there is an element of
the diagonal covariance matrix converging to 0, this argument does not hold. However, it is a pathological case that usual
implementations, such as SpinningUp (Achiam, 2018), try to avoid by value clipping.

For other theoretical results, we need two additional assumptions: (i) all behavior policies µ and µk are continuous, and
(ii) all error functions εk belong to U(X×A;Vmax). As for the assumption (i), it is a weak assumption as noted above.
(See also the following paragraph on the relaxation of πk’s exact greediness.) As for the assumption (ii), it is also a
weak assumption: because Qk+1 approximates (N µ

λ )kQ0 ∈ U(X×A;Vmax), there is no strong reason to use a function
approximator that does not belong to U(X ×A;Vmax); using a function approximator belonging to U(X ×A;Vmax)
guarantees that εk = Qk+1 −N µ

λQk belongs to U(X×A;Vmax). Similar arguments can be made even when the behavior
policy is updated, and we can conclude that these assumptions are weak.

We finally mention how to relax the exact greedy assumption that πk ∈ G(Qk). When the action space is continuous, it is
not feasible to find an exact greedy policy even if Qk is continuous. In addition, it is often the case that a policy is expressed
by a neural network. However, it is relatively straightforward to extend our theoretical analyses to a case where this exact
greedy assumption is relaxed to a δk-greedy assumption, that is, πkQk ≥MQk − δk, where δk ∈ U(X;Vmax). A similar
near-greedy condition is found in, for example, Scherrer (2014).

C. A Proof of Lemma 1 (Different Forms of the PQL Operator)
In this appendix, we prove Lemma 1, which provides the following forms of the PQL operator:

N µ,π
λ Q = Q+ (I − γλPµ)

−1
(
T λµ+(1−λ)πQ−Q

)
= (I − γλPµ)

−1
(r + γ(1− λ)PπQ).

We first recall the original PQL operator (1): N µ,π
λ Q := (1− λ)

∑∞
n=0 λ

n(T µ)
nT πQ. Note that each term in the sum can

be rewritten as (T µ)
nT πQ =

∑n
m=0 γ

m(Pµ)
m
r + γn+1(Pµ)

nPπQ. Therefore,

(1− λ)

∞∑
n=0

λn(T µ)
nT πQ = (1− λ)

∞∑
n=0

λn

[
n∑

m=0

γm(Pµ)
m
r + γn+1(Pµ)

nPπQ

]

= (1− λ)

∞∑
n=0

λn
n∑

m=0

γm(Pµ)
m
r +

∞∑
n=0

λnγn+1(1− λ)(Pµ)
nPπQ.

Note that

(1− λ)

∞∑
n=0

λn
n∑

m=0

γm(Pµ)
m
r =

∞∑
n=0

λn
n∑

m=0

γm(Pµ)
m
r −

∞∑
n=0

λn+1
n∑

m=0

γm(Pµ)
m
r

=

∞∑
n=0

λn
n∑

m=0

γm(Pµ)
m
r −

∞∑
n=1

λn
n−1∑
m=0

γm(Pµ)
m
r

=

∞∑
n=0

λnγn(Pµ)
n
r.

Consequently,

(1− λ)

∞∑
n=0

λn(T µ)
nT Q =

∞∑
n=0

λnγn(Pµ)
n
(r + γ(1− λ)PπQ) = (I − γλPµ)

−1
(r + γ(1− λ)PπQ).
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The right hand side can be rewritten as follows:

(I − γλPµ)
−1

(r + γ(1− λ)PπQ) = (I − γλPµ)
−1

(λT µQ+ (1− λ)T πQ− λPµQ)

= (I − γλPµ)
−1

(λT µQ+ (1− λ)T πQ−Q+ (I − γλPµ)Q)

= Q+ (I − γλPµ)
−1

(λT µQ+ (1− λ)T πQ−Q).

This concludes the proof.

D. A Proof of Proposition 5 (HQL’s Oscillation)
In this appendix, we prove that under a certain circumstance, HQL oscillates. We prove it by using an example shown in
Figure 3. In this MDP, there are two types of states X1 = {x|x = 1, 2, . . .} and X2 = {x′|x = 1, 2, . . .}. We denote a state
in X1 by x and a state in X2 by x′. There are two actions go and exit. When an agent chooses go at x, it moves to x+ 1
with a reward of −1. When an agent chooses exit at x, it moves to x′ with a reward of 1. At x′, any action results in a state
transition to the same state x′ with a reward of 1. Therefore, an agent must exit from x as soon as possible.

Figure 3. An MDP in which HQL may oscillate.

We assume that λ = 1, γ > 0.5, µ chooses go everywhere, Q0(x, exit) = Qµ(x, exit) = 1/(1− γ), and Q0(x, go) =
Qµ(x, go) + δ = −1/(1− γ) + δ with δ > 2/(1− γ). For other state-action pairs, Q0 = Qµ. As a result, π0 = µ. (At a
state x′ ∈ X, any policy is effectively the same as µ.)

Step 1. HQL’s update can be rewritten as follows (Harutyunyan et al., 2016):

Qk+1 := Qk + (I − γλPµ)
−1

(T πkQk −Qk) = Qk + (I − γλPµ)
−1

(T µQk −Qk + γP(πk − µ)Qk).

Since π0 = µ, and µ chooses go everywhere (that is, At = go for every t in the following equations), we deduce that

Q1(x, go) = Q0(x, go) +

∞∑
t=0

γtE[(T µQ0)(Xt, At)−Q0(Xt, At)|X0 = x,A0 = go, µ] = Qµ(x, go) = − 1

1− γ
.

Besides, Q1(x, exit) = Q0(x, exit) = Qµ(x, exit) = 1/(1− γ). Accordingly, arg maxaQ1(x, a) = exit, and Q1 = Qµ.

Step 2. Let us consider what happens at the next iteration. Since µ chooses go everywhere (that is, At = go for every t in
the following equations), we deduce that

Q2(x, go) = Q1(x, go) +

∞∑
t=0

γtE[(T µQ1)(Xt, At)−Q1(Xt, At) + γ(π1Q1 − µQ1)(Xt+1)|X0 = x,A0 = go, µ]

= Qµ(x, go) +

∞∑
t=0

γtE[γ(π1Q1 − µQ1)(Xt+1)|X0 = x,A0 = go, µ]

= Qµ(x, go) +
2γ

(1− γ)2
>

1

1− γ
= Qµ(x, exit).

