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Overview

•Planning with a simulator: estimate V (s) with accuracy ε.
•Sample complexity = # calls to the simulator to get accuracy ε.
•Non-regularized case: there are no known algorithms with
polynomial guarantees in a general setting.
•Regularization → smooth Bellman operator.
•SmoothCruiser: exploits smoothness → sample complexity that
is always polynomial.

Setting & Assumptions

•MDPs and two-player games: (S,A, P, R, γ).
•S,A: state and action spaces.
•P , {P (·|s, a)}s,a∈S×A transition probabilities.
•R : S ×A → [0, 1] reward function.
•γ ∈ [0, 1[ discount factor.
•Assumption 1: |S| arbitrary, |A| = K <∞.
•Assumption 2: we have a generative model (oracle, simulator)
that can sample rewards and transitions: R,Z ← oracle(s, a).

Regularized Value Functions

•Given a function Fs : RK → R, we define the value function as
V (s) , Fs(Qs),
Qs(a) , Ez∼P (·|s,a)[R(s, a) + γV (z)].

• In MDPs: Fs = max gives Bellman equations.
• In games: Fs = max for player 1 and Fs = min for player 2.
•Let LogSumExpλ(x) , λ log∑K

i=1 exp(xi/λ).
•Entropy regularization with parameter λ:

max becomes LogSumExpλ
min becomes − LogSumExp−λ.

•Property: with regularization, Fs becomes L-smooth
|Fs(Q)− Fs(Q′)− (Q−Q′)T∇Fs(Q′)| ≤ L‖Q−Q′‖2
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with L = 1/λ, ∇Fs(Q) � 0 and ‖∇Fs(Q)‖1 = 1.

Motivation

•Strong regularization λ→∞ and L = 0, that is,
Fs is linear for all s: Fs(x) = wT

sx, with ‖ws‖1 = 1,
ws ∈ Rk and ws � 0.
→ Monte Carlo sampling, O(1/ε2) calls to the oracle.
•No regularization λ = 0 and L→∞, that is, Fs
cannot be well approximated by a linear function.
→ Sparse Sampling algorithm (Kearns et al., 1999),
O
(
(1/ε)log(1/ε)) calls to the oracle.

•For 0 < λ <∞: interpolate between the two extreme
cases using linear approximations of Fs.

Theoretical Guarantees

Theorem 1. Let n(ε, δ′) be the number of calls to the
generative model before the algorithm terminates. For
any state s ∈ S and ε, δ′ > 0,

n(ε, δ′) = Õ
(
1/ε4).

Theorem 2. For any s ∈ S, ε > 0 and δ > 0, there
exists a choice of δ′ that depends on ε and δ such that
the output V̂ (s) of SmoothCruiser(s, ε, δ′) satisfies

P
[
|V̂ (s)− V (s)| > ε

]
≤ δ.

and such that n(ε, δ′) = O(1/ε4+c) for any c > 0.

Intuition

•Linear approximation of Fs around
Q̂s = estimateQ(s,

√
ε/L):

Fs(Qs) ≈ Fs(Q̂s) + (Qs − Q̂s)T∇Fs(Q̂s)+ε
•One of the terms can be written as an expected value:

QT
s∇Fs(Q̂s) = E

[
Qs(A)

∣∣∣∣∣Q̂s

]
, with A ∼ ∇Fs(Q̂s)

•Problem: Qs is unknown.
•Solution: use Q̃(A) = Rs,A + γsampleV

(
Zs,A, ε/

√
γ
)
.

•Finally, we have (in expectation):
Fs(Qs) ≈ Fs(Q̂s)− Q̂T

s∇Fs(Q̂s) + Q̃(A)+ε.

SmoothCruiser

Algorithm 1 SmoothCruiser
Input: (s, ε, δ′) ∈ S × R+ × R+
Mλ← sups∈S |Fs(0)| = λ logK
κ← (1−√γ)/(KL)
Set δ′, κ and Mλ as a global parameters
Q̂s← estimateQ(s, ε)
Output: Fs

(
Q̂s

)
Algorithm 2 estimateQ
1: Input: (s, ε)
2: N(ε)← O(log(2K/δ′)/ε2)
3: for a ∈ A do
4: Q̂s(a)← 0
5: for i ∈ 1, ..., N(ε) do
6: (Ri, Zi)← oracle(s, a).
7: V̂i← sampleV

(
Zi, ε/

√
γ
)

8: end for
9: Q̂s(a) = average of {Ri + γV̂i}N(ε)

i=1
10: end for
11: Output: Q̂s clipped to [0, Qmax]

Algorithm 3 sampleV

1: Input: (s, ε) ∈ S × R+
2: if ε ≥ (1 +Mλ)/(1− γ) then
3: Output: 0
4: else if ε ≥ κ then
5: Q̂s← estimateQ(s, ε)
6: Output: Fs

(
Q̂s

)
7: else if ε < κ then
8: Q̂s← estimateQ(s,

√
κε)

9: A← action drawn from ∇Fs
(
Q̂s

)
10: (R,Z)← oracle(s, A)
11: V̂ ← sampleV(Z, ε/√γ)
12: Output: Fs

(
Q̂s

)
− Q̂T

s∇Fs
(
Q̂s

)
+ (R+ γV̂ )

13: end if
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Figure 1: Left: number of calls to sampleV as a function of 1/ε. Right: number of calls to sampleV
required to achieve a 0.01 relative error as a function of the regularization λ.


