

Planning in Entropy-Regularized MDPs and Games

Jean-Bastien Grill *1,2 , Omar D. Domingues *2 , Pierre Ménard 2 , Rémi Munos 1,2 , Michal Valko 1,2

¹DeepMind Paris, ²SequeL team, Inria Lille

Overview

- Planning with a simulator: estimate V(s) with accuracy ε .
- Sample complexity = # calls to the simulator to get accuracy ε .
- Non-regularized case: there are no known algorithms with polynomial guarantees in a general setting.
- \bullet Regularization \rightarrow smooth Bellman operator.
- \bullet SmoothCruiser: exploits smoothness \to sample complexity that is always polynomial.

Setting & Assumptions

- MDPs and two-player games: (S, A, P, R, γ) .
- \bullet \mathcal{S} , \mathcal{A} : state and action spaces.
- $P \triangleq \{P(\cdot|s,a)\}_{s,a\in\mathcal{S}\times\mathcal{A}}$ transition probabilities.
- $R: \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ reward function.
- $\gamma \in [0, 1]$ discount factor.
- Assumption 1: |S| arbitrary, $|A| = K < \infty$.
- Assumption 2: we have a generative model (oracle, simulator) that can sample rewards and transitions: $R, Z \leftarrow \mathtt{oracle}(s, a)$.

Regularized Value Functions

- Given a function $F_s: \mathbb{R}^K \to \mathbb{R}$, we define the value function as $V(s) \triangleq F_s(Q_s)$, $Q_s(a) \triangleq \mathbb{E}_{z \sim P(\cdot | s, a)}[R(s, a) + \gamma V(z)].$
- In MDPs: $F_s = \max$ gives Bellman equations.
- In games: $F_s = \max$ for player 1 and $F_s = \min$ for player 2.
- Let LogSumExp $_{\lambda}(x) \triangleq \lambda \log \sum_{i=1}^{K} \exp(x_i/\lambda)$.
- Entropy regularization with parameter λ :

 max becomes $\text{LogSumExp}_{\lambda}$ min becomes $-\text{LogSumExp}_{-\lambda}$.
- Property: with regularization, F_s becomes L-smooth $|F_s(Q) F_s(Q') (Q Q')^\mathsf{T} \nabla F_s(Q')| \le L \|Q Q'\|_2^2$ with $L = 1/\lambda$, $\nabla F_s(Q) \succeq 0$ and $\|\nabla F_s(Q)\|_1 = 1$.

Motivation

- Strong regularization $\lambda \to \infty$ and L = 0, that is, F_s is linear for all s: $F_s(x) = w_s^{\mathsf{T}} x$, with $||w_s||_1 = 1$, $w_s \in \mathbb{R}^k$ and $w_s \succeq 0$.
- \rightarrow Monte Carlo sampling, $\mathcal{O}(1/\varepsilon^2)$ calls to the oracle.
- No regularization $\lambda = 0$ and $L \to \infty$, that is, F_s cannot be well approximated by a linear function.
- \rightarrow Sparse Sampling algorithm (Kearns et al., 1999), $\mathcal{O}((1/\varepsilon)^{\log(1/\varepsilon)})$ calls to the oracle.
- For $0 < \lambda < \infty$: interpolate between the two extreme cases using linear approximations of F_s .

Theoretical Guarantees

Theorem 1. Let $n(\varepsilon, \delta')$ be the number of calls to the generative model before the algorithm terminates. For any state $s \in \mathcal{S}$ and $\varepsilon, \delta' > 0$,

$$n(\varepsilon, \delta') = \widetilde{\mathcal{O}}(1/\varepsilon^4).$$

Theorem 2. For any $s \in \mathcal{S}$, $\varepsilon > 0$ and $\delta > 0$, there exists a choice of δ' that depends on ε and δ such that the output $\widehat{V}(s)$ of SmoothCruiser $(s, \varepsilon, \delta')$ satisfies

$$\mathbb{P}[|\widehat{V}(s) - V(s)| > \varepsilon] \le \delta.$$

and such that $n(\varepsilon, \delta') = \mathcal{O}(1/\varepsilon^{4+c})$ for any c > 0.