Besides, Q2(x, exit) = Qµ(x, exit) = 1/(1− γ). Accordingly, arg maxaQ1(x, a) = go.
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Step 3. Now, note that by setting δ in Step 1 to be 2γ/(1 − γ)2, the situation is completely the same as the one we
considered in Step 1. Accordingly, arg maxaQ3(x, a) = exit, and Q3 = Qµ. The situation of the next iteration is
completely the same as the one we considered in Step 2. This argument can be repeated forever, and thus, Qk (as well as πk)
oscillates.

E. A Proof of Theorem 2 (PQL’s Convergence with a Fixed Behavior Policy)
We define N µ

λ as an operator such that N µ
λQ = N µ,πQ

λ Q for any Q ∈ RX×A, where πQ ∈ G(Q). This operator is
analogous to T , whereas N µ,π

λ is analogous to T π .

From Lemma 1, we deduce that N µ
λQ−N

µ
λQ
′ = (1− λ)(I − γλPµ)

−1
(T Q− T Q′) for any Q,Q′ ∈ RX×A. Because

(I − γλPµ)
−1 is linear and monotonic, and satisfies (I − γλPµ)

−1
1 = 1/(1− γλ), we have that ‖N µ

λQ−N
µ
λQ
′‖∞ ≤

(1 − λ)‖T Q− T Q′‖∞/(1 − γλ). As noted in Appendix A, T is a contraction with modulus γ. Therefore,
‖N µ

λQ−N
µ
λQ
′‖∞ ≤ γ(1 − λ)‖Q−Q′‖∞/(1 − γλ) = β‖Q−Q′‖∞. Combining this with Banach’s fixed point

theorem (Puterman, 1994), it is proven that PQL with a fixed behavior policy converges to a unique fixed point with the rate
βk.

Let Qfixed and πfixed be the fixed point and a greedy policy with respect to the fixed point, respectively. (It will turn out to
be Qfixed = Qλµ+(1−λ)π† and πfixed = π†.) As noted in Section 5.1, Qfixed is the fixed point of λT µ + (1− λ)T . It is easy
to confirm that it is also the fixed point of T λµ+(1−λ)πfixed as πfixed ∈ G(Qfixed). Therefore, Qfixed = Qλµ+(1−λ)πfixed .

As πfixed ∈ G(Qfixed), Qfixed = T λµ+(1−λ)πfixedQfixed ≥ T λµ+(1−λ)πQfixed for any policy π. Therefore, for any positive
integer n, we have that Qfixed ≥ (T λµ+(1−λ)π)nQfixed. As a result, Qλµ+(1−λ)πfixed = Qfixed ≥ Qλµ+(1−λ)π for any π.
This implies that πfixed is π†.

F. Double-loop PQL
In this appendix, we analyze PQL in which N µk

λ is applied multiple times to Qk, and then, the current behavior policy µk is
updated to µk+1. (See Appendix E for the definition of N µ

λ .) Concretely, we consider the following algorithm:

µk ∈ Gδk(Qk) , and Qk+1 := (N µk
λ )
∞
Qk + εk , (5)

where δk ∈ RX is a non-negative function over X, and Gδk(Qk) is the set of δk-greedy policies π defined by πQk ≥
π′Qk − δk for a greedy policy π′ ∈ G(Qk). Here, we used a shorthand notation (N µk

λ )
∞
Qk := limn→∞(N µk

λ )
n
Qk. Note

that this algorithm involves a double-loop structure: in the inner loop N µk
λ is repeatedly applied to (N µk

λ )nQk, and in the
outer loop the Q-function and policies are updated. Hence, we call this algorithm as a doule-loop PQL.

There are two main differences from approximate PQL with behavior policy updates (4): first, the behavior policy is
required to be near-greedy rather than a mixture policy; second, the Q-function is updated to (N µk

λ )
∞
Qk + εk rather than

N µk
λ Qk + εk. As for the first difference, we think that the behavior policy update in (4) is more practical, but we are unsure

if Theorem 4 can be extended to double-loop PQL. As for the second difference, this Q-function update is an abstraction of
a situation where N µk

λ is applied only finitely many times, and Qk+1 deviates from (N µk
λ )
∞
Qk as a result. Because it is

impossible to compute (N µk
λ )
∞
Qk in a practical situation, this abstraction is necessary. We note that other errors such as

function approximation errors can be also included to εk.

For this algorithm, we have the following guarantee.
Proposition 7. For any non-negative integer k, the following holds:

Q∗ −Qµk+1 ≤ 2γ

1− γ

k∑
j=0

γk−j‖εj‖∞1 +
γ(1 + γ)

1− γ

k∑
j=0

γk−j‖δj+1‖∞1 + γk+1‖Q∗ −Qµ0‖∞ .

Thus, if ‖δk‖∞ → 0 and ‖εk‖∞ → 0, then Qµk → Q∗.

Proof. First let us prove that Qµk −‖εk‖∞1 ≤ Qk+1 ≤ Qµk+1 +
1 + γ

1− γ
‖εk‖∞1+

γ

1− γ
‖δk‖∞1. By definition of Qk+1,

Qk+1 − εk = (N µk
λ )
∞
Qk ≥ Qλµk+(1−λ)π =⇒ Qk+1 ≥ Qλµk+(1−λ)π − ‖εk‖∞1
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for any policy π, where the first inequality follows from Theorem 2. Now, setting π = µk yields Qk+1 ≥ Qµk − ‖εk‖∞1.
Next, recall that Qk+1 − εk = (N µk

λ )
∞
Qk is a fixed point of λT µk + (1− λ)T . Accordingly,

Qk+1 − εk = λT µk(Qk+1 − εk) + (1− λ)T (Qk+1 − εk) ≤ T (Qk+1 − εk) ≤ T Qk+1 + γ‖εk‖∞1 ,

where the last inequality follows from the monotonicity of T and −εk ≤ ‖εk‖∞. Furthermore, from the fact that
µk+1 ∈ Gδk+1

(Qk+1), we deduce that Qk+1 − εk ≤ T µk+1Qk+1 + γ‖εk‖∞1 + γ‖δk‖∞1. This implies that Qk+1 ≤
T µk+1Qk+1 + (1 + γ)‖εk‖∞1 + γ‖δk‖∞1. By induction on k and the monotinicity of T µk+1 , we deduce that

Qk+1 ≤ Qµk+1 +
1 + γ

1− γ
‖εk‖∞1 +

γ

1− γ
‖δk‖∞1 .

