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Fig1. AnlIGwith H =2, 9/ = {a,a,},and B = {b, b,}. Only max-
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The Problem

Find a Nash equilibrium (NE) of an imperfect information
game (IIG) with perfect recall, with high probability, only
using bandit feedbacks.

Our Contributions
* Propose a computationally efficient model-free algorithm

called IXOMD, by combining implicit exploration (IX) and

online mirror descent (OMD).

e A high-prob exploitability gap bound of order 1/ ﬁ .
e A high-prob regret bound of order ﬁ :

I: Number of game plays

Algorithm 1: 1X0MD for the Max-Player

Input: IX hyper-parameter v € (0, oc) and OMD’s learning rate 1 € (0, 00).
Output: A near-NE policy for the max-player.
Initialize p; (ay|zy,) < 1/A for each (zy,, ap, h) € &), x A x [H].
fort=1,...,7T do
forh=1,...,H do
| Observe z;, execute aj ~ pu; (-|x} ), and receive ry .
end
Set Zj; ., «+ L

forh=H,....,1do
Construct the IX loss estimate ¢, by

~ 1 —r!
£’t A= t tht '
Hi:l /—‘i.(ai.lxi.) +

For each h € [H] (with Z}; | « 1)

Zh 1 — ph(ah|ah) + ph (ah k) exp( —nif +log Z4, 1 ).

Update p' to p'** at 2% by

Regret, Average Profile, and Nash Equilibrium

For a profile (i, v), the expected return (of the max-player) is defined by
H
UV o [CU,V Z
Vi = [ h=1 rh(sha Ay, bh)] '

When a profile (i, V) satisfies the following, it is said to be an &-NE:

max , V**¥ —min, V** < e

The LHS is an exploitability gap. For a sequence of profiles (u’, 1"), the

regret of the max-player, relative to some policy , is defined as
RE G0 = BT, (V- v
An average profile (fz, D) is a profile such that
Viv =% VFVIT and VA2 =Y VRVIT

for any profile (i, v). It is guaranteed to exist and computable.

Main Theorem

Let 6 € (0,1). If the max-player is trained by IXOMD with appropriate
learning rate and IX parameter, then with probability at least 1 — 9, its

regret R is bounded by O(X\/AT). If the min-player is trained

max
similarly, then with probability at least 1 — 0, the average profile (fi, V) is €

-Nash equilibrium, where

e =0 <(X\/Z + Yﬁ)/ﬁ) |

Comparison to Previous Results

Algorithm Adyv. game Rate
Zhou et al. (2020) - O(max(XVA+YVB,VS)/VT) !
Zhang and Sandholm (2021) no O(XVA+YVB)/VT)
Lanctot et al. (2009); Farina et al. (2020) O(XVA+YVB)/VT)
Farina and Sandholm (2021) O(poly(X, A,Y, B)/T'/4)
model-free =
Farina et al. (2021b) yes O(XA+YB)/VT)?2

O(XVA+YVB)/VT)

LX0MD (this paper)

‘41 P u; (ap|z}) exp(—nz,f +log Z; .| — log th;) if aj, = aj,
py  (an|zy) A . . :
u; (ap|z},) exp(— log Z;) otherwise

Table 1: Algorithms for computing a NE of an IIG with bandit feedback and their respective upper
bound on the exploitability gap after 7" episodes. In the adversarial game column we precise whether

and p* 1 (-|zy,) < p'(-|zp) at other information sets z;, € A, .

Actions fo rg otten Information set fo rg otten end the algorithm could be used to obtain a v/T-regret for one player when the other player and the game
: : : are chosen by an adversary at each episodes.
Fig 2. Examples where the perfect-recall assumption is not met end .

2 Only in expectation.
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