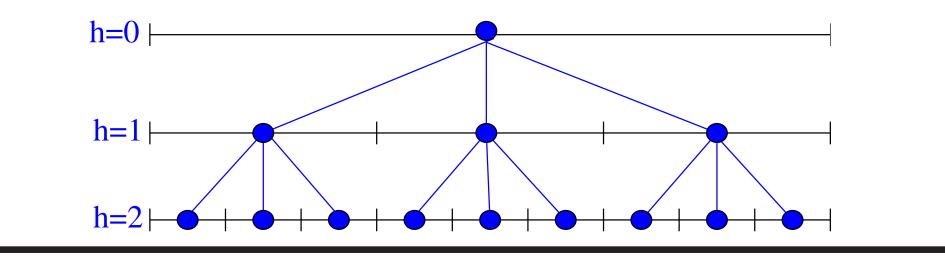
PARALLEL OPTIMISTIC OPTIMIZATION



JEAN-BASTIEN.GRILL@INRIA.FR, MICHAL.VALKO@INRIA.FR, AND MUNOS@GOOGLE.COM

SETTING	ALGORITHM: P00	ANALYSIS
POO is a global function maximizer:	Parameters: K , $\mathcal{P} = \{\mathcal{P}_{h,i}\}$	Theorem 1. Let R_n be the simple regret of POO at step n. For any (ν, ρ)
• Goal: Maximize $f : \mathcal{X} \to \mathbb{R}$ given a budget of n evaluations.	Optional parameters: ρ_{max} , ν_{max} Initialization:	verifying Assumption 1 such that $\nu \leq \nu_{\max}$ and $\rho \leq \rho_{\max}$ there exists κ such that for all n
 Challenges: f is <u>stochastic</u> and has <u>unknown smoothness</u> 	$D_{\max} \leftarrow \ln K / \ln (1/\rho_{\max})$ $n \leftarrow 0$ {number of evaluation performed}	$\mathbb{E}[R_n] \le \kappa \cdot \left(\left(\ln^2 n \right) / n \right)^{1/(d(\nu, \rho) + 2)}$
• Protocol: At round t , select state x_t , observe r_t such that	$N \leftarrow 1$ {number of HOO instances}	
$\mathbb{E}[r_t x_t] = f(x_t).$	$S \leftarrow \{(\nu_{\max}, \rho_{\max})\}$ {set of HOO instances} while computational budget is available do	$\kappa = \alpha \cdot D_{\max} (\nu_{\max} / \nu_{\star})^{D_{\max}}$ Where α is a constant independent of (ρ_{max}, ν_{max}) and D_{\max} is defined as
After n rounds, return a state $x(n)$.	while $N \ge \frac{1}{2}D_{\max}\ln(n/(\ln n))$ do for $i \leftarrow 1, \dots, N$ do {start new HOOs}	
• Loss: $R_n = \sup_{x \in \mathcal{X}} f(x) - f(x(n))$	$s \leftarrow \left(\nu_{\max}, \rho_{\max}^{2N/(2i+1)}\right)$ $\mathcal{S} \leftarrow \mathcal{S} \cup \{s\}$	$D_{\max} \stackrel{\text{def}}{=} (\ln K) / \ln \left(1 / \rho_{\max} \right)$
	Perform $\frac{\hat{n}}{N}$ function evaluation with HOO(s) Update the average reward $\hat{\mu}[s]$ of HOO(s)	• Matches performance of algorithms knowing the smoothness.
POO operates on a given hierarchical partitioning of \mathcal{X} :	end for	
$\sum_{h=1}^{n} \sum_{h=1}^{n} \sum_{h$	$n \leftarrow 2n$	This is the performance of H00 run with $ u_{\star}$ and $ ho_{\star}$

- For any h, \mathcal{X} is partitioned in K^h cells $(X_{h,i})_{0 \le i \le K^h 1}$.
- *K*-ary tree \mathcal{T}_{∞} where depth h = 0 is the whole \mathcal{X} .



