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Algorithm

Link to GPs

- GOAL: Finding maximum of a Brownian motion 
- PRIOR WORK: Polynomial sample complexity 
- CONTRIBUTION: Exponentially fast algorithm 
- SOLVES OPEN PROBLEM: dimension of a Brownian 

Setting

Proof

and its running minimum. They then need, as a subroutine, an algorithm for the optimization of
Brownian motion to compute its running minimum. We are giving them that and it is light-speed fast.

Prior work Al-Mharmah and Calvin (1996) provide a non-adaptive method to optimize a Brownian
motion. They prove that their method is optimal among all non-adaptive methods and their sample
complexity is polynomial of order 1/

p
". More recently, Calvin et al. (2017) provided an adaptive

algorithm with a sample complexity lower than any polynomial rate showing that adaptability to
previous samples yields a significant algorithmic improvement. Yet their result does not guarantee a
better rate than a polynomial one.

Our contribution We introduce the algorithm OOB = optimistic optimization of the Brownian
motion. It uses the optimism-in-face-of-uncertainty apparatus: Given n � 1 points already eval-
uated, we define a set of functions U

n

in which W lies with high probability. We then select
the next query point t

n

where the maximum of the most optimistic function of U
n

is reached:
t

n

, argmax

t2[0,1]

max

f2Un f(t). This begets a simple algorithm that requires an expected number
of queries of the order of log2(1/") to return an "-approximation of the maximum, with probability
at least 1� " w.r.t. the random sample of the Brownian motion. Therefore, our sample complexity is
better than any polynomial rate.

Solving an open problem Munos (2011) provided sample complexity results for optimizing any
function f characterized by two coefficients (d, C) where d is the near-optimality dimension and C

the corresponding constant (see his Definition 3.1). It is defined as the smallest d � 0 such that
there exists a semi-metric ` and a constant C > 0, such that, for all " > 0, the maximal number of
disjoint `-balls of radius O(") with center in {x, f(x) � sup

x

f(x)�"} is less than C"

�d. Under the
assumption that f is locally (around one global maximum) one-sided Lipschitz with respect to ` (see
his Assumption 2), he proved that for a function f characterized by (d = 0, C), his DOO algorithm
has a sample complexity of O(C log(1/")), whereas for a function characterized by (d > 0, C),
the sample complexity of DOO is O�

C/"

d

�
. Our result answers a question he raised: What is the

near-optimality dimension of a Brownian-motion? The Brownian motion being a stochastic process,
this quantity is a random variable so we consider the number of disjoint balls in expectation. We show
that for any ", there exists some particular metric `

"

such that the Brownian motion W is `
"

-Lipschitz
with probability 1 � ", and there exists a constant C(") = O(log(1/")) such that (d = 0, C("))

characterizes the Brownian motion. However, there exists no constant C <1 independent of " such
that (d = 0, C) characterizes the Brownian motion. Therefore, we solved this open problem. Our
answer is compatible with our result that our algorithm has a sample complexity of O(log

2

(1/")).

2 New algorithm for Brownian optimization

Our algorithm OOB is a version of DOO (Munos, 2011) with a modified upper bound on the function,
in order to be able to optimize stochastic processes. Consider the points t

1

< t

1

< ... < t

n

evaluated
so far and t

0

= 0. OOB defines an upper confidence bound B

[ti,ti+1

]

for each interval [t
i

, t

i+1

] with
i 2 {0, ..., n� 1} and samples W in the middle of the interval with the highest upper-confidence
bound. Algorithm 1 reveals its pseudo-code.

Algorithm 1 OOB algorithm
1: Input: "
2: Init: I  {[0, 1]}, t

1

= W (1)

3: for i = 2, 3, 4, . . . do
4: [a, b] 2 argmax

I2I B

I

{break ties arbitrarily}
5: if ⌘

"

(b� a)  " then
6: break
7: end if
8: t

i

 W

�
a+b
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9: I  {I [ [a,

a+b
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] [ [

a+b
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, b]}\{[a, b]}
10: end for
11: Output: location b
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) and its value W
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More formally, let " be the required precision, the only given argument of the algorithm. For any
0  a < b  1, the interval [a, b] is associated with an upper bound B

[a,b]

defined by

B
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(b� a), where 8� > 0 s.t. "�  1
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OOB keeps track of a set I of intervals [a, b] with W already being sampled at a and b. The algorithm
first samples W (1), W (1) ⇠ N (0, 1), in order to initialize the set I to the singleton {[0, 1]}. Then,
OOB keeps splitting the interval I 2 I associated with the highest upper bound B

I

quam necessarium.