Now we have

Q∗ −Qµk+1 = γPπ∗Q∗ − γPπ∗Qk+1 + γPπ∗Qk+1 − γPµk+1Qk+1︸ ︷︷ ︸
≤γ‖δk+1‖∞1

+γPµk+1Qk+1 − γPµk+1Qµk+1

≤ γPπ∗(Q∗ −Qk+1) + γ‖δk+1‖∞1 + γPµk+1 (Qk+1 −Qµk+1)︸ ︷︷ ︸
≤ 1+γ

1−γ ‖εk‖∞1+ γ
1−γ ‖δk+1‖∞1

≤ γ(1 + γ)

1− γ
‖εk‖∞1 +

γ(1 + γ)

1− γ
‖δk+1‖∞1 + γPπ∗(Q∗ −Qk+1)

≤ 2γ

1− γ
‖εk‖∞1 +

γ(1 + γ)

1− γ
‖δk+1‖∞1 + γPπ∗(Q∗ −Qµk)

By induction on k, we see that

Q∗ −Qµk+1 ≤ 2γ

1− γ

k∑
j=0

γk−j‖εj‖∞1 +
γ(1 + γ)

1− γ

k∑
j=0

γk−j‖δj+1‖∞1 + (γPπ∗)k+1
(Q∗ −Qµ0) .

By upper-bounding Q∗ −Qµ0 by ‖Q∗ −Qµ0‖∞, the claimed result is obtained.

G. A Proof of Theorem 3 (PQL’s Error Propagation with a Fixed Behavior Policy)
Here, we provide the error propagation analysis of PQL with a fixed behavior policy. While the behavior policy is not fixed
in a practical situation, the error propagation analysis of PQL with a fixed behavior policy shows the trade-off between bias
and convergence rate of PQL. This result is analogous to trade-offs explained in (Rowland et al., 2020) and sheds some light
on a fundamental property of PQL.

Definition and Notation. We first recall our problem setting: (approximate) PQL updates its Q-function by

πk ∈ G(Qk) and Qk+1 := N µ,πk
λ Qk + εk,

We know that εk(x, a) = 0 guarantees the convergence of Qk to Qλµ+(1−λ)π† , where π† is arg maxπ Q
λµ+(1−λ)π. (See

Section 5.1.) Therefore, πK is an approximation of π†, and thus, it is natural to define a loss of using the policy πk rather
than π† by V ρ† − V ρK .

We define the following notations:

• ρ† := λµ+ (1− λ)π†

• ρk := λµ+ (1− λ)πk

• dk := Qρ† −Qk

• bk := Qk − T ρkQk
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• A† := γ(1− λ)(I − γλPµ)
−1Pπ†

• Ak := γ(1− λ)Pπk(I − γλPµ)
−1

• β := γ(1− λ)/(1− γλ)

Note that Ak is a contraction with respect to L∞-norm ‖ · ‖∞ with modulus β. (See Appendix C.)

Proofs. Now we start proofs. The main strategy is the following: we first decompose V ρ† − V ρK (≥ 0 since π† is a policy
such that Qλµ+(1−λ)π† ≥ Qλµ+(1−λ)π for any policy π) to V ρ† − ρKQK and ρKQK − V ρK = ρK(QK −QρK ); then we
note that V ρ† − ρKQK ≤ ρ†(Qρ† −QK) because of πK ∈ G(QK) and ρK = λµ+ (1− λ)πK ; these results tell us that
we need upper bounds of Qρ† −QK and QK −QρK , which we shall derive.

We first prove an upper bound of dK = Qρ† −QK .

Lemma 8. For any non-negative integer K, the following holds:

dK ≤
(
A†
)K
d0 +

K−1∑
k=0

(
A†
)K−k−1

εk ,

where
∑−1
l=0 fl := 01 for any sequence of functions (fl)l≥0.

Proof. From Lemma 1, we may deduce that

dK = Qρ† − (I − γλPµ)
−1

(r + γ(1− λ)PπK−1QK−1)− εK−1

= (I − γλPµ)
−1

[Qρ† − γλPµQρ† − r − γ(1− λ)PπK−1QK−1]− εK−1

= (I − γλPµ)
−1

(γPρ†Qρ† − γλPµQρ† − γ(1− λ)PπK−1QK−1)− εK−1

= γ(1− λ)(I − γλPµ)
−1

(Pπ†Qρ† − PπK−1QK−1)− εK−1 ,

where the last line follows from ρ† = λµ + (1 − λ)π†. Because πK−1 ∈ G(QK−1), we have PπK−1QK−1 ≥
Pπ†QK−1 . Furthermore, since (I − γλPµ)

−1
=
∑∞
t=0 γ

tλt(Pµ)t is monotone, (I − γλPµ)
−1PπK−1QK−1 ≥

(I − γλPµ)
−1Pπ†QK−1. As a result,

dK ≤ γ(1− λ)(I − γλPµ)
−1Pπ†(Qρ† −QK−1)− εK−1 = A†dK−1 − εK−1 .

By induction on K, the claim is proven.

We next prove an upper bound for QK −QρK . To this end, note that

QK −QρK = (I − γPρK )
−1

(QK − T ρKQK) = (I − γPρK )
−1
bK .

Therefore, we need an upper bound for bK , which is given below.

Lemma 9. For any non-negative integer K, the following holds:

bK ≤ AK−1 · · · A0b0 +

K−1∑
k=0

AK−1 · · · Ak+1(I − γPρk)εk ,

where AK−1 · · · AK := I and
∑−1
l=0 fl := 01 for any sequence of functions (fl)l≥0..