CONTRIBUTIONS

• Extending class of functions that we can provably optimize. • **Principled** measure of the problem complexity.

	deterministic	stochastic
known smoothness	D00	Zooming, HOO, HCT
unknown smoothness	DiRect, SOO	StoSOO, TaxonomyZoom, ATB, POO

ASSUMPTION

One *single* assumption:

Assumption 1. There exists $\nu > 0$ and $\rho \in (0, 1)$ such that

 $N \leftarrow 2N$ **end while**{ensure there is enough HOOs} for $s \in S$ do Perform a function evaluation with HOO(s)Update the average reward $\hat{\mu}[s]$ of HOO(*s*) end for $n \leftarrow n + N$ end while $s^{\star} \leftarrow \operatorname{argmax}_{s \in \mathcal{S}} \widehat{\mu}[s]$ **Output:** The deepest point evaluated by $HOO(s^*)$

How it works?

• POO makes the use of HOO as a subroutine, an algorithm that re*quires the knowledge* of the function smoothness.

• POO automagically launches several HOO instances in parallel for different smoothness (ν, ρ)

• At the end, POO selects the instance s^* which performed the best and returns the deepest point selected by this instance.

Why it works?

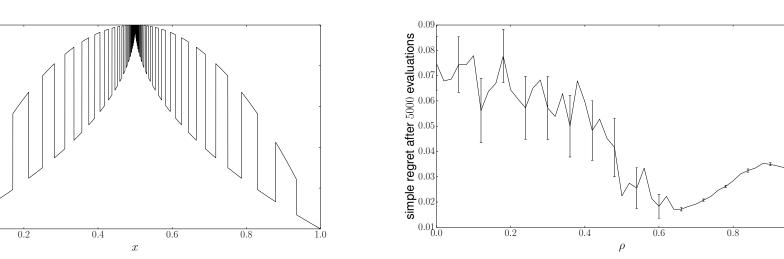
• From the analysis: few HOO instances are needed – $\mathcal{O}(\ln n)$.

• From the experiments: most of the **evaluations are the same!** \rightarrow Saving time by sharing information over HOO instances.

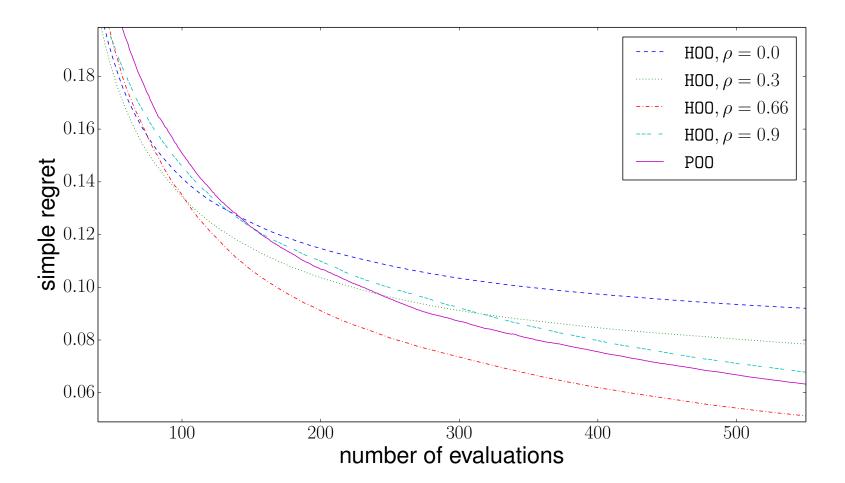
 $O\left(\left(\left(\ln n\right)/n\right)^{1/(d(\nu_{\star},\rho_{\star})+2)}\right)$

• D_{\max} is a **tight upper bound** on the near optimality dimension of any function verifying Assumption 1 for $\rho \leq \rho_{\text{max}}$.