3 Guarantees: OOB is correct and sample-efficient
Let M , sup

t2[0,1]

W (t) be the maximum of the Brownian motion, bt
"

the output of OOB called with
parameter " > 0, and N

"

the number of Brownian evaluations performed until OOB terminates. All
are random variables that depend on the Brownian motion W . We now voice our main result.
Theorem 1. There exists a constant c > 0 such that for all " < 1/2,

P
⇥
M �W

�b
t

"

�
> "

⇤  " and E[N
"

]  c log

2

(1/").

The first inequality quantifies the correctness of our estimator c
M

"

= W

�b
t

"

�
. Given a realization

of the Brownian motion, our OOB is deterministic. The only source of randomness comes from the
realization of the Brownian. Therefore, being correct means that among all possible realizations of
the Brownian motion, there is a subset of measure at least 1� " on which OOB outputs an estimate c

M

"

which is at most "-away from the true maximum. Such guarantee is called probably approximately
correct (PAC). The second inequality quantifies performance. We claim that the expectation (over W )
of the number of samples that OOB needs to optimize this realization with precision " is O�

log

2

(1/")

�
.

Corollary 1. We get the classic (�, ")-PAC guarantee easily. For any � > 0 and " > 0, choose "

0
=

min(�, ") and apply Theorem 1 for "0 from which we get P
⇥
M �W

�b
t
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0 which is stronger
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⇤  �. Similarly, E[N
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0
]  c log
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0
)  4c(log(1/") + log(1/�))

2.

Remark 1. Our PAC guarantee is actually stronger than stated in Theorem 1. Indeed, the PAC
guarantee analysis can be done conditioned on the collected function evaluations and get
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), ...,W (t

N")

⇤  ",

from which taking the expectation on both sides gives the first part of Theorem 1. This means that the
unfavorable cases, i.e., the Brownian realizations for which

���M � c
M

"

��� > ", are not concentrated on
some subsets of Brownian realizations matching some evaluations in t

1

, ..., t

N" . In other words, the
PAC guarantee also holds when restricted to the Brownian realizations matching the evaluations in
t

1

, ..., t

N" only. This is possible because N

"

is not fixed but depends on the evaluations done by OOB.

One difference from the result of Calvin et al. (2017) is that theirs is with respect to the L
p

norm. For
their algorithm, they prove that with n samples it returns bt

n

2 [0, 1] such that

8r > 1, p > 1, 9c
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, E
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To express their result in the same formalism as ours, we first choose to achieve accuracy "

2 and
compute the number of samples n

"

2 needed to achieve it. Then, for p = 1, we apply Markov
inequality and get that for all r > 1 there exists c

r,1

such that

P
⇥
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b
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"
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On the other hand, in our Theorem 1 we give a poly-logarithmic bound for the sample complexity
and we are in the business because this is better than any polynomial rate.

4 Analysis and the proof of the main theorem
We provide a proof of the main result. Let Ifin be the set I of intervals tracked by OOB when it finishes.
We define an event C such that for any interval I of the form I = [k/2

h

, (k + 1)/2

h

] with k and h

being two integers where 0  k < 2

h, the process W is lower than B

I

on the interval I .
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Guarantees

THEOREM: For any ε <  1/2 correctness

sample complexity

Corollary: Also (δ,ε) PAC

Who cares

- Type 1: Exists prior to optimization 
- simulation of financial stocks 

- Type 2: Observing the function creates it 
- Gaussian process/Thomson sampling 

- Type 3: As a tool beyond learning 
- computationally sample a solution of a stochastic 

differential equation in the work of Hefter and 
Herzwurm (2017)

Prior work

- Al-Mharmah and Calvin (1996)  
- a non-adaptive method 
- sample complexity: 1/√ε 

- Calvin (2017)  
- adaptive method 
- better than any polynomial 
- does not guarantee an exponential rate 
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h

