Learning in two-player zero-sum partially observable Markov games (POMGs) with perfect recall

Tadashi Kozuno*, Pierre Ménard*, Rémi Munos, Michal Valko (* equal contribution)

Two-player Zero-sum IIG with Perfect Recall

- \mathcal{S} : State space of size S, Horizon H
- \mathscr{X} : Max-player's information set space of size X
- \mathscr{A} : Max-player's action space of size A
- \mathcal{Y} : Min-player's information set space of size Y
- \mathscr{B} : Min-player's action space of size B
- r_h, p_h : Reward/loss function and state-transition dynamics

Fig 1. An IIG with H = 2, $\mathscr{A} = \{a_1, a_2\}$, and $\mathscr{B} = \{b_1, b_2\}$. Only maxplayer's information sets are shown.

Actions forgotten Information set forgotten Fig 2. Examples where the perfect-recall assumption is not met at transitions indicated by dashed lines.

The Problem	Regret, Average Profile, and Nash Equilibrium		
Find a Nash equilibrium (NE) of an imperfect information	For a profile (μ, ν) , the expected return (of the max-player) is defined by $V^{\mu,\nu} := \mathbb{E}^{\mu,\nu} \left[\sum_{h=1}^{H} r_h(s_h, a_h, b_h) \right]$. When a profile (μ, ν) satisfies the following, it is said to be an ε -NE: $\max_{\mu'} V^{\mu',\nu} - \min_{\nu} V^{\mu,\nu'} \le \varepsilon$ The LHS is an exploitability gap. For a sequence of profiles (μ^t, ν^t) , the regret of the max-player, relative to some policy μ , is defined as \mathfrak{M}^T $(\mu) := \mathbf{\Sigma}^T \left(V^{\mu,\nu^t} - V^{\mu^t,\nu^t} \right)$		
game (IIG) with perfect recall, with high probability, only			
using bandit feedbacks.			
Our Contributions			
• Propose a computationally efficient model-free algorithm			
called IXOMD, by combining implicit exploration (IX) and			
online mirror descent (OMD).			
• A high-prob exploitability gap bound of order $1/\sqrt{T}$.	$m_{\max}(\mu) - \Sigma_{t=0}$	=1 (// /	- v) .
• A high-prob regret bound of order \sqrt{T} .	An average profile $(\bar{\mu}, \bar{\nu})$ is a profile such that $V^{\bar{\mu},\nu} = \sum_{t=1}^{T} V^{\mu^{t},\nu}/T$ and $V^{\mu,\bar{\nu}} = \sum_{t=1}^{T} V^{\mu,\nu^{t}}/T$ for any profile (μ, ν) . It is guaranteed to exist and computable.		
T: Number of game plays			
Algorithm 1: IXOMD for the Max-Player	Main Theorem		
Input: IX hyper-parameter $\gamma \in (0, \infty)$ and OMD's learning rate $\eta \in (0, \infty)$. Output: A near-NE policy for the max-player. Initialize $\mu_h^1(a_h x_h) \leftarrow 1/A$ for each $(x_h, a_h, h) \in \mathcal{X}_h \times \mathcal{A} \times [H]$. for $t = 1,, T$ do for $h = 1,, H$ do Observe x_h^t , execute $a_h^t \sim \mu_h^t(\cdot x_h^t)$, and receive r_h^t . end Set $Z_{H+1}^t \leftarrow 1$. for $h = H,, 1$ do Construct the IX loss estimate $\tilde{\ell}_h^t$ by	Let $\delta \in (0,1)$. If the max-player is trained by IXOMD with appropriate learning rate and IX parameter, then with probability at least $1 - \delta$, its regret \Re_{\max}^T is bounded by $\tilde{O}(X\sqrt{AT})$. If the min-player is trained similarly, then with probability at least $1 - \delta$, the average profile $(\bar{\mu}, \bar{\nu})$ is ε -Nash equilibrium, where $\varepsilon := \tilde{O}\left((X\sqrt{A} + Y\sqrt{B})/\sqrt{T}\right).$		