EXPERIMENTS

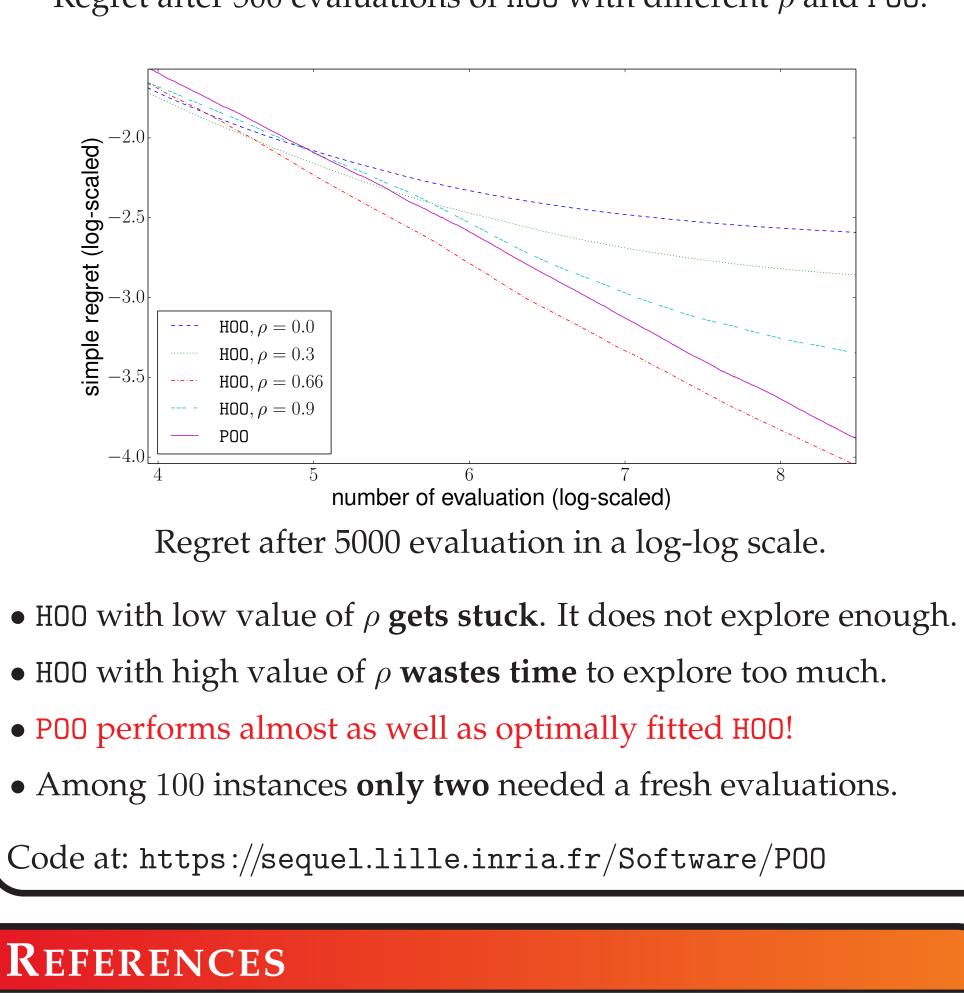


Left: Function we ran experiments on. It has d > 0. **Right:** Performance of a HOO instance as a function of ρ .



Regret after 500 evaluations of HOO with different ρ and POO.

$\forall h \ge 0, \forall x \in \mathcal{P}_{h, i_h^\star}, f(x) \ge f(x^\star) - \nu \rho^h.$	MEASURE OF COMPLEXITY
	Definition of the near-optimality dimension <i>d</i>
• It's a one-side local Lipschitz-type of assumption constraining <i>f</i> only along the optimal path and does not rely on any metric!	Definition 1. For any partitioning \mathcal{P} , reals $\nu > 0$ and $\rho \in (0, 1)$ veri- fying Assumption 1
• Covers large class of functions: For example, any f with standard partitioning on \mathbb{R}^p for which	$d(\nu,\rho) \stackrel{\text{def}}{=} \inf \left\{ d' \in \mathbb{R}^+ : \exists C > 0, \ \forall h \ge 0, \ \mathcal{N}_h(2\nu\rho^h) \le C\rho^{-d'h} \right\}$
$f(x) \sim_{x \to x^*} \beta x - x^* ^{\alpha}$	where $\mathcal{N}_h(\varepsilon)$ is the number of near-optimal cells $\mathcal{P}_{h,i}$ of depth h i.e cells
• Counter example: $f : x \mapsto 1/\ln x$ and a standard partitioning of $[0, 1)$ does not verify Assumption 1.	such that $\sup_{x \in \mathcal{P}_{h,i}} f(x) \ge f(x^*) - \varepsilon$
COMPARISON TO PREVIOUS ASSUMPTIONS	• It measures how much information \mathcal{P} gives us about f . The hierarchical partitioning \mathcal{P} is the only prior information available.
Previous work assume there exists a semi-metric ℓ on \mathcal{X} such that	
A1 Local smoothness of f : For all $x \in \mathcal{X}$:	• It is the size of the near-optimal set. This set is the cells that any algorithm would have to sample in order to discover the optimum.
$f(x^*) - f(x) \le \ell(x, x^*).$	
A2 Bounded diameters and well-shaped cells: There exist $\rho < 1$ and $\nu_1 \ge \nu_2 > 0$, such that for any depth $h \ge 0$ and	• Examples of $d = 0$ functions. Any function with same order upper and lower envelopes near its maximum for the standard partitioning.
index $i = 1,, I_h$, the subset $\mathcal{P}_{h,i}$ is <i>contained by</i> and <i>contains</i> two open balls of radius $\nu_1 \rho^h$ and $\nu_2 \rho^h$ respectively.	• $\mathbf{A} d > 0$ function for the standard partitioning.
	$f(x) = 1 - \sqrt{x} + (-x^2 + \sqrt{x}) \cdot (\sin(1/x^2) + 1)/2$
We provide a more natural characterization	