Proof. By a simple calculation, and πK ∈ G(QK),

bK = QK − r − γλPµQK − γ(1− λ)PπKQK ≤ (I − γλPµ)QK − r − γ(1− λ)PπK−1QK .
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From Lemma 1, we may deduce that

bK ≤ γ(1− λ)PπK−1QK−1 + (I − γλPµ)εK−1 − γ(1− λ)PπK−1QK

= γ(1− λ)PπK−1(QK−1 −QK) + (I − γλPµ)εK−1

= γ(1− λ)PπK−1(I − γλPµ)
−1

(QK−1 − T ρK−1QK−1) + (I − γPρK−1)εK−1

= AK−1bK−1 + (I − γPρK−1)εK−1 .

By induction on K, the claim is proven.

Now we are ready to prove an upper bound for V ρ† − V ρK . It is easy to derive the following two inequalities from the
monotonicity of Ak and A†:

bK ≤ AK−1 · · · A0‖b0‖∞1 + (1 + γ)

K−1∑
k=0

AK−1 · · · Ak+1‖εk‖∞1

= βK‖b0‖∞1 + (1 + γ)

K−1∑
k=0

βK−k−1‖εk‖∞1 ,

and

dK ≤
(
A†
)K‖d0‖∞1 +

K−1∑
k=0

(
A†
)K−k−1‖εk‖∞1

= βK‖d0‖∞1 +

K−1∑
k=0

βK−k−1‖εk‖∞1 .

Note that

V ρ† − V ρK = ρ†Q
ρ† − ρKQK + ρKQK − V ρK

≤ ρ†(Qρ† −QK) + ρKQK − V ρK

= ρ†dK + ρK(I − γPρK )
−1
bK .

Therefore, we may deduce that

V ρ† − V ρK ≤ βK
(
‖d0‖∞ +

‖b0‖∞
1− γ

)
1 +

2

1− γ

K−1∑
k=0

βK−k−1‖εk‖∞1,

where we used 1 + (1 + γ)/(1− γ) = 2/(1− γ). Because V ρ† −V ρK ≥ 0 and the right hand side is independent of a state,

‖V ρ† − V ρK‖∞ ≤ β
K

(
‖d0‖∞ +

‖b0‖∞
1− γ

)
+

2

1− γ

K−1∑
k=0

βK−k−1‖εk‖∞,

This concludes the proof.

H. A Proof of Theorem 4 (PQL’s Error Propagation with Behavior Policy Updates)
Here we provide error propagation analysis of PQL with behavior policy updates. We prove a bound tighter than the one
provided in Theorem 4 and derive the one in Theorem 4 as a corollary.5 Concretely, we derive the following bound:

‖V ∗ − V πK‖∞ ≤ ζ
K‖Q∗ −Q0‖∞ +

ζK

1− γ
‖b0‖∞ +

K−1∑
l=0

2ζK−l−1

1− γ
‖εl‖∞ ,

where ζ := 1− α+ αγ. It is not difficult to confirm that ζ ≤ η when α ≥ 1− λ. Therefore, this bound implies the bound
in Theorem 4. (Note that 0.5 ≤ max{λ, 1− γλ} ≤ 1 and it is negligible in the O notation.)

5We found this tighter bound after the submission of the main paper. We intend to include this result in a camera ready version of the
main paper if the paper is accepted.
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Definition and Notation. We first recall our problem setting: (approximate) PQL updates its Q-function by

πk ∈ G(Qk) , µk = απk + (1− α)µk−1 and Qk+1 := N µk,πk
λ Qk + εk,

where µ−1 is arbitrary.

We define the following notations, some of which differ from those defined in Appendix G:

• ρk := λµk + (1− λ)πk

• bk := Qk − T ρkQk

• dk := Q∗ −Qk

• Ak := γ(1− λ)Pπk(I − γλPµk)
−1

• β := γ(1− λ)/(1− γλ)

• P∗ := Pπ∗

• T ∗ := T π∗

Here we highlighted (by red color texts) differences from the definitions in Appendix G. Note that Ak is still a contraction
with modulus β.

Proofs. Now we start the proof. The main strategy is the almost same as the one we used in Appendix G: we first
decompose V ∗ − V πK to two components V ∗ − πKQK and πKQK − V πK , and then, we show an upper bound to each of
them.

We first prove an upper bound for bk, which turns out to be useful later.
Lemma 10. For any non-negative integer k, the following holds:

bk ≤ Ak−1 · · · A0b0 +

k−1∑
l=0

Ak−1 · · · Al+1(I − γPρl)εl ,

where A−1 · · · A0 = I, and
∑−1
l=0 fl := 01 for any sequence of functions (fl)l≥0.

Proof. Because πk ∈ G(Qk),

T ρkQk = λT µkQk + (1− λ)T πkQk ≥ T µkQk.

Therefore, bk ≤ Qk − T µkQk. By the assumption on µk,

T µkQk = r + γ(1− α)Pµk−1Qk + γαPπkQk
= r + γλPµk−1Qk + γ(1− λ)PπkQk + γ(α− (1− λ))(PπkQk − Pµk−1Qk)

≥ r + γλPµk−1Qk + γ(1− λ)PπkQk
≥ r + γλPµk−1Qk + γ(1− λ)Pπk−1Qk ,

where the third line follows since α ≥ 1− λ. Consequently

bk ≤ Qk − r − γλPµk−1Qk − γ(1− λ)Pπk−1Qk = (I − γλPµk−1)Qk − r − γ(1− λ)Pπk−1Qk .

From Lemma 1, we may deduce that

bk ≤ r + γ(1− λ)Pπk−1Qk−1 + (I − γλPµk−1)εk−1 − r − γ(1− λ)Pπk−1Qk

= γ(1− λ)Pπk−1(Qk−1 −Qk) + (I − γλPµk−1)εk−1

= Ak−1(Qk−1 − T ρk−1Qk−1)− γ(1− λ)Pπk−1εk−1 + (I − γλPµk−1)εk−1

= Ak−1 (Qk−1 − T ρk−1Qk−1)︸ ︷︷ ︸
=bk−1

+(I − γPρk−1)εk−1,
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where the last line follows from the definition of ρK−1 = λµK−1 + (1− λ)πK−1. Therefore, by induction on k, we may
deduce that

bk ≤ Ak−1 · · · A0b0 +

k−1∑
l=0

Ak−1 · · · Al+1(I − γPρl)εl .

