

Build a world model

Explore the mistakes of world model to better refine it

max WorldModelLoss(π)

The world model determines what is interesting to explore and what to ignore

Our Contribution: BYOL-Explore

We believe	ead to
Strong Representations	Strong Exploration
Leads to	
Approach:	
Extend BYOL[1] to learn a latent <mark>dynamics model</mark>	Explore the <mark>latent</mark> mistakes of the world model to better refine it
Latent state	$\max_{\pi} \min_{\theta} \text{BYOLLoss}_{\pi}(\theta)$ Exploration Dynamics Model Learning
The mistakes are dynamics-aware and structured, since they are in latent space	
One unified objective for representation learning, dynamics modelling, and exploration	

[1] Grill JB, Strub F, Altché F, Tallec C, Richemond P, Buchatskaya E, Doersch C, Avila Pires B, Guo Z, Gheshlaghi Azar M, Piot B. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural information processing systems. 2020;33:21271-84.

DeepMind

BYOL-Explore: Exploration by Bootstrapped Prediction

Zhaohan Daniel Guo*, Shantanu Thakoor*, Miruna Pislar*, Bernardo Avila Pires*, Florent Altché*, Corentin Tallec*, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, Michal Valko, Remi Munos, Mohammad Gheshlaghi Azar*, Bilal Piot*

BYOL-Explore Algorithm

- 1. Encode observations o_{t} into latents with f_{a}
- 2. Compress the history of observations and actions into b_{t} with a closed-loop RNN (h^c_{ρ})
- 3. (World Model) Combine b_{t} , and future actions with an open-loop RNN (h_{ρ}^{o}) and pass through a predictor g_{ρ} to predict the corresponding future latent observation
- 4. (Prediction Targets) Encode future observations o_{t+1} ..., o_{t+k} with
- the target network f_{d} (EMA of f_{d})
- 5. (Mistakes) Compute the normalized L₂ (cosine similarity) loss (stopping gradients to targets)
- 6. (Intrinsic Reward) Standardize and ReLu the loss to use it as the intrinsic reward

Hard Exploration Atari

Main Findings:

• BYOL-Explore greatly outperforms RND and ICM baselines in the 10 hardest exploration Atari games (in terms of clipped human-normalized score) • Enriching the target latent representations is crucial to good performance. In contrast, predicting untrained, randomly initialized targets does not work

• Sharing the representation with RL also significantly helps performance

DM-Hard-8

Main Findings:

- BYOL-Explore greatly outperforms RND and ICM in multi-task DM-Hard-8, a set of partially-observable, procedurally-generated 3D navigation and puzzle tasks
- Enriching the target latent representations is crucial to good performance
- The prediction horizon is very important in a partially observable domain

Ablation: Controllable TV Noise

add white noise to Montezuma's Revenge frame

add extra action to resample the noise

Main Findings:

- BYOL-Explore (purple) is completely robust to this extra controllable noise and matches the noise-free performance (blue).
- RND (pink) no longer takes off with this kind of noise.

Conclusion

- BYOL-Explore is a simple **curiosity-driven** algorithm for **jointly** doing
 - Representation learning Ο
 - Latent Dynamics modelling Ο
 - Exploration 0
- BYOL-Explore outperforms previous exploration methods in diverse, visually complex domains (Hard Exploration Atari and DM-Hard-8)
- BYOL-Explore is **robust to simple** kinds of **noise** due to operating in latent space and learning a representation that filters out the noise
- (Limitation) BYOL-Explore relies on deterministic dynamics
 - Follow-up Deep RL workshop paper that makes it robust to stochastic dynamics: "BLaDE: Robust Exploration via Diffusion Models"

See paper for more detailed descriptions and experimental results!

Targets