HOO: Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed Bandits, NIPS 2009

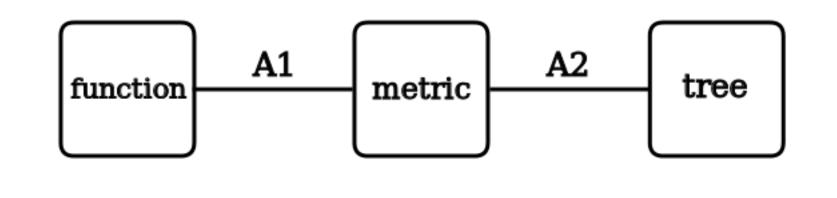
SOO: Rémi Munos. Optimistic Optimization of Deterministic Functions without the Knowledge of its Smoothness, NIPS 2011.

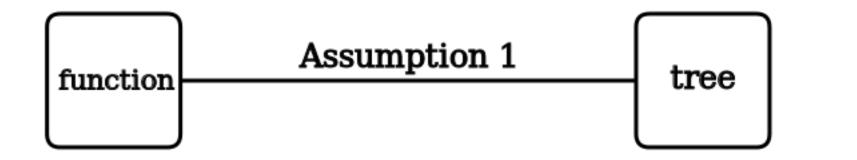
 (ν, ρ) and the partitioning.

• What matters is **how much the partitioning fits** *f*. Any function can be trivially optimized given a perfectly adapted partitioning.

• Prior algorithms don't use the metric. They only make use of

• The metric is a <u>link</u> between the function and the partitioning.





By discarding the metric we merge the 2 assumptions. We convert a **topological** problem into a **combinatorial** one \rightarrow Easier analysis!

Functions that behave differently in different dimensions have also d > 0. Nonetheless, for a specifically handcrafted partitioning, it is possible to have d = 0 even for those functions.

TaxonomyZoom: Aleksandrs Slivkins. Multi-armed Bandits on Implicit Metric Spaces, NIPS 2011.

StoSOO: Michal Valko, Alexandra Carpentier, and Rémi Munos. Stochastic Simultaneous Optimistic Optimization, ICML 2013.

HCT: MG Azar, Alessandro Lazaric, and Emma Brunskill: Online Stochastic Optimization under Correlated Bandit Feedback. ICML 2014.

ATB: Adam D. Bull. Adaptive-treed bandits. Bernoulli, 2015.

BACKGROUND: OPTIMISTIC OPTIMIZATION FOR TREES

• HOO **is close to** UCT but HOO has *finite-time* performance guarantees whereas UCT analysis is *asymptotic* only

• HOO follows an optimistic strategy: HOO defines upper bounds for every path and selects the maximum one.

• HOO makes use of proper upper bounds — defined as the minimum of $U_{h,i}(t)$ over the path.

• The third term ρ^h in $U_{h,i}(t)$ is **function dependent**.

 $U_{h,i}(t) = \hat{\mu}_{h,i}(t) + \sqrt{\frac{2\ln(t)}{N_{h,i}(t)}} + \nu \rho^h,$

 \rightarrow *t* is the number of evaluations $\rightarrow \widehat{\mu}_{h,i}(t)$ is the empirical mean of f in $\mathcal{P}_{h,i}$ $\rightarrow N_{h,i}(t)$ is the number of evaluations of f in $\mathcal{P}_{h,i}$.