This concludes the proof.

We use a simple corollary of this lemma, derived based on the monotonicity of (Ak)k≥0 and (Pρk)k≥0.

Corollary 10.1. For any non-negative integer k, the following holds:

bk ≤ βk‖b0‖∞1 + (1 + γ)

k−1∑
l=0

βk−l−1‖εl‖∞1 := b̄k .

where
∑−1
l=0 fl := 01 for any sequence of functions (fl)l≥0.

We next prove an upper bound for Q∗ −QK .

Lemma 11. For any non-negative integer K, the following holds:

dK ≤ ζK‖Q∗ −Q0‖∞ +

K−1∑
l=0

ζK−1−l
(

1− α(1− γλ)

1− γλ
b̄l + ‖εl‖∞1

)
,

where ζ := 1− α+ γα,
∑−1
l=0 fl := 01 for any sequence of functions (fl)l≥0, and b̄l is defined in Corollary 10.1.

Proof. We note that

QK = QK−1 + (I − γλPµK−1)
−1

(T ρK−1QK−1 −QK−1) + εK−1

= T ρK−1QK−1 − γλPµK−1(I − γλPµK−1)
−1
bK−1 + εK−1 .

Let us focus on deriving a lower bound of T ρK−1QK−1. From the definition of ρK−1 and µK−1,

T ρK−1QK−1 = (1− λ)T πK−1QK−1 + λT µK−1QK−1

= (1− λ+ αλ)T πK−1QK−1 + (1− α)λT µK−2QK−1

= (1− λ+ αλ)T πK−1QK−1 − (1− α)(1− λ)T πK−1QK−1 + (1− α)QK−1

+ (1− α)[λT µK−2QK−1 + (1− λ)T πK−1QK−1 −QK−1]

= αT πK−1QK−1 + (1− α)QK−1 − (1− α)[QK−1 − λT µK−2QK−1 − (1− λ)T πK−1QK−1] .

Recall that the first step of proving Lemma 10 is showing that bk ≤ Qk − λT µk−1Qk − (1 − λ)T πkQk. Therefore the
upper bound of bK−1 in the lemma can serve as an upper bound of QK−1 − λT µK−2QK−1 − (1− λ)T πK−1QK−1 too.
Accordingly,

Q∗ −QK ≤ Q∗ − αT πK−1QK−1 − (1− α)QK−1 +
1− α(1− γλ)

1− γλ
b̄K−1 + ‖εK−1‖∞1

≤ [(1− α)I + αγP∗](Q∗ −QK−1) +
1− α(1− γλ)

1− γλ
b̄K−1 + ‖εK−1‖∞1 .

By induction on K, we deduce that

Q∗ −QK ≤ [(1− α)I + αγP∗]K(Q∗ −Q0) +

K−1∑
l=0

ζK−1−l
(

1− α(1− γλ)

1− γλ
b̄l + ‖εl‖∞1

)

≤ ζK‖Q∗ −Q0‖∞1 +

K−1∑
l=0

ζK−1−l
(

1− α(1− γλ)

1− γλ
b̄l + ‖εl‖∞1

)
.

This concludes the proof.
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Now we are ready to prove an upper bound for V ∗ − V πK . Note that from Corollary 10.1 and Lemma 11

V ∗ − V πK = π∗Q
∗ − πKQK + πKQK − V πK

≤ π∗(Q∗ −QK) + πKQK − πKQπK

= π∗dK + πK(I − γPπK )
−1
bK

≤ ζK‖Q∗ −Q0‖∞1 +

K−1∑
l=0

ζK−1−l
(

1− α(1− γλ)

1− γλ
b̄l + ‖εl‖∞1

)
+

1

1− γ
b̄K .

We simplify
∑K−1
l=0 ζK−1−lb̄l as follows:

K−1∑
l=0

ζK−1−lb̄l =

K−1∑
l=0

ζK−1−lβl‖b0‖∞1 +

K−1∑
l=0

ζK−l−1(1 + γ)

l−1∑
m=0

βl−m−1‖εm‖∞1

=
ζK − βK

ζ − β
‖b0‖∞1 + (1 + γ)

K−2∑
m=0

K−1∑
l=m+1

ζK−l−1βl−m−1‖εm‖∞1

=
ζK − βK

ζ − β
‖b0‖∞1 + (1 + γ)

K−2∑
m=0

K−m−2∑
l=0

ζK−m−l−2βl‖εm‖∞1

=
ζK − βK

ζ − β
‖b0‖∞1 + (1 + γ)

K−2∑
m=0

ζK−m−1 − βK−m−1

ζ − β
‖εm‖∞1 ,

where the last line follows from

K−m−2∑
l=0

ζK−m−l−2βl = ζK−m−2
K−m−2∑
l=0

(
β

ζ

)l
= ζK−m−2

1−
(
β
ζ

)K−m−1

1− β
ζ

=
ζK−m−1 − βK−m−1

ζ − β
.

Using this result and

ζ − β = 1− α+ αγ − γ(1− λ)

1− γλ
= 1− γ(1− λ)

1− γλ
− α(1− γ) =

1− γ
1− γλ

− α(1− γ) =
(1− γ)(1− α(1− γλ))

1− γλ
,

we deduce that

V ∗ − V πK ≤ ζK‖Q∗ −Q0‖∞1 +
ζK − βK

1− γ
‖b0‖∞1

+ (1 + γ)

K−2∑
l=0

ζK−l−1 − βK−l−1

1− γ
‖εl‖∞1 +

K−1∑
l=0

ζK−1−l‖εl‖∞1 +
1

1− γ
b̄K

= ζK‖Q∗ −Q0‖∞1 +
ζK

1− γ
‖b0‖∞1 +

K−1∑
l=0

2ζK−l−1

1− γ
‖εl‖∞1 ,

where we used 1 + (1 + γ)/(1− γ) = 2/(1− γ). Because V ∗ − V πK ≥ 0 and the right hand side is independent of a state,

‖V ∗ − V πK‖∞ ≤ ζ
K‖Q∗ −Q0‖∞ +

ζK

1− γ
‖b0‖∞ +

K−1∑
l=0

2ζK−l−1

1− γ
‖εl‖∞.