Intuition

• Linear approximation of F_s around $\widehat{Q}_s = \texttt{estimateQ}(s, \sqrt{\varepsilon/L})$:

$$F_s(Q_s) \approx F_s(\widehat{Q}_s) + (Q_s - \widehat{Q}_s)^{\mathsf{T}} \nabla F_s(\widehat{Q}_s) + \varepsilon$$

- One of the terms can be written as an expected value: $Q_s^{\mathsf{T}} \nabla F_s(\widehat{Q}_s) = \mathbb{E} \left[Q_s(A) \middle| \widehat{Q}_s \middle|, \text{ with } A \sim \nabla F_s(\widehat{Q}_s) \right]$
- Problem: Q_s is unknown.
- Solution: use $\widetilde{Q}(A) = R_{s,A} + \gamma \operatorname{sampleV}(Z_{s,A}, \varepsilon/\sqrt{\gamma})$.
- Finally, we have (in expectation):

$$F_s(Q_s) \approx F_s(\widehat{Q}_s) - \widehat{Q}_s^{\mathsf{T}} \nabla F_s(\widehat{Q}_s) + \widetilde{Q}(A) + \varepsilon.$$

SmoothCruiser

Algorithm 1 SmoothCruiser

```
Input: (s, \varepsilon, \delta') \in \mathcal{S} \times \mathbb{R}_+ \times \mathbb{R}_+
M_{\lambda} \leftarrow \sup_{s \in \mathcal{S}} |F_s(0)| = \lambda \log K
\kappa \leftarrow (1 - \sqrt{\gamma})/(KL)
Set \delta', \kappa and M_{\lambda} as a global parameters \widehat{Q}_s \leftarrow \mathtt{estimateQ}(s, \varepsilon)
Output: F_s(\widehat{Q}_s)
```

Algorithm 2 estimateQ

```
1: Input: (s, \varepsilon)

2: N(\varepsilon) \leftarrow \mathcal{O}(\log(2K/\delta')/\varepsilon^2)

3: for a \in \mathcal{A} do

4: \widehat{Q}_s(a) \leftarrow 0

5: for i \in 1, ..., N(\varepsilon) do

6: (R_i, Z_i) \leftarrow \operatorname{oracle}(s, a).

7: \widehat{V}_i \leftarrow \operatorname{sampleV}(Z_i, \varepsilon/\sqrt{\gamma})

8: end for

9: \widehat{Q}_s(a) = \operatorname{average} \operatorname{of} \{R_i + \gamma \widehat{V}_i\}_{i=1}^{N(\varepsilon)}

10: end for

11: Output: \widehat{Q}_s clipped to [0, Q_{\max}]
```

