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SETTING

P00 is a global function maximizer:

e Goal: Maximize f : X — IR given a budget of n evaluations.

e Challenges: f is stochastic and has unknown smoothness

e Protocol: At round ¢, select state x;, observe r; such that

Elre|ed] = f@e).
After n rounds, return a state z(n).

e Loss: Ry, = sup,cy f(2) — f(z(n))

P00 operates on a given hierarchical partitioning of A’

e Forany h, X is partitioned in K" cells (X}, ;)o<i<rn_1-

o [ -ary tree T, where depth I = 0 is the whole X.
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CONTRIBUTIONS

e Extending class of functions that we can provably optimize.

e Principled measure of the problem complexity.
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ASSUMPTION

One single assumption:
Assumption 1. There exists v > 0 and p € (0, 1) such that

Vh >0,z € Py, flz)> f(z")—wvp"

e It's a one-side local Lipschitz-type of assumption constraining
f only along the optimal path and does not rely on any metric!

e Covers large class of functions: For example, any f with stan-
dard partitioning on R? for which

f(x) ~pse Bllz —2|[®

e Counter example: f : x — 1/Inz and a standard partitioning of
0, 1) does not verify Assumption 1.

COMPARISON TO PREVIOUS ASSUMPTIONS

Previous work assume there exists a semi-metric £ on X such that

A1l Local smoothness of f: Forall x € A
f(@®) = flz) < Uz, z7).

A2 Bounded diameters and well-shaped cells: There exist
p < land v; > vy > 0, such that for any depth A > 0 and
indexi =1, ..., Iy, the subset Py, ; is contained by and contains
two open balls of radius v;p" and v5p" respectively.

We provide a more natural characterization

e Prior algorithms don’t use the metric. They only make use of
(v, p) and the partitioning.

e What matters is how much the partitioning fits f. Any function
can be trivially optimized given a perfectly adapted partitioning.

e The metric is a link between the function and the partitioning.
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By discarding the metric we merge the 2 assumptions. We convert
a topological problem into a combinatorial one — Easier analysis!

ALGORITHM: POO

Parameters: K, P = {P};}
Optional parameters: prmax, Vmax
Initialization:
Dpax < In K/ 1In (1/pmax)
n < 0 {number of evaluation performed}
N < 1 {number of HOO instances}
S <+ {(Vmax, Pmax) } {set of HOO instances}
while computational budget is available do
while N > 1 D,.xIn(n/(Inn)) do
fori+ 1,..., N do {start new HOOs}
S < (Vmaxa ,Omasz/(Zi—i_l))
S+ SU{s}
Perform % function evaluation with HOO(s)
Update the average reward ji[s| of HOO(s)
end for
n < 2n
N < 2N
end while{ensure there is enough HOOs}
fors € S do
Perform a function evaluation with HOO(s)
Update the average reward ji[s| of HOO(s)
end for
n<n+N
end while
s* < argmax__g /i[5
Output: The deepest point evaluated by HOO(s*)

How it works?

e PO0 makes the use of HOO as a subroutine, an algorithm that re-
quires the knowledge of the function smoothness.

e P00 automagically launches several HOO instances in parallel for
different smoothness (v, p)

e At the end, P00 selects the instance s* which performed the best
and returns the deepest point selected by this instance.

Why it works?

e From the analysis: few HOO instances are needed — O(Inn).

e From the experiments: most of the evaluations are the same!
— Saving time by sharing information over HOO instances.

MEASURE OF COMPLEXITY

Definition of the near-optimality dimension d

Definition 1. For any partitioning P, reals v > 0 and p € (0,1) veri-

fying Assumption 1

A, p) Lint {d' € RY :3C >0, vh >0, Ni(2vp") < Cp~i™]

where Ny, (€) is the number of near-optimal cells Py, ; of depth h i.e cells
such that

sup f(z) > f(2*) —¢
:UEPh,Z'

e [t measures how much information P gives us about f. The
hierarchical partitioning P is the only prior information available.

o It is the size of the near-optimal set. This set is the cells that any
algorithm would have to sample in order to discover the optimum.

e Examples of d = 0 functions. Any function with same order
upper and lower envelopes near its maximum for the standard
partitioning.

e A d > 0 function for the standard partitioning.

f(z) =1~ Va+(—z+Vx)- (sin(1/2%) + 1)/2

Functions that behave differently in different dimensions have also
d > 0. Nonetheless, for a specifically handcrafted partitioning, it
is possible to have d = 0 even for those functions.
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ANALYSIS

Theorem 1. Let R,, be the simple regret of POO at step n. For any (v, p)
verifying Assumption 1 such that v < vyax and p < pmax there exists k
such that for all n

E[R,] < - ((In?n) /n)"/ @0+

R =0« - DmaX(VmaX/V*)DmaX

Where o is a constant independent of (pmax, Vimax) and Dinax 1S defined as

Dimax = (10 K) /10 (1/ prnax)

e Matches performance of algorithms knowing the smoothness.

This is the performance of HOO run with v, and p,

O (((ln n) /n)l/(d(V*,p*)+2)) .

® Dax 1s a tight upper bound on the near optimality dimension
of any function veritying Assumption 1 for p < ppax.

EXPERIMENTS
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Left: Function we ran experiments on. It has d > 0.
Right: Performance of a HOO instance as a function of p.
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Regret after 500 evaluations of HOO with different p and POO.
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Regret after 5000 evaluation in a log-log scale.

e HOO with low value of p gets stuck. It does not explore enough.
e HOO with high value of p wastes time to explore too much.
e P00 performs almost as well as optimally fitted HOO!

e Among 100 instances only two needed a fresh evaluations.

Code at: https://sequel.lille.inria.fr/Software/PO0
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BACKGROUND: OPTIMISTIC OPTIMIZATION FOR TREES

e HOO is close to UCT but HOO has finite-time performance guarantees

whereas UCT analysis is asymptotic only

e HOO follows an optimistic strategy: HOO defines upper bounds

for every path and selects the maximum one.

e HOO makes use of proper upper bounds — defined as the mini-

mum of U}, ;(t) over the path.

e The third term p" in Uy, ;(t) is function dependent.

Un,i(t) = tn,i(t) + \/Jiinf,;((tt))

— t is the number of evaluations
— Ip.5(t) is the empirical mean of f in Py, ;
— N}, (1) is the number of evaluations of f in Py, ;.