, (k + 1)/2

h

] with k and h

being two integers where 0  k < 2
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Setting

- Munos (2011) classifies functions according to (d, C) to:  
- easy, d = 0, exponentially fast optimization 
- difficult, d ≥ 0, polynomially fast optimization 

- Open questions for a Brownian process: 
- what is its dimension d  
- how fast can we optimize it 

Challenge: Brownian motion is a stochastic process!  
Our answers that solve the open problem: 

- ∀ε, w.p. 1-ε, W(t) is ℓε -Lipschitz + ∃ C(ε) s.t. Brownian ∈ (d, C(ε))  
- there is no (d, C) with C < ∞ such that Brownian ∈ (d, C) 
- we can optimize it with sample complexity of O(log2(1/ε))

- Every round t: based on history 
- choose tn and observe W(tn) 

- Objective: return       s.t. w.p. 1-ε 
-  where 
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Abstract

We address the problem of optimizing a Brownian motion. We consider a (random)
realization W of a Brownian motion with input space in [0, 1]. Given W , our goal
is to return an "-approximation of its maximum using the smallest possible number
of function evaluations, the sample complexity of the algorithm. We provide an
algorithm with sample complexity of order log2(1/"). This improves over previous
results of Al-Mharmah and Calvin (1996) and Calvin et al. (2017) which provided
only polynomial rates. Our algorithm is adaptive—each query depends on previous
values—and is an instance of the optimism-in-the-face-of-uncertainty principle.

1 Introduction to sample-efficient Brownian optimization
We are interested in optimizing a sample of a standard Brownian motion on [0, 1], denoted by W.

More precisely, we want to sequentially select query points t
n

2 [0, 1], observe W (t

n

), and decide
when to stop to return a point bt and its value c

M = W

�b
t

�
in order to well approximate its maximum

M , sup

t2[0,1]

W (t). The evaluations t

n

can be chosen adaptively as a function of previously
observed values W (t

1

), ...,W (t

n�1

). Given an " > 0, our goal is to stop evaluating the function
as early as possible while still being able to return b

t such that with probability at least 1 � ",
M � W

�b
t

�  ". The number of function evaluations required by the algorithm to achieve this
"-approximation of the maximum defines the sample-complexity.

Motivation There are two types of situations where this problem is useful. The first type is when the
random sample function W (drawn from the random process) already exists prior to the optimization.
Either it has been generated before the optimization starts and the queries correspond to reading
values of the function already stored somewhere. For example, financial stocks are stored at a high
temporal resolution and we want to retrieve the maximum of a stock using a small number of memory
queries. Alternatively, the process physically exists and the queries correspond to measuring it.

Another situation is when the function does not exist prior to the optimization but is built simultane-
ously as it is optimized. In other words, observing the function actually creates it. An application of
this is when we want to return a sample of the maximum (and the location of the maximum) of a
Brownian motion conditioned on a set of already observed values. For example, in Bayesian optimiza-
tion for Gaussian processes, a technique called Thomson sampling (Thompson, 1933; Chapelle and
Li, 2011; Russo et al., 2018; Basu and Ghosh, 2018) requires returning the maximum of a sampled
function drawn from the posterior distribution. The problem considered in the present paper can
be seen as a way to approximately perform this step in a computationally efficient way when this
Gaussian process is a Brownian motion.

Moreover, even though our algorithm comes from the ideas of learning theory, it has applications
beyond it. For instance, in order to computationally sample a solution of a stochastic differential
equation, Hefter and Herzwurm (2017) express its solution as a function of the Brownian motion W
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of function evaluations, the sample complexity of the algorithm. We provide an
algorithm with sample complexity of order log2(1/"). This improves over previous
results of Al-Mharmah and Calvin (1996) and Calvin et al. (2017) which provided
only polynomial rates. Our algorithm is adaptive—each query depends on previous
values—and is an instance of the optimism-in-the-face-of-uncertainty principle.

1 Introduction to sample-efficient Brownian optimization
We are interested in optimizing a sample of a standard Brownian motion on [0, 1], denoted by W.

