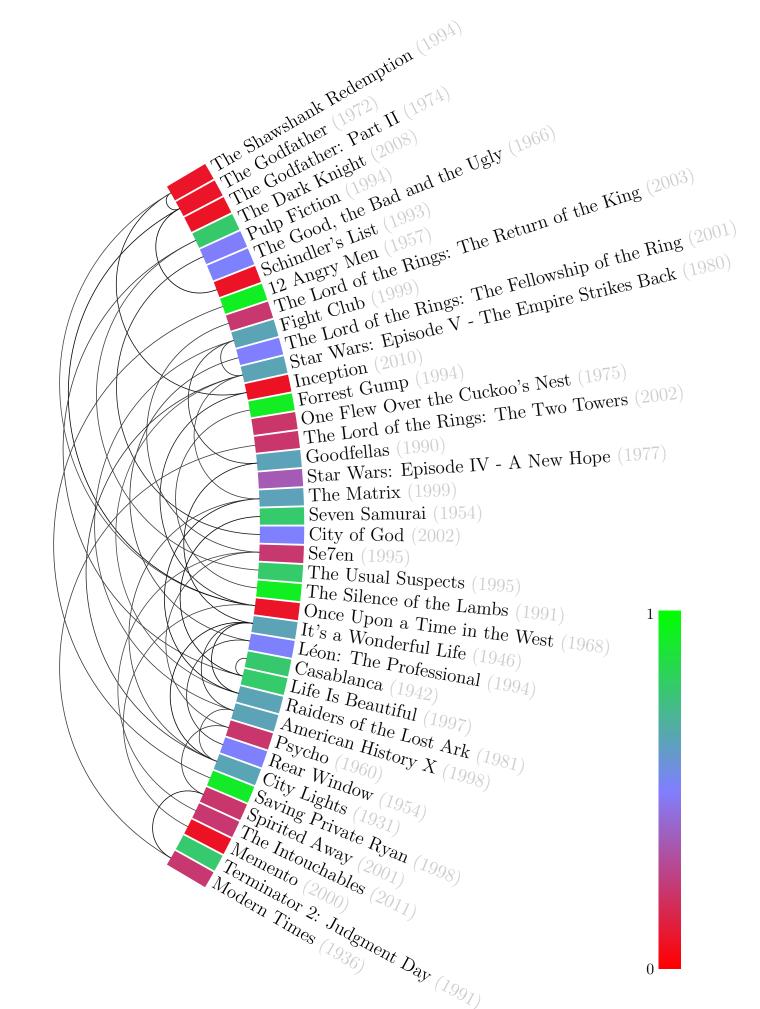
SPECTRAL THOMPSON SAMPLING

Tomas.Kocak@inria.fr, Michal.Valko@inria.fr, Remi.Munos@inria.fr, and Shipra@microsoft.com

Microsoft® Research

MOTIVATION - MOVIE RECOMMENDATION

- Goal: Movie recommendation based on similarities
- Challenges: Good prediction after just a few steps $(T \ll N)$
- Prior knowledge: The preferences of movies are smooth over a given weighted similarity graph



- Colors represent *single*-user preferences.
- Connected (similar) movies have similar user ratings
- Existing solution: SpectralUCB algorithm [3]
- New solution: SpectralTS (computationally more efficient)

SMOOTH GRAPH FUNCTIONS

- Graph function: mapping from set of the graph vertices V(G) into real numbers
- Smoothness of a graph function $S_G(f)$:
 - eigendecomposition of graph Laplacian: $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$

$$S_G(f) = \frac{1}{2} \sum_{u,v \in V(G)} w_{u,v} (f(u) - f(v))^2 = \mathbf{f}^{\mathsf{T}} \mathcal{L} \mathbf{f}$$
$$= \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{f} = \boldsymbol{\mu}^{\mathsf{T}} \mathbf{\Lambda} \boldsymbol{\mu} = \|\boldsymbol{\mu}\|_{\mathbf{\Lambda}} = \sum_{i=1}^{N} \lambda_i \mu_i^2$$