This concludes the proof.

I. Details on Maximum-entropy RL
The maximum-entropy RL (Ziebart et al., 2008; Fox et al., 2016; Asadi & Littman, 2017; Haarnoja et al., 2017; 2018)
formulates that the agent maximizes both cumulative rewards and entropy at the same time. In particular, for a fixed α > 0,
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let Gent(x, a) be
∑∞
t=0 γ

t(Rt + αHt) conditional on X0 = x,A0 = a where Ht is the entropy of policy π(·|Xt). Define
the maximum-entropy Q-function Qπent(x, a) := E[r(X0, A0) + γGent(X1, A1)|X0 = x,A0 = a]. It is then possible to
define Bellman operators as well as their multi-step variants as in Section 3. Due to space limit, we postpone their details in
Appendix I.

It is straightforward to extend off-policy Q(λ) actor-critic algorithm to the formulation of maximum-entropy RL (Fox et al.,
2016; Haarnoja et al., 2017). Maximum-entropy actor-critic algorithms also maintain a Q-function Qφ(x, a) along with a
stochastic policy πθ(a|x). With off-policy data (xt, at, rt)

∞
t=0, one could modify Equation 7 to recursively compute the

Q-function targets as

Q̂i = ri + γV̂ent(xi+1) + +γλ
(
Q̂i+1 − V̂ent(xi+1)

)
, (6)

where the value target V̂ent(xi+1) = Qφ−(xi+1, πθ−(xi+1)) + αtdH(πθ−(·|xi+1)). Contrasting Equation 6 and Equation 7,
the major difference is that the Q-function target is augmented with an entropy bonus αtdH(πθ−(·|xi+1)). Given a batch of
data (x

(j)
0 , a

(j))
0 )Bj=1, The policy is updated via gradient ascent θ ← θ+∇θ 1

B

∑V
j=1Qφ(x

(j)
0 , πθ(x

(j)
0 )+αpolH(πθ(·|x(j)

0 )).
See Appendix I for the pseudocode of the full algorithm.

In theory, here, one should set αpol = αtd = α to ensure that the fixed point is unbiased when the collected data are
on-policy µ = π. However, in practice, we find that large αtd tends to destabilize the update. In particular, when setting
αpol = αtd = 0.1 chosen as the default hyper-parameter, multi-step SAC does not learn stably. We hypothesize that this
is because when αtd > 0, an entropy bonus term is added to the target Q-function at each step (over n ≥ 1 steps), whose
numerical scale makes it much more difficult to learn a proper Q-function.

Instead, we find that a stable alternative is to set αtd = 0 except at the last time step, where αtd = α = 0.2. This greatly
stablizes the update as the intermediate entropy bonus is effectively removed. It is of interest to study how such bonus term
affects the performance of multi-step algorithms and how to align the practice more consistently with theory.

J. Experiments
J.1. Further details on implementations of Peng’s Q(λ)

Generic off-policy actor-critic deep RL algorithms. We provide pseudocode for generic off-policy actor-critic deep
RL algorithms in Algorithm 1. These algorithms maintain a Q-function critic Qφ(x, a) and a policy πθ(x). In
general, The algorithm collects data with an exploratory behavior policy µ and saves tuples (xt, at, rt) into a re-
play buffer D. At each training iteration, the critic Qφ(x, a) is updated by minimizing squared errors against a Q-
function target ED

[
(Qφ(x, a)−Qtarget(x, a))2

]
. The policy is updated via the deterministic policy gradient θ ←

θ + αEµ [∇θQφ(x, πθ(x))] (Silver et al., 2014).

Now, we focus on the definition of targets Qtarget(x, a). Given the transitions (x, a, r, x′), one popular choice (see, e.g.,
(Lillicrap et al., 2016; Fujimoto et al., 2018)) is to compute the target as Qtarget(x, a) = r + γQφ−(x′, πθ−(x′)) where
θ−, φ− are delayed copies of θ, φ respectively (Mnih et al., 2015). An interpretation is that since the policy follows the
deterministic gradient through Qφ(x, a), it serves as an approximate greedy operator πθ(x) ≈ arg maxaQφ(x, a). Note
that when A is continuous, the exact greedy operation maxaQφ(x, a) is not tractable. In this sense, the above update is an
approximate stochastic estimate of the Bellman operator T Q(x, a).

Algorithm 1 Off-policy Q(λ) actor-critic algorithm
Require: policy πθ(x), critic Qφ(x, a), target parameters θ−, φ− and learning rate α

while not converged do
1. Collect partial trajectories (xt, at, rt)

T
t=1 under behavior policy µ.

2. Samples B partial trajectories each of length n from the replay buffer D.
3. Construct Q(λ) targets Q(j)

targ. Gradient descent update on critic φ← φ− α 1
B∇φ

∑B
j=1(Qφ(x

(j)
0 , a

(j)
0 )−Q(j)

targ)2.

4. Gradient ascent on policy θ ← θ +∇θ 1
B

∑B
j=1Qφ(x

(j)
0 , πθ(x

(j)
0 )).

5. Update the target parameters θ− ← θ, φ− ← φ.
end while
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Recursive computations of Q-function targets. The target value defined by the Q(λ) operator could be computed
recursively. In particular, given an infinite trajectory (x0, a0, r0, x1, a1, r1, ...). Assume that we have a Q-function critic
Qφ(x, a). Let Q̂i be the target value estimate at time step i, then

Q̂i = ri + γmax
a

Qφ(xi, a) + γλ
(
Q̂i+1 −max

a
Qφ(xi, a)

)
.

For continuous action space where computing maxaQ(xi, a) is difficult, we propose to replace maxaQφ(x, a) ≈
Qφ(x, πθ(x)). In addition, in practice, it is not feasible to generate trajectories of an infinite length. For a partial
trajectory (x0, a0, r0, x1, a1, r1, ...xn) of length n, we bootstrap the Q-function value at the end of the trajectory as
Q̂n = Qφ−(xi, πθ(xi)−). Then the target at (x0, a0) can be recursively computed as

Q̂i = ri + γQφ−(xi+1, πθ−(xi+1)) + γλ
(
Q̂i+1 −Qφ−(xi+1, πθ−(xi+1))

)
. (7)

J.2. Implementations and algorithms for continuous control in deep RL

Implementation code base. We adapt the base implementations in OpenAI SpinningUp (Achiam, 2018). All algorithmic
variants adopt default hyper-parameters from the code base. These include learning rates, batch size, replay buffer size,
target network update rules, as well as other missing hyper-parameters.

