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Problem setting: black-box optimisation

In budgeted online optimisation, a learner optimises f : X → R.
We consider a general case where f is decomposable as,

f =
1

n

n∑
t=1

ft .

At each round t ∈ {1, . . . , n},
the learner chooses an element xt ∈ X and observes a real number
yt , where yt = ft(xt). no gradient, zero-order optimisation

Objective: Study the optimisation problem under different
assumption on the f1, . . . , fn
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Assumptions: Two regimes

Stochastic feedback : At any round, we have ft = f + εt with εt
distributed (i.i.d.) over rounds.

E[εt ] = 0 and |εt | ≤ b. (1)

Non-stochastic feedback we minimally assume:

|ft′(x)− ft(x)| ≤ b for all t, t ′ and x ∈ X . (2)

Actually we will sometimes rephrase this condition as
the equivalent condition |ft(x)| ≤ fmax for all x ∈ X
and t ∈ [n].
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The regret

The learner recommends after round n, the element x(n) and
minimises the simple regret rn.

Stochastic case: Expected regret

Ef [rn] , Ef1,...,fn

[
sup
x∈X

f (x)− Ex(n)[f (x(n))]

]
= sup

x∈X
f (x)− Ex(n)

[
f (x(n))

]
.

Non-stochastic setting: A regret for any sequence f1, . . . , fn

rn , sup
x∈X

f (x)− Ex(n)[f (x(n))] ,
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Introducing the tools and the
minimal assumptions
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Partitioning

• For any depth h, X is partitioned in Kh cells (Ph,i )0≤Kh−1.

• K -ary tree T where depth h = 0 is the whole X .

h=0

h=1

h=2

An example of partitioning in one dimension with K = 3.
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Tree-based learners: use the partitioning to
explore f (uniformly)
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The assumption and the smoothness

Assumption (on the local smoothness around x?)

For any global optimum x?, there exists ν > 0 and ρ ∈ (0, 1), (ν, ρ
depend on x?), such that ∀h ∈ N, ∀x ∈ Ph,i?h ,

f (x) ≥ f (x?)− νρh.

• The smoothness is local, around a x?.

• This guaranties that the algorithm will not under-estimate by
more than νρh the value of optimal cell Ph,i?h if it observes
f (x) with x ∈ Ph,i?h ,.

• Now for the opposite question: How much none optimal cells
have values νρh-close to optimal and therefore indiscernible
from it? Let us count them!
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The smoothness and the near-optimal
dimension

Definition

For any ν > 0, C > 1, and ρ ∈ (0, 1), the near-optimality
dimension d (ν,C , ρ) of f with respect to the partitioning P, is

d (ν,C , ρ) , inf
{
d ′ ∈ R+ : ∀h ≥ 0,

Nh(3νρh) ≤

Cρ−d
′h
}

,

where Nh(ε) is the number of cells Ph,i of depth h such that
supx∈Ph,i

f (x) ≥ f (x?)− ε.
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The smoothness and the near-optimal
dimension

Lets us bound Nh(3νρh) as a function of the depth h.

• ρ−d ′h controls how Nh(3νρh) explodes with h if d ′ > 0 .

• Nh(3νρh) is simply bounded,∀h, by a constant C if d ′ = 0 .
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Previous work

Previous approaches under similar assumptions with unknown
smoothness (ν, ρ):

b = 0 stochastic (b > 0)

StroquOOL
(

1
n

) 1
d

(
1
n

) 1
d+2

SequOOL
(

1
n

) 1
d 7

Uniform(s) 1
n

log 1
ρ

log K 1/n

1
log K

log 1/ρ
+2

• We characterise the rates of the uniform strategy under
non-stochastic setting.

• We will introduce VROOM.

10/22



Previous work

Previous approaches under similar assumptions with unknown
smoothness (ν, ρ):

b = 0 stochastic (b > 0) non-stochastic

StroquOOL
(

1
n

) 1
d

(
1
n

) 1
d+2 7

SequOOL
(

1
n

) 1
d 7 7

Uniform(s) 1
n

log 1
ρ

log K 1/n

1
log K

log 1/ρ
+2

?
VROOM ? ? ?