- Observation: $S_G(\mathbf{q}_i) = \lambda_i$
- Smoothness and regularization: Small value of (a) $S_G(f)$ (b) Λ norm of μ (c) μ_i for large λ_i

EFFECTIVE DIMENSION

Definition 1. Let the *effective dimension* d be the largest d such that

$$(d-1)\lambda_d \leq \frac{T}{\log(1+T/\lambda)}.$$

- d is small when the coefficients λ_i grow rapidly above time.
- *d* is related to the number of "non-negligible" dimensions

SETTING

- **Task:** Each time *t*, pick an action (node) to get a reward.
- **Reward:** $\mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu} + \varepsilon_t$ (with unknown parameter $\boldsymbol{\mu}$)
 - \mathbf{b}_i is the *i*-th row of \mathbf{Q}
 - reward is a combination of smooth eigenvectors
- Goal: Minimize the cumulative regret w.r.t. the best node

$$R_T = T \max_{v} \mathbf{b}_v^{\mathsf{T}} \boldsymbol{\mu} - \sum_{t=1}^{T} \mathbf{b}_{a(t)}^{\mathsf{T}} \boldsymbol{\mu}$$

SPECTRAL THOMPSON SAMPLING

- Play arm which maximizes posterior probability of being the best
 - Sample $\tilde{\boldsymbol{\mu}}$ from the distribution $\mathcal{N}(\hat{\boldsymbol{\mu}}, v^2 \mathbf{B}^{-1})$
 - Play arm which maximizes $\mathbf{b}^{\mathsf{T}}\tilde{\boldsymbol{\mu}}$ and observe reward
- Compute posterior distribution according to reward received

Input:

N: number of arms, T: number of pulls $\{\Lambda_{\mathcal{L}}, \mathbf{Q}\}$: spectral basis of graph Laplacian \mathcal{L}

 λ , δ : regularization and confidence parameters

R, C: upper bounds on noise and $\|\mu\|_{\Lambda}$

Initialization:

$$v = R\sqrt{6d\log((\lambda + T)/\delta\lambda)} + C$$

 $\hat{\boldsymbol{\mu}} = 0_N, \mathbf{f} = 0_N, \mathbf{B} = \boldsymbol{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}_N$

Run:

for t = 1 to T do Sample $\tilde{\boldsymbol{\mu}} \sim \mathcal{N}(\hat{\boldsymbol{\mu}}, v^2 \mathbf{B}^{-1})$

 $a(t) \leftarrow \arg\max_{a} \mathbf{b}_{a}^{\mathsf{T}} \tilde{\boldsymbol{\mu}}$

Observe a noisy reward $r(t) = \mathbf{b}_{a(t)}^{\mathsf{T}} \boldsymbol{\mu} + \varepsilon_t$

 $\mathbf{f} \leftarrow \mathbf{f} + \mathbf{b}_{a(t)} r(t)$

Update $\mathbf{B} \leftarrow \mathbf{B} + \mathbf{b}_{a(t)} \mathbf{b}_{a(t)}^{\mathsf{T}}$

Update $\hat{\mu} \leftarrow \mathbf{B}^{-1}\mathbf{f}$

end for

MAIN RESULT

SpectralTS regret bound

Theorem 1. Let d be the effective dimension and λ be the minimum eigenvalue of Λ . If $\|\mu\|_{\Lambda} \leq C$ and for all \mathbf{b}_i , $|\mathbf{b}_i^{\mathsf{T}}\mu| \leq 1$, then the cumulative regret of Spectral Thompson Sampling is with probability at least $1 - \delta$ bounded as

$$\mathcal{R}(T) \le \frac{11g}{p} \sqrt{\frac{4+4\lambda}{\lambda}} dT \log \frac{\lambda+T}{\lambda} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \log \frac{2}{\delta}},$$

where $p = 1/(4e\sqrt{\pi})$ and

$$g = \sqrt{4 \log TN} \left(R \sqrt{6d \log \left(\frac{\lambda + T}{\delta \lambda} \right)} + C \right)$$
$$+ R \sqrt{2d \log \left(\frac{(\lambda + T)T^2}{\delta \lambda} \right)} + C.$$

Setting $\Lambda = \mathbf{I}$ we recover LinearTS. Since $\log(|\mathbf{B}_T|/|\Lambda|)$ can be upperbounded by $D \log T$ [1], we obtain $\tilde{\mathcal{O}}(D\sqrt{T})$ for LinearTS.