$\widetilde{\ell}_h^t \leftarrow \frac{1 - r_h^t}{\prod_{i=1}^h \mu_i^t(a_i^t x_i^t) + \gamma}$	Comparison to Previous Results		
For each $h \in [H]$ (with $Z^t \leftarrow 1$)	Algorithm	Adv. game	Rate
$\int I \text{ for each } n \in [\Pi] \text{ (when } \mathbb{Z}_{H+1} \leftarrow 1)$	Zhou et al. (2020) model-based	no	$\widetilde{\mathcal{O}}(\max(X\sqrt{A}+Y\sqrt{B},\sqrt{S})/\sqrt{T})^{-1}$
$Z_h^t \leftarrow 1 - \mu_h^t(a_h^t x_h^t) + \mu_h^t(a_h^t x_h^t) \exp\left(-\eta \widetilde{\ell}_h^t + \log Z_{h+1}^t\right).$	Zhang and Sandholm (2021)		$\widetilde{\mathcal{O}}((X\sqrt{A}+Y\sqrt{B})/\sqrt{T})$
Undate u^t to u^{t+1} at r^t by	Lanctot et al. (2009); Farina et al. (2020)		$\widetilde{\mathcal{O}}((X\sqrt{A}+Y\sqrt{B})/\sqrt{T})$
	Farina and Sandholm (2021) model-free		$\mathcal{O}(\operatorname{poly}(X, A, Y, B)/T^{1/4})$
$\mu_{h}^{t+1}(a_{h} x_{h}^{t}) \leftarrow \int \mu_{h}^{t}(a_{h} x_{h}^{t}) \exp\left(-\eta \widetilde{\ell}_{h}^{t} + \log Z_{h+1}^{t} - \log Z_{h}^{t}\right) \text{if } a_{h} = a_{h}^{t}$	Farina et al. (2021b)	yes	$\frac{\mathcal{O}((XA+YB)/\sqrt{T})^2}{\widetilde{\mathcal{O}}((XI\sqrt{T})\sqrt{T})}$
$\mu_h^{t}(a_h x_h^t) \propto \left(\mu_h^t(a_h x_h^t) \exp(-\log Z_h^t) \right) $ otherwise	IXOMD (this paper)		$\mathcal{O}((X\sqrt{A}+Y\sqrt{B})/\sqrt{T})$
and $\mu^{t+1}(\cdot x_h) \leftarrow \mu^t(\cdot x_h)$ at other information sets $x_h \in \mathcal{X}_h$. end	Table 1: Algorithms for computing a NE of an bound on the exploitability gap after T episodes the algorithm could be used to obtain a \sqrt{T} -regression of the exploration of the exploration of the explorement of the explo	IIG with band In the adver- ret for one play	dit feedback and their respective upper sarial game column we precise whether yer when the other player and the game
end	are cnosen by an adversary at each episodes. ¹ Only in expectation according to a known prior on the game.		
return Average policy µ	² Only in expectation.		

$$V^{\mu,\nu} := \mathbb{E}^{\mu,\nu} \left[\sum_{h=1}^{H} r_h(s_h, a_h, b_h) \right].$$

$$\max_{\mu'} V^{\mu',\nu} - \min_{\nu} V^{\mu,\nu'} \le \varepsilon$$

$$\mathfrak{R}_{\max}^{T}(\mu) := \sum_{t=1}^{T} \left(V^{\mu,\nu^{t}} - V^{\mu^{t},\nu^{t}} \right)$$

$$V^{\bar{\mu},\nu} = \sum_{t=1}^{T} V^{\mu^{t},\nu}/T \text{ and } V^{\mu,\bar{\nu}} = \sum_{t=1}^{T} V^{\mu,\nu^{t}}/T$$

$$\varepsilon := \tilde{O}\left((X\sqrt{A} + Y\sqrt{B}) / \sqrt{T} \right) \,.$$