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SETTING
POO is a global function maximizer:

• Goal: Maximize f : X → IR given a budget of n evaluations.

• Challenges: f is stochastic and has unknown smoothness

• Protocol: At round t, select state xt, observe rt such that

E[rt|xt] = f(xt).

After n rounds, return a state x(n).

• Loss: Rn = supx∈X f(x)− f(x(n))

POO operates on a given hierarchical partitioning of X :

• For any h, X is partitioned in Kh cells (Xh,i)0≤i≤Kh−1.

• K-ary tree T∞ where depth h = 0 is the whole X .
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CONTRIBUTIONS

• Extending class of functions that we can provably optimize.

• Principled measure of the problem complexity.

deterministic stochastic

known
smoothness DOO Zooming, HOO, HCT

unknown
smoothness DiRect, SOO StoSOO, TaxonomyZoom, ATB, POO

ASSUMPTION
One single assumption:

Assumption 1. There exists ν > 0 and ρ ∈ (0, 1) such that

∀h ≥ 0,∀x ∈ Ph,i?h , f(x) ≥ f (x?)− νρh.

• It’s a one-side local Lipschitz-type of assumption constraining
f only along the optimal path and does not rely on any metric!

• Covers large class of functions: For example, any f with stan-
dard partitioning on Rp for which

f(x) ∼x→x? β||x− x?||α

• Counter example: f : x 7→ 1/ lnx and a standard partitioning of
[0, 1) does not verify Assumption 1.

COMPARISON TO PREVIOUS ASSUMPTIONS
Previous work assume there exists a semi-metric ` on X such that

A1 Local smoothness of f : For all x ∈ X :

f(x∗)− f(x) ≤ `(x, x∗).

A2 Bounded diameters and well-shaped cells: There exist
ρ < 1 and ν1 ≥ ν2 > 0, such that for any depth h ≥ 0 and
index i = 1, . . . , Ih, the subset Ph,i is contained by and contains
two open balls of radius ν1ρh and ν2ρh respectively.

We provide a more natural characterization

• Prior algorithms don’t use the metric. They only make use of
(ν, ρ) and the partitioning.

•What matters is how much the partitioning fits f . Any function
can be trivially optimized given a perfectly adapted partitioning.

• The metric is a link between the function and the partitioning.

By discarding the metric we merge the 2 assumptions. We convert
a topological problem into a combinatorial one→ Easier analysis!

ALGORITHM: POO
Parameters: K, P = {Ph,i}

Optional parameters: ρmax, νmax

Initialization:
Dmax ← lnK/ ln (1/ρmax)
n← 0 {number of evaluation performed}
N ← 1 {number of HOO instances}
S ← {(νmax, ρmax)} {set of HOO instances}

while computational budget is available do
while N ≥ 1

2Dmax ln (n/(lnn)) do
for i← 1, . . . , N do {start new HOOs}
s←

(
νmax, ρmax

2N/(2i+1)
)

S ← S ∪ {s}
Perform n

N function evaluation with HOO(s)
Update the average reward µ̂[s] of HOO(s)

end for
n← 2n
N ← 2N

end while{ensure there is enough HOOs}
for s ∈ S do

Perform a function evaluation with HOO(s)
Update the average reward µ̂[s] of HOO(s)

end for
n← n+N

end while
s? ← argmaxs∈S µ̂[s]
Output: The deepest point evaluated by HOO(s?)

How it works?

• POO makes the use of HOO as a subroutine, an algorithm that re-
quires the knowledge of the function smoothness.

• POO automagically launches several HOO instances in parallel for
different smoothness (ν, ρ)

• At the end, POO selects the instance s? which performed the best
and returns the deepest point selected by this instance.

Why it works?

• From the analysis: few HOO instances are needed – O(lnn).

• From the experiments: most of the evaluations are the same!
→ Saving time by sharing information over HOO instances.

MEASURE OF COMPLEXITY
Definition of the near-optimality dimension d

Definition 1. For any partitioning P , reals ν > 0 and ρ ∈ (0, 1) veri-
fying Assumption 1

d(ν, ρ)
def= inf

{
d′ ∈ R+ : ∃C > 0, ∀h ≥ 0, Nh(2νρh) ≤ Cρ−d

′h
}

where Nh(ε) is the number of near-optimal cells Ph,i of depth h i.e cells
such that

sup
x∈Ph,i

f(x) ≥ f(x?)− ε

• It measures how much information P gives us about f . The
hierarchical partitioning P is the only prior information available.

• It is the size of the near-optimal set. This set is the cells that any
algorithm would have to sample in order to discover the optimum.

• Examples of d = 0 functions. Any function with same order
upper and lower envelopes near its maximum for the standard
partitioning.

• A d > 0 function for the standard partitioning.

f(x) = 1−√x+ (−x2 +√x) · (sin(1/x2) + 1)/2

Functions that behave differently in different dimensions have also
d > 0. Nonetheless, for a specifically handcrafted partitioning, it
is possible to have d = 0 even for those functions.

BACKGROUND: OPTIMISTIC OPTIMIZATION FOR TREES

• HOO is close to UCT but HOO has finite-time performance guarantees
whereas UCT analysis is asymptotic only

• HOO follows an optimistic strategy: HOO defines upper bounds
for every path and selects the maximum one.

• HOO makes use of proper upper bounds — defined as the mini-
mum of Uh,i(t) over the path.

• The third term ρh in Uh,i(t) is function dependent.

Uh,i(t) = µ̂h,i(t) +

√
2 ln(t)

Nh,i(t)
+ νρh,

→ t is the number of evaluations
→ µ̂h,i(t) is the empirical mean of f in Ph,i
→ Nh,i(t) is the number of evaluations of f in Ph,i.

ANALYSIS
Theorem 1. Let Rn be the simple regret of POO at step n. For any (ν, ρ)
verifying Assumption 1 such that ν ≤ νmax and ρ ≤ ρmax there exists κ
such that for all n

E[Rn] ≤ κ ·
((
ln2 n

)
/n
)1/(d(ν,ρ)+2)

κ = α ·Dmax(νmax/ν?)
Dmax

Where α is a constant independent of (ρmax, νmax) andDmax is defined as

Dmax
def=(lnK)/ ln (1/ρmax)

•Matches performance of algorithms knowing the smoothness.

This is the performance of HOO run with ν? and ρ?

O
(
((lnn) /n)

1/(d(ν?,ρ?)+2)
)
.

• Dmax is a tight upper bound on the near optimality dimension
of any function verifying Assumption 1 for ρ ≤ ρmax.

EXPERIMENTS
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Left: Function we ran experiments on. It has d > 0.
Right: Performance of a HOO instance as a function of ρ.
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Regret after 5000 evaluation in a log-log scale.

• HOO with low value of ρ gets stuck. It does not explore enough.

• HOO with high value of ρ wastes time to explore too much.

• POO performs almost as well as optimally fitted HOO!

• Among 100 instances only two needed a fresh evaluations.

Code at: https ://sequel.lille.inria.fr/Software/POO
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