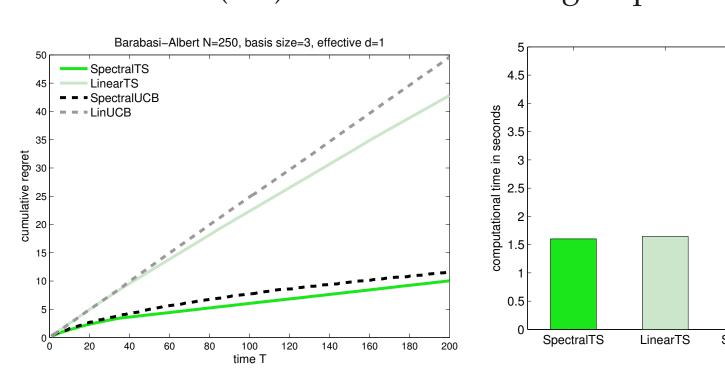
LINEAR VS. SPECTRAL BANDITS

	Linear	Spectral
Optimistic Approach D^2N per step update	$\begin{array}{c} \textbf{LinUCB} \\ D\sqrt{T\log T} \end{array}$	SpectralUCB $d\sqrt{T \log T}$
Thompson Sampling $D^2 + DN$ per step update	LinearTS $D\sqrt{T \log N}$	$SpectralTS \\ d\sqrt{T\log N}$

EXPERIMENTS

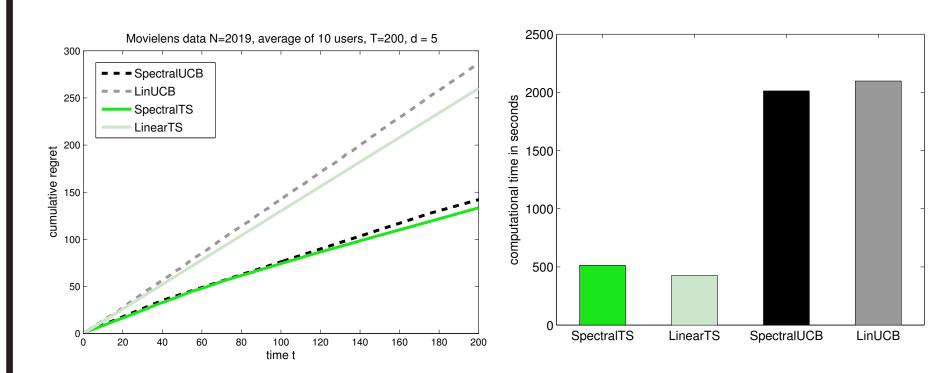
Synthetic Experiment

Barabási-Albert (BA) model with the degree parameter 3.



Movie Experiment

MovieLens dataset of 6k users who rated one million movies.



Spectral Thompson Sampling

- Better regret than LinearTS and LinUCB
- Better run time than LinUCB and SpectralUCB

ANALYSIS SKETCH

Divide arms into two groups

 $\bullet \ \Delta_i = \mathbf{b}_*^\mathsf{T} \boldsymbol{\mu} - \mathbf{b}_i^\mathsf{T} \boldsymbol{\mu} \le g \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$ arm *i* is **unsaturated**

•
$$\Delta_i = \mathbf{b}_*^{\mathsf{T}} \boldsymbol{\mu} - \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu} > g \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$$
 arm i is saturated

Saturated arm

- Small standard deviation and high regret
- Low probability of picking

Unsaturated arm

- Low regret bounded by a factor of standard deviation
- High probability of picking