• We characterise the rates of the uniform strategy under
non-stochastic setting.

• We will introduce VROOM.

10/22



Challenges

• In non-stochastic setting, a learner has to employ internal
randomisation, P(xt ∈ Ph,i ). Candidates estimators are:

— f̂h,i (t) , 1
Th,i (t)

∑Th,i (t)
s=1 ys is easily biased by an adversary.

— f̃h,i (t)
∆
≈

yt1xt∈Ph,i

P(xt∈Ph,i )
. unbiased / high variance if

P(xt ∈ Ph,i ) ≈ 0. Ex: a uniform exploration can lead to a Kh .
Challenge I: How to control potentially large estimator
variances (especially in the stochastic setting)?

• The confidence interval of estimate
∑n

t=1 f̃h,i (t), varies with h
( number of pulls & variance).
Cross validation techniques as in StroquOOL, are biased
against an adversary.
Challenge II: How to recommend an optimum x(n) capable
of operating successfully in both feedback settings?
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Now: The Algorithms

• Robust Uniform strategies

• VROOM, best of both worlds?
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Robust uniform strategies

Parameters: P = {Ph,i}, b, n, fmax. Set δ = 4b
fmax
√
n

.

For t = 1, . . . , n J Exploration I
Evaluate a point xt sampled from UP(P0,1).

Output x(n) ∼ U(Ph(n),i(n))

where (h(n), i(n))← argmax
h,i

F̃h,i (n)− Badv
h (n)

Figure: The Robuni algorithm

• The algorithm uses a lower confidence bound estimator:
F̃h,i (n)− Badv

h (n) where

• F̃h,i (n) is an unbiased estimates
• Badv

h (n) is the width of the confidence interval of that
estimate
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Robust uniform strategies

Theorem (Upper bounds for Robuni)

Any f1, . . . , fn such that |ft(x)| ≤ fmax for all x ∈ X and t ∈ [n].
Let f = 1

n

∑n
t=1 ft , with associated (ν, ρ).

E[rn] = O

(
log(n/δ)

(
K

nρ2

) 1
log K

log 1/ρ
+2

)
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b = 0 stochastic (b > 0) non-stochastic

StroquOOL
(

1
n
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d
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1
n
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n
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d 7 7

Uniform(s) 1
n

log 1
ρ

log K 1/n

1
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?
VROOM ? ? ?

• The rates of Uniform extends to the non-stochastic case!

• Best of both worlds?: Can we obtain the rates in the
stochastic setting. and in the non-stochastic setting.
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Zipf exploration: Open best n
h

cells at depth h

h=0

h=1

...
...
...
...

...
n

h
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Noisy case

• need to pull more each x to limit uncertainty

• tradeoff: the more you pull each x the shallower you can
explore
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Noisy case: StroquOOL (Bartlett et al. 2019)

At depth h:

• order the cells by decreasing value and

• open the i-th best cell with m = n
hi estimations
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VROOM

Parameters: P = {Ph,i}, b, n, fmax. Set δ = 4b
fmax
√
n

.

For t = 1, . . . , n J Exploration I
For each depth h ∈ [blogK (n)c], rank the cells by decreasing

order of f̂ −h,i (t − 1) : Rank cell Ph,i as 〈̂i〉h,t .

xt ∼ UP(Pht ,it ) where

ph,i ,t , P(Pht ,it = Ph,i ) ,
1

h〈̂i〉h,t logK (n)

Output x(n) ∼ UP(Ph(n),i(n))

where (h(n), i(n))← argmax
(h,i)

F̃h,i (n)− Bh,i (n)
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Theorem Upper bounds for VROOM

In the non-stochastic setting,:

E[rn] = Õ

(
1/n

1
log K

log 1/ρ
+2

)

Moreover in the stochastic setting, we have,

E[rn] = Õ
(

1

n

)max

 1

d + 3
, 1

log K
log 1/ρ

+2


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Discussion

• Is the rate
1

d + 3
optimal? Lowerbound?

• Contrary to StroquOOL, VROOM requires the knowledge of b.
Can we get rid of this assumption.

• Can we obtain results for the deterministic setting (b=0)?
(without knowledge b=0)
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Thank you!
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