Optimistic Optimization of a Brownian

JEAN-BASTIEN GRILL, MICHAL VALKO, RÉMI MUNOS jbgrill@google.com and valkom@google.com and munos@google.com

Brownian

À la une

- GOAL: Finding maximum of a Brownian motion
- PRIOR WORK: Polynomial sample complexity
- CONTRIBUTION: Exponentially fast algorithm
- SOLVES OPEN PROBLEM: dimension of a Brownian

Setting

- **Every round t**: based on history $W(t_1),...,W(t_{n-1})$
 - choose t_n and observe W(t_n)
- **Objective**: return \widehat{t} s.t. w.p. 1- ϵ $M-W(\widehat{t}) \leq \varepsilon$
 - where $M \triangleq \sup_{t \in [0,1]} W(t)$

Who cares

- Type 1: Exists prior to optimization
 - simulation of financial stocks
- Type 2: Observing the function creates it
- Gaussian process/Thomson sampling
- Type 3: As a tool beyond learning
 - computationally sample a solution of a stochastic differential equation in the work of Hefter and Herzwurm (2017)

Prior work

- Al-Mharmah and Calvin (1996)
 - a **non-adaptive** method
 - sample complexity: 1/√ε
- Calvin (2017)
 - **adaptive** method
 - better than any polynomial
 - does not guarantee an exponential rate

Algorithm

Algorithm 1 00B algorithm

1: Input:
$$\varepsilon$$

2: Init: $\mathcal{I} \leftarrow \{[0,1]\}, t_1 = W(1)$
3: for $i = 2, 3, 4, \ldots$ do
4: $[a,b] \in \arg\max_{I \in \mathcal{I}} B_I \text{ break ties arbitrarily}$
5: if $\eta_{\varepsilon}(b-a) \leq \varepsilon$ then
6: break
7: end if
8: $t_i \leftarrow W\left(\frac{a+b}{2}\right)$
9: $\mathcal{I} \leftarrow \{\mathcal{I} \cup [a, \frac{a+b}{2}] \cup [\frac{a+b}{2}, b]\} \setminus \{[a, b]\}$
10: end for
11: Output: location $\hat{t}_{\varepsilon} \leftarrow \arg\max_{t_i} W(t_i)$ and its value $W(\hat{t}_{\varepsilon})$

$$B_{[a,b]} \triangleq \max(W(a), W(b)) + \eta_{\varepsilon}(b-a), \quad \text{where} \quad \forall \delta > 0 \text{ s.t. } \varepsilon \delta \leq \frac{1}{2}, \quad \eta_{\varepsilon}(\delta) \triangleq \sqrt{\frac{5\delta}{2} \ln\left(\frac{2}{\varepsilon \delta}\right)}$$

Guarantees

correctness

Corollary: Also (δ,ε) PAC

sample complexity

Proof

- 1. Correctness: algorithm definition + the law of Brownian bridge
- 2. at 00B evaluates pretty much only near-optimal points
- Denisov (1984): rewrite the motion as two Brownian meanders
- By Durett et al. (1977) the expected number of near-optimal points is bounded as $\mathbb{E}[\mathcal{N}_h(\eta)] \leq 6\eta^2 2^h$ which is $\mathcal{O}(\log(1/\varepsilon))$

Open problem

- Munos (2011) classifies functions according to (d, C) to:
 - easy, d = 0, exponentially fast optimization
 - difficult, $d \ge 0$, polynomially fast optimization
- Open questions for a Brownian process:
 - what is its dimension d
 - how fast can we optimize it

Challenge: Brownian motion is a stochastic process!

Our answers that solve the open problem:

- \forall ε, w.p. 1-ε, W(t) is $ℓ_ε$ -Lipschitz + ∃ C(ε) s.t. Brownian ∈ (d, C(ε))
- there is no (d, C) with C < ∞ such that Brownian \in (d, C)
- we can optimize it with sample complexity of $O(log^2(1/\epsilon))$

Fxneriments