Regret on playing unsaturated arm

By self-normalized bound of [1], with probability $1 - \delta/T^2$:

$$|\mathbf{b}_i^{\mathsf{T}}(\hat{\boldsymbol{\mu}} - \boldsymbol{\mu})| \le \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}} \left(R\sqrt{2d\log\left(\frac{|\mathbf{B}_t|T^2}{|\boldsymbol{\Lambda}|\delta}\right)} + C\right)$$

With probability at least $1 - 1/T^2$:

$$|\mathbf{b}_i^{\mathsf{T}}(\tilde{\boldsymbol{\mu}} - \hat{\boldsymbol{\mu}})| \le \left(R\sqrt{6d\log\left(\frac{|\mathbf{B}_t|}{|\boldsymbol{\Lambda}|\delta}\right)} + C\right) \|\mathbf{x}_i\|_{\mathbf{B}_t^{-1}} \sqrt{4\ln(TN)}$$

Our key result coming from spectral properties of \mathbf{B}_t :

$$\log \frac{|\mathbf{B}_t|}{|\mathbf{\Lambda}|} \le 2d \log \left(1 + \frac{T}{\lambda}\right)$$

Together we get:

$$|\mathbf{b}_i^{\mathsf{T}}(\tilde{\boldsymbol{\mu}} - \boldsymbol{\mu})| \le g \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$$

Super-martingale process

$$\operatorname{regret}'(t) = \operatorname{regret}(t) \cdot \mathbb{1}\{|\mathbf{b}_{i}^{\mathsf{T}}\hat{\boldsymbol{\mu}}(t) - \mathbf{b}_{i}^{\mathsf{T}}\boldsymbol{\mu}| \leq l\|\mathbf{b}_{i}\|_{\mathbf{B}_{t}^{-1}}\}$$

$$\mathcal{F}_{t} = \{a(\tau), r(\tau), \tau = 1, \dots, t)\} \cup \{\mathbf{b}_{i}, i = 1, \dots, N\}$$

$$X_{t} = \operatorname{regret}'(t) - \frac{11g}{p}\|\mathbf{b}_{a(t)}\|_{\mathbf{B}_{t}^{-1}} - \frac{1}{T^{2}}$$

$$Y_{t} = \sum_{w=1}^{t} X_{w}.$$

where $l = R\sqrt{2d\log((\lambda + T)T^2/(\delta\lambda))} + C$.

 $(Y_t; t = 0, ..., T)$ is a super-martingale process w.r.t. filtration \mathcal{F}_t .

With probability $1 - \delta/2$:

$$regret(t) = regret'(t)$$

Azuma-Hoeffding inequality for super-martingale, w. p. $1 - \delta/2$:

$$\sum_{t=1}^{T} \operatorname{regret}'(t) \leq \frac{11g}{p} \sum_{t=1}^{T} \|\mathbf{b}_{a(t)}\|_{\mathbf{B}_{t}^{-1}} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \ln \frac{2}{\delta}}.$$

By Cauchy-Schwartz inequality:

$$\sum_{t=1}^{T} \|\mathbf{b}_{a(t)}\|_{\mathbf{B}_{t}^{-1}} \leq \sqrt{T \sum_{t=1}^{T} \|\mathbf{b}_{a(t)}\|_{\mathbf{B}_{t}^{-1}}^{2}}$$

$$\leq \sqrt{T \left(2 + \frac{2}{\lambda}\right) \ln \frac{|\mathbf{B}_{T}|}{|\mathbf{\Lambda}|}} \leq \sqrt{\frac{4 + 4\lambda}{\lambda} dT \ln \frac{\lambda + T}{\lambda}}.$$

REFERENCES

- Yasin Abbasi-Yadkori, David Pál, and Csaba Szepesvári. Improved Algorithms for Linear Stochastic Bandits. In Neural Information Processing Systems. 2011.
- [2] Shipra Agrawal and Navin Goyal. Thompson Sampling for Contextual Bandits with Linear Payoffs. In International Conference on Machine Learning, 2013.
- Michal Valko, Rémi Munos, Branislav Kveton, and Tomáš Kocák. Spectral Bandits for Smooth Graph Functions. In 31th International Conference on Machine Learning, 2014.

ACKNOWLEDGMENTS