Deep deterministic policy gradient (DDPG). DDPG (Lillicrap et al., 2016) maintains a deterministic policy network
πθ(a|x) ≡ πθ(x) and a Q-function critic Qφ(x, a). The algorithm explores by executing a perturbed policy a = ε+ πθ(x)
where ε ∼ N (0, σ2) for σ = 0.1, and then saves the data (x, a, r, x′) into a replay buffer D. At training time, the behavior
data is sampled uniformly from the replay buffer (xi, ai, ri, x

′
i)
B−1
i=0 ∼ U(D) with B = 100. The critic is updated via TD(0),

by minimizing: 1
B

∑B−1
i=0 (Qφ(xi, ai) − Qtarget(xi, ai))

2 where Qtarget(xi, ai) = ri + γQφ′(x
′
i, πθ′(x

′
i)), where θ′, φ′ are

delayed versions of θ, φ respectively (Mnih et al., 2015). The policy is updated by maximizing 1
B

∑B−1
i=0 Qφ(xi, πθ(xi))

with respect to θ. Both parameters θ, φ are trained with the Adam optimizer (Kingma & Ba, 2015) with learning rate
α = 10−4. We adopt other default hyper-parameters in (Achiam, 2018), for details, please refer to the code base.

Twin-delayed deep deterministic policy gradient (TD3). TD3 (Fujimoto et al., 2018) adopts the same training pipeline
and architectures as DDPG. TD3 also adopts two critic networks Qφ1

(x, a), Qφ2
(x, a) with parameters φ1, φ2, in order to

minimize the over-estimation bias (Hasselt, 2010).

Soft actor-critic (SAC). SAC (Haarnoja et al., 2018) adopts the same training pipeline and architecture as DDPG and
TD3. However, the critical difference is that SAC augments the reward functions with state-wise entropy to discourage the
policy from collapsing to a deterministic distribution. It also maintains two networks to counter the over-estimation bias as
TD3. Please see Appendix I for further backgrounds regarding maximum-entropy RL.

J.3. Further details on baseline operators (algorithms)

Uncorrected n-step. We implement uncorrected n-step as one of the baseline algorithms (Hessel et al., 2018). This
implements the target Q-functions as Q̂i =

∑i+n−1
j=i γj−irj + γn maxaQφ(xi+n, a) where Qφ is the Q-function network.

It is uncorrected because there is no importance sampling ratios that adjust the discrepancy between the π and µ. In
continuous control, the maximization operation is replaced by the output of the policy network, i.e. Qφ−(xi+n, πθ−(xi+n).
When n = 1, we recover the one-step baseline of a vanilla baseline algorithm.

Peng’s Q(λ). As briefly discussed in the main paper, we implement a version Peng’s Q(λ) with finite horizon n. This means
that the recursive computation of target defined in Eqn 7 holds until the n-th step, where Q̂i+n = Qφ−(xi+n, πθ(xi+n)).
This is because in practice, trajectories are always truncated and of finite lengths, which implies that at the end of trajectories
we need to bootstrap directly from the learned Q-functions.

Retrace. We implement Retrace (Munos et al., 2016) as a baseline algorithm for comparison. Retrace computes the
Q-function target recursively as

Q̂i = ri + γQφ−(xi+1, πθ−(xi+1)) + γci

(
Q̂i+1 −Qφ−(xi+1, ai+1)

)
. (8)



Revisiting Peng’s Q(λ) for Modern Reinforcement Learning

Here, the trace coefficient ci = λmin(πθ(ai|xi)
µ(ai|xi) , c̄) where c̄ is the truncation level. By default, λ = c̄ = 1. The motivation is

that the variance is controlled by truncating the importance sampling ratio. As a result of the update, TD3 is not directly
compatible with the update because it requires π, µ to be both stochastic. We implement a version of TD3 with a stochastic
actor: πθ(a|x) = tanh (µθ(x) + σθ(x) · ε), where ε ∼ N (0, I) and tanh(x) = (exp(x)−exp(−x))/(exp(x)+exp(−x)) ∈
(−1, 1). The log probability lnπ(a|x) is still tractable and can be analytically computed (see, e.g., similar computations
in (Haarnoja et al., 2018)). The behavior policy µ is implemented as µ(a|x) = tanh (µθ(x) + σ · ε) with a fixed standard
deviation parameter σ = 0.1. These hyper-parameters are chosen such that they match the scale of action perturbation in the
original TD3 implementation.

Ctrace. Ctrace (Rowland et al., 2020) is an adaptive off-policy learning algorithm based on Retrace. Its main idea is
to adjust the target policy at evaluation time. Instead of evaluating Qπ, the target Q-function is changed to Qαπ+(1−α)µ

where α ∈ [0, 1] is a trainable coefficient that interpolates target policy and behavior policy. By changing α, Ctrace achieves
a trade-off between fixed point bias (against Qπ) and contraction rate. We always adapt α such that the contraction rate
of the overall operator matches a particular value Γ. Since we implement a version of Ctrace with finite horizon n, we
use the following modified definition of the contraction rate so that the contraction rate ranges from 0 to 1 regardless of n:
1− 1−γ

1−γnE[
∑n−1
t=0 γ

t
∏t
s=1((1− α) + αρs)], where ρs := πθ(as|xs)/µ(as|xs). Throughout experiments, we set Γ = 0.7.

See (Rowland et al., 2020) for more comprehensive description of the algorithm.

Tree-backup. Similar to Retrace, algorithms such as tree-backup (Precup et al., 2000) also preserve the unbiased fixed
point of the operator as Qπ. Tree-backup adopts the same recursive computation as Retrace in Eqn 8 except that the trace
coefficient is ci = πθ(ai|xi). However, the tree-backup algorithm was developed for discrete action space alone, where the
probability πθ(ai|xi) ∈ [0, 1]. For continuous control tasks, this is not true because πθ(a|x) is a density. We observe that
naive implementations of tree-backup algorithm leads to very unstable update because of the numerical scale of lnπθ(a|x).
Empirically, we find that the performance of tree-backup to be very poor on continuous control tasks and we do not include
the results.