Algorithm 3 sampleV

```
1: Input: (s, \varepsilon) \in \mathcal{S} \times \mathbb{R}_+

2: if \varepsilon \geq (1 + M_{\lambda})/(1 - \gamma) then

3: Output: 0

4: else if \varepsilon \geq \kappa then

5: \widehat{Q}_s \leftarrow \text{estimateQ}(s, \varepsilon)

6: Output: F_s(\widehat{Q}_s)

7: else if \varepsilon < \kappa then

8: \widehat{Q}_s \leftarrow \text{estimateQ}(s, \sqrt{\kappa \varepsilon})

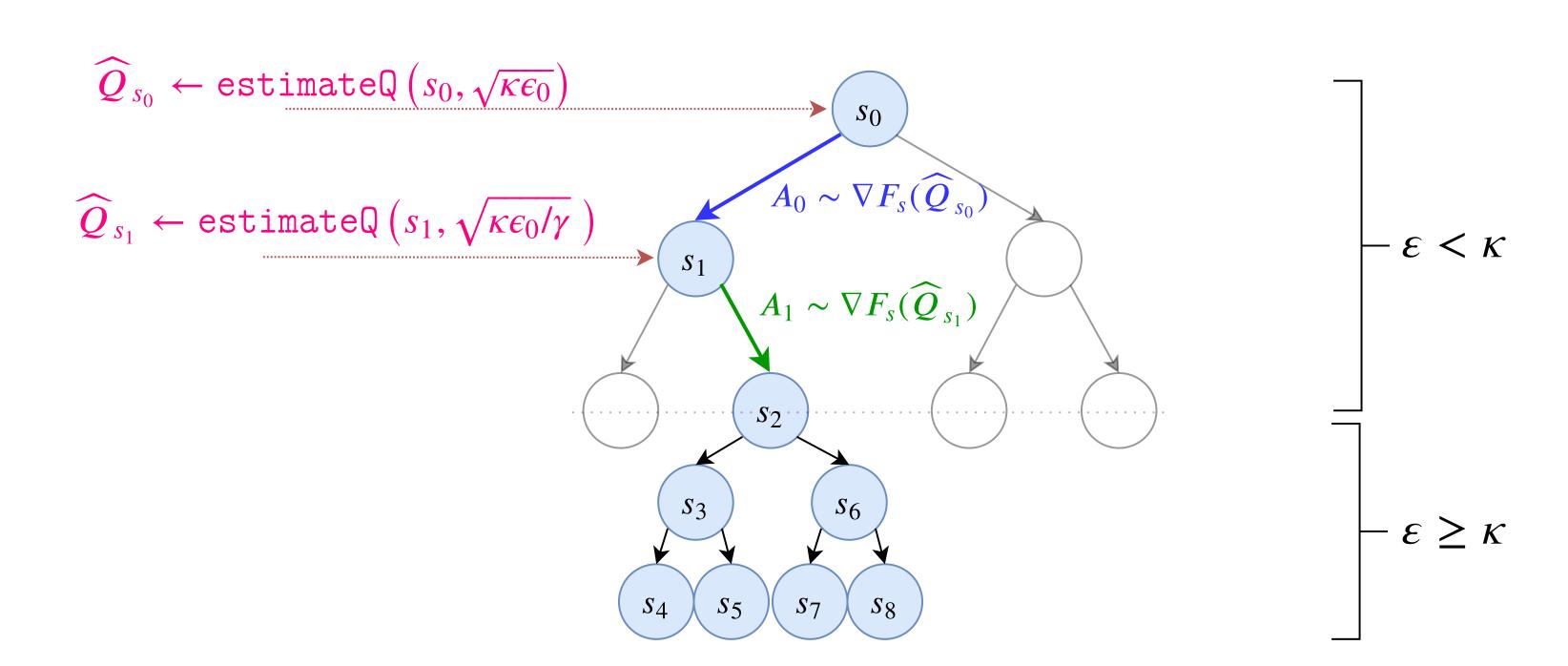
9: A \leftarrow \text{action drawn from } \nabla F_s(\widehat{Q}_s)

10: (R, Z) \leftarrow \text{oracle}(s, A)

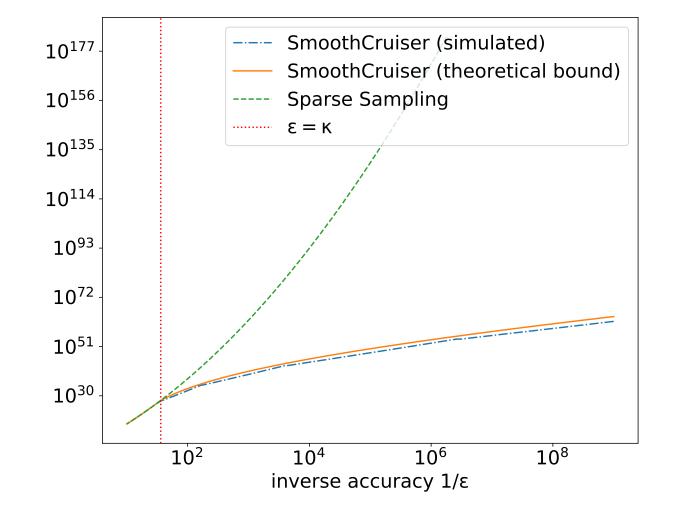
11: \widehat{V} \leftarrow \text{sampleV}(Z, \varepsilon/\sqrt{\gamma})

12: Output: F_s(\widehat{Q}_s) - \widehat{Q}_s^{\mathsf{T}} \nabla F_s(\widehat{Q}_s) + (R + \gamma \widehat{V})

13: end if
```



Sample Complexity Simulation



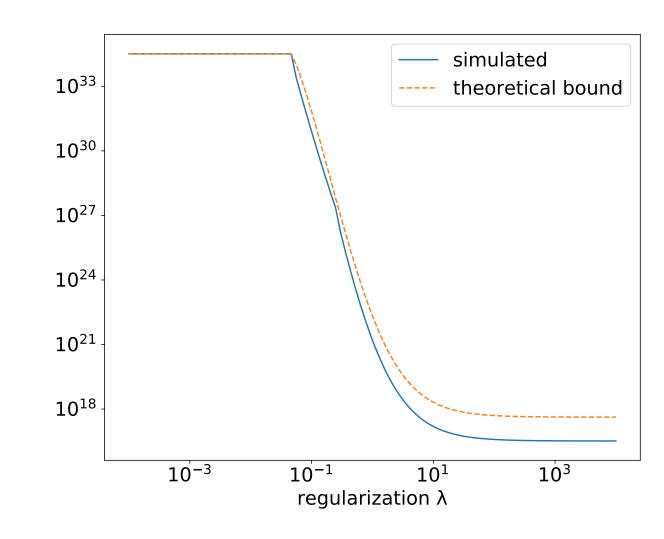


Figure 1: Left: number of calls to sample V as a function of $1/\varepsilon$. Right: number of calls to sample V required to achieve a 0.01 relative error as a function of the regularization λ .