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MOTIVATION - SEQUENTIAL NEWS RECOMMENDATION EXP3-IX ALGORITHM RELATED WORK

usery e Compute weights using loss estimates /; ;. e Undirected case — simple action (m = 1) o Need to find dominating set of graph

o ontents } ( . ) — ELP (Mannor, Shamir) o Regret bound of order O(v/aT)
Wy, = €exp | —n

& € 0
o ok Cs i ¢ Graph disclosed before action — Exp3-IX
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users e Play action [; according to probability distribution o Regret bound of order 6(\/ cT) o Computationally efficient
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Regret bound of order O(v/aT
e Compute loss estimates (using observability graph) > Regret bound of order O(vaT) — FPL-IX

e Select a matching covering users e Obtain rewards of selected edges e Observe additional rewards ) 1{0,. is observed) e Directed case - simple action (m = 1) o Graph disclosed after action
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APPLICATIONS LEARNING SETTING o Graph disclosed before action o Regret bound of order 6(m3/2 vaT)
e Packet routing in computer networks Ineveryroundt=1,2,... 7"

— Typical feedback: delays of our own packets e Environment Draw perturbation Z, ; ~ Exp(1) for all i € [N] ANALYSIS
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e Directed case - complex action (m > 1)

— Side observations: other delays in network — Privately assigns vector £; of losses to actions

e Web advertising — displaying one ad - Generates an observation graph

Play “the best” action V; according to total loss esti- Analysis of Exp3 algorithms in general - tracking evolution of log (W41 /W})
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o Example: similar preferences for similar cars o Disclosed / Not disclosed Vi = argérgin v (ntLt—l - Zt) = et - t=t g ! L =t -
o Typical feedback: reward for displayed ad o Learner A B ¢
o Side observations for similar cars i N Compute loss estimates
) . - Plays action V; € § € {0, 1} ) Lower bound of A (using definition of loss estimates) Together we have
o Model for observations: undirected graph o Each action v € S satisfies |[v]|, < m Uy =l ;K 1{l; ; is observed }
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Case 2: asymmetric interrelations ¢ le. action consists of playing at most m nodes K, ;: geometric random variable with E Z Z prilei| > E Z Z peibei| —E | Z Q; R < log N N (Q N ’y) Z E[Q,]
o Example: electronics (interest in camera o Case m = 1: wedenote I; € [N]|anode played . o1 i =1 =1 =1 n —
means interest in accessories, not vice versa) — Obtain loss V"¢, corresponding to nodes played E[K; ;] = . A
o Typical feedback: reward for displayed ad . o + (1= 01i)y Lower bound of B (optimistic loss estimates: E[{] < E|{]) N |
. . — Observe losses of neighbors of played nodes _ Pt,i
o Side observations for dependent products . ] ] _ Qr = 0+ +
o Model for observations: directed graph o Graph disclosed ET: ) ET: =1 e
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Performance measure: total expected regret = = Lemma 1. Let G be a directed graph, with V- = {1,..., N}.
E e Nodes of independence set are not connected Let d; be the indegree of the node i and o = «a(G) be the
XAMPLES OF GRAPH STRUCTURES T ] ] o « - size of the largest independence set Upper bound of C (using definition of loss estimates) independence number of G. Then
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Side observations can be modeled as a graph ves | - N - - A N . v
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@ IMPLICIT EXPLORATION
@ @ Usual approach to exploration: Step 1 of applying Lemma 1 to upper bound @); - Discretization
e Bias sampling distribution as p; = (1 — v)p; + Y ﬁ X X
® — Needs to know graph structure Independence set of size 6 I o | P1 P1 | | P2 b2 I
— Constructing a good p is expensive 0 U U 1
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Undirected and directed case —simple action e Construct unbiased loss estimates MAIN RESULTS N N
Dt,i Dt,i Dt,i 2
< A Iy = : = ’ < ’ — + 2 for Ml = |N
Uy = ot 1{¢, ; is observed} Regret bound of Exp3-IX @ — Ot 7 z_; Dt + ZJQN Dt T 2_; Dt + ZJ'GNI Dt,; N7/
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e 0, — probability of observing ¢; ; o
Ot,i — probability OL ODSEIVINgG £+, Ry =0 Z oy O (Va Step 2 of applying Lemma 1 to upper bound @); - Construction of a “clique graph”
Our new approach: \

e Do not touch sampling distribution

Directed combinatorial case — complex action o Construct optimistically biased loss estimates o - average independence number of observation graph

Regret bound of FPL-IX
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e Encourages exploration by optimism Rr=0 (m3/ 2\ Z a t) 0 (m3/ 2\/aT)

e Does not require knowledge of observation graph

e Cheaper than computing u