J.4. Further details on the toy example

At each iteration t of the algorithm, we maintain a Q-function table Q(t)(x, a). Given a sampled trajectory (xt, at, rt)
D−1
t=0 ,

the operator (e.g. Retrace or Peng’s Q(λ)) constructs targets Qtarget(x, a). The Q-functions are updated as Q(t+1)(x, a)←
(1−α)Q(t)(x, a) +αQtarget(x, a). Then the policy is updated as π(t) ← (1−α)π+απg(Q

(t)(x, a)) where πg(Q(t)(x, a))
is the greedy policy with respect to Q(t)(x, a). Throughout experiments, the learning rate is fixed α = 0.1.

When computing the target Q-functions Qtarget(x, a), we apply the recursive computations introduced in previous sections.
This is applied to all state-action pairs along sampled trajectories. At each iteration, the algorithm collects N = 1 trajectory
from the MDP.

J.5. Additional evaluations on standard benchmarks

Detailed hyper-parameters. In the main paper, we use n = 5 for all multi-step algorithms to cap the length of the partial
trajectories. For Peng’s Q(λ), we set λ = 0.9 throughout the experiments.

Further results. See Figure 4 for additional experiments on evaluations over standard benchmarks. We further evaluate
TD3 variants over tasks from Bullet physics (B) and OpenAI gym (G). Throughout the experiments, we use n = 5 for all
multi-step algorithms to cap the length of the partial trajectories. For Peng’s Q(λ), we set λ = 0.7. Overall, Peng’s Q(λ)
performs fairly stably, though it does not perferm the best per task. Interestingly, Retrace performs fairly well on Ant(G),
which is in sharp contrast to its relatively poor performance across other tasks. We no longer include DDPG as a baseline as
it is generally considered a slightly less competitive baseline compared to TD3.

J.6. Additional evaluations on sparse rewards benchmarks

Sparse rewards. We implement delayed rewards as a form of sparse rewards. Delayed reward environment tests
algorithms’ capability to tackle delayed feedback in the form of sparse rewards (Oh et al., 2018). In particular, a standard
benchmark environment returns dense reward rt at each step t. Consider accumulating the reward over d consecutive steps
and return the sum at the end k steps, i.e. r′t = 0 if t mod k 6= 0 and r′t =

∑t
τ=t−d+1 rτ if t mod d = 0. Throughout the
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(a) Ant(G) (b) Walker(G) (c) Ant(B) (d) HalfCheetah(B)

Figure 4. Evaluation of TD3 baselines over continuous control domains. Each curve corresponds to a baseline algorithm averaged over 5
random seeds. (B) denotes tasks from Bullet physics and (G) denotes tasks from OpenAI gym.

experiments, we set d = 3.

Detailed hyper-parameters. We use n = 5 for all multi-step algorithms to cap the length of the partial trajectories. For
Peng’s Q(λ), we set λ = 0.7 throughout the experiments.

Further results. See Figure 5 for additional experiments on evaluations over standard benchmarks. We further evaluate
TD3 variants over tasks from Bullet physics (B) and OpenAI gym (G). Throughout the experiments, we use n = 5 for all
multi-step algorithms to cap the length of the partial trajectories. For Peng’s Q(λ), we set λ = 0.7. Overall, Peng’s Q(λ)
performs fairly stably, though it does not perferm the best per task. Interestingly, consistent with results in Figure 4, Retrace
performs well in Ant(G) with sparse rewards.

(a) Ant(G) (b) Walker(G) (c) Ant(B) (d) HalfCheetah(B)

Figure 5. Evaluation of TD3 baselines over continuous control domains with sparse rewards. Each curve corresponds to a baseline
algorithm averaged over 5 random seeds. (B) denotes tasks from Bullet physics and (G) denotes tasks from OpenAI gym.

J.7. Experiment results on maximum-entropy RL

We build on soft actor-critic (SAC) (Haarnoja et al., 2018) and evaluate algorithmic variants over standard benchmark
tasks. For Peng’s Q(λ), we use λ = 0.7. In Figure 6 we show the results across all selected benchmark tasks. Peng’s Q(λ)
generally performs more stably than other baselien variants. This is highlighted by the fact that Peng’s Q(λ) always ranks as
the top two baselines per each task. As an additional empirical observation, we find that SAC generally performs not as well
as TD3 on DM control suites. We speculate that this might be because throughout the experiments we use α = 0.2. An
adaptive entropy coefficient might further improve the performance.

J.8. Ablation on λ

In Figure 7, we show the ablation study on the sensitivity of Peng’s Q(λ) to its only hyper-parameter λ. We choose
λ ∈ {0.3, 0.5, 0.7, 0.9} and examine the performance of the resulting algorithms over DM control suite (sparse rewards).
Overall, we see that the best hyper-parameter is achieved λ ≈ 0.7. When λ deviates from this value, its performance is still
relatively robust. When λ decreases, we see its performance degrades more drastically than when it increases. Finally, it is
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(a) Ant(G) (b) Walker2d(G) (c) Ant(B) (d) HalfCheetah(B)

(e) CheetahRun(D) (f) WalkerStand(D) (g) WalkerRun(D) (h) WalkerWalk(D)

Figure 6. Evaluation of soft actor-critic (SAC) variants over standard continuous control domains. Each curve corresponds to a baseline
algorithm averaged over 5 random seeds. We consider tasks from gym (G), bullet physics (B) and DM control suite (D).

worth noting that across all our previous evaluations, we always select λ ∈ {0.7, 0.9} and adopt a single λ for benchmark
tasks with the same simulation backend. This shows the robustness of Peng’s Q(λ) in practical applications.

(a) CheetahRun(D) (b) WalkerStand(D) (c) WalkerRun(D) (d) WalkerStand(D)

Figure 7. Ablation study on the sensitivity of Peng’s Q(λ) to the hyper-parameter λ. Each curve corresponds to a choice of λ averaged
over 5 random seeds.