More precisely, we want to sequentially select query points t
n

2 [0, 1], observe W (t

n

), and decide
when to stop to return a point bt and its value c

M = W

�b
t

�
in order to well approximate its maximum

M , sup

t2[0,1]

W (t). The evaluations t

n

can be chosen adaptively as a function of previously
observed values W (t

1

), ...,W (t

n�1

). Given an " > 0, our goal is to stop evaluating the function
as early as possible while still being able to return b

t such that with probability at least 1 � ",
M � W

�b
t

�  ". The number of function evaluations required by the algorithm to achieve this
"-approximation of the maximum defines the sample-complexity.

Motivation There are two types of situations where this problem is useful. The first type is when the
random sample function W (drawn from the random process) already exists prior to the optimization.
Either it has been generated before the optimization starts and the queries correspond to reading
values of the function already stored somewhere. For example, financial stocks are stored at a high
temporal resolution and we want to retrieve the maximum of a stock using a small number of memory
queries. Alternatively, the process physically exists and the queries correspond to measuring it.

Another situation is when the function does not exist prior to the optimization but is built simultane-
ously as it is optimized. In other words, observing the function actually creates it. An application of
this is when we want to return a sample of the maximum (and the location of the maximum) of a
Brownian motion conditioned on a set of already observed values. For example, in Bayesian optimiza-
tion for Gaussian processes, a technique called Thomson sampling (Thompson, 1933; Chapelle and
Li, 2011; Russo et al., 2018; Basu and Ghosh, 2018) requires returning the maximum of a sampled
function drawn from the posterior distribution. The problem considered in the present paper can
be seen as a way to approximately perform this step in a computationally efficient way when this
Gaussian process is a Brownian motion.

Moreover, even though our algorithm comes from the ideas of learning theory, it has applications
beyond it. For instance, in order to computationally sample a solution of a stochastic differential
equation, Hefter and Herzwurm (2017) express its solution as a function of the Brownian motion W
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We now prove a property specific to W by bounding the number of near-optimal points of the
Brownian motion in expectation. We do it by rewriting it as two Brownian meanders (Durrett et al.,
1977), both starting at the maximum of the Brownian, one going backward and the other one forward
with the Brownian meander W+ defined as

8t 2 [0, 1] W

+

(t) , |W (⌧ + t(1� ⌧))|p
1� ⌧

, where ⌧ , sup{t 2 [0, 1] : W (t) = 0}.

We use that the Brownian meander W+ can be seen as a Brownian motion conditioned to be positive
(Denisov, 1984). This is the main ingredient of Lemma 3.
Lemma 3. For any h and ⌘, the expected number of near-optimal points is bounded as

E[N
h
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2
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.

This lemma answers a question raised by Munos (2011): What is the near-optimality dimension
of the Brownian motion? We set ⌘

h

, ⌘
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= O(log(1/")), which is constant with respect to h.

This means that for a given ", there is a metric under which the Brownian is Lipschitz with probability
at least 1� " and has a near-optimality dimension d = 0 with C = O(log(1/")).

The final sample complexity bound is essentially constituted by one O(log(1/")) term coming from
the standard DOO error for deterministic function optimization and another O(log(1/")) term because
we need to adapt our pseudo-distance ` to " such that the Brownian is `-Lipschitz with probability
1� ". The product of the two gives the final sample complexity bound of O�

log

2

(1/")

�
.

Proof of Lemma 3. We denote by W, the Brownian motion whose maximum M is first hit at the
point defined as t

M

= inf{t 2 [0, 1];W (t) = M} and B

+ a Brownian meander (Durrett et al., 1977).
We also define

B

+

0

(t) , M �W (t

M

� t · t
M

))p
t

M

and B

+

1

(t) , M �W (t

M

+ t(1� t

M

))p
1� t

M

·

If L
= denotes the equality in distribution, then Theorem 1 of Denisov (1984) asserts that
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We upper-bound the expected number of ⌘-near-optimal points for any integer h � 0 and any ⌘ > 0,
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If X and Y are independent then for any function f ,
E[f(X,Y )] = E[E[f(X,Y )|Y ]] (law of total expectation)

 sup

y

E[f(X, y)|Y = y] (for any Z, E[Z]  sup

w

Z(w))

= sup

y

E[f(X, y)]. (because X and Y are independent)
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