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Problem setting: black-box optimisation

In budgeted online optimisation, a learner optimises f : X — R.
We consider a general case where f is decomposable as,

1 n
f:n;ft.

At each round t € {1,...,n},
the learner chooses an element x; € X and observes a real number

e, where yr = fi(xt).
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Objective: Study the optimisation problem under different
assumption on the fi,... f,



Assumptions: Two regimes

Stochastic feedback : At any round, we have f; = f + &; with &;
distributed (i.i.d.) over rounds.

Ele: ] =0 and e < b. (1)

Non-stochastic feedback we minimally assume:
[fu(x) — fi(x)] < bforall t,t' and x € X. (2)

Actually we will sometimes rephrase this condition as
the equivalent condition |f(x)| < fnax for all x € X
and t € [n].



The regret

The learner recommends after round n, the element x(n) and
minimises the simple regret r,.

Stochastic case: Expected regret

Ef[ra] £ Eg,....r, sup F(x) = Ex(n[f(x(n))]

= sup ?(X) - Ex(n) F(X(n))] :

xeX
Non-stochastic setting: A regret for any sequence fi,...,f,

In £ sup f(X) - IEx(n)[f(x(n))] )

xXeEX
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Introducing the tools and the
minimal assumptions



Partitioning

® For any depth h, X is partitioned in K" cells (Ph,i)o<kh—1-

e K-ary tree T where depth h = 0 is the whole X.

An example of partitioning in one dimension with K = 3.

X



Tree-based learners: use the partitioning to
explore f (uniformly)
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The assumption and the smoothness

Assumption (on the local smoothness around x*)

For any global optimum x*, there exists v > 0 and p € (0,1), (v, p
depend on x*), such that Vh € N, Vx € Pp jx,

f(x) > f(x*) —vp.
® The smoothness is local, around a x*.

® This guaranties that the algorithm will not under-estimate by
more than vp” the value of optimal cell Ph,jx if it observes
f(X) with x € 'Ph,,';,.

® Now for the opposite question: How much none optimal cells
have values v/p"-close to optimal and therefore indiscernible
from it? Let us count them!



The smoothness and the near-optimal
dimension

le

\

Definition

Ni(Bvp") <

where N} (e) is the number of cells P ; of depth h such that
Supxep,, f(x) = f(x*) —e.
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The smoothness and the near-optimal
dimension

Lets us bound N,(31p") as a function of the depth h.
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The smoothness and the near-optimal
dimension
Lets us bound N,(31p") as a function of the depth h.

e =4 controls how N}, (3vp") explodes with h if -

® N,(3vp") is simply bounded,Vh, by a constant C if -

Definition

Forany v >0, C > 1, and p € (0, 1), the near-optimality
dimension d(v, C, p) of f with respect to the partitioning P, is

d(v,C,p) £ inf{d’ eRT:Vh >0, Ny(3vp") < Cp—d’h} :

where NV, (¢) is the number of cells Py, ; of depth / such that
SUpyep,, f(x) = f(x*) —e.



Previous work

Previous approaches under similar assumptions with unknown
smoothness (v, p):

b =0 | stochastic (b > 0)
1 _1
StroquOOL | (1)? (1)d+2
T
SequoOL | ()7 X
log T
Uniform(s) %'ng 1/nloggﬁ+2

® We characterise the rates of the uniform strategy under
non-stochastic setting.

® We will introduce VROOM.
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Challenges

® In non-stochastic setting, a learner has to employ internal
randomisation, IP’(xt c Py ,) Candidates estimators are:

=~ T . o
— fhi(t) £ Th ©) pp "’( ys is easily biased by an adversary.
A yily . . .
— fi(t) = %7::’) unbiased / high variance if
P(xt € Pp,i) ~ 0. Ex: a uniform exploration can lead to a K" .
Challenge I: How to control potentially large estimator
variances (especially in the stochastic setting)?

The confidence interval of estimate Y ;. fh,(t) varies with h
( number of pulls & variance).

Cross validation techniques as in Stroqu0OL, are biased
against an adversary.

Challenge Il: How to recommend an optimum x(n) capable
of operating successfully in both feedback settings?



Now: The Algorithms

® Robust Uniform strategies

e VROOM, best of both worlds?



Robust uniform strategies

Parameters: P = {P,;}, b, n, fnax. Set § = - 45/5'

Fort=1,...,n <« Exploration »
Evaluate a point x; sampled from Up(Pq1).

Output X(n) ~ M(Ph(n),i(n)) N
where (h(n), /(n)) <— arg maX Fh,i(n) _ Bﬁdv(n)

N

Figure: The ROBUNI algorithm

® The algorithm uses a lower confidence bound estimator:
I?h,,-(n) — B29(n) where

. IEhy,-(n) is an unbiased estimates

® B29(n) is the width of the confidence interval of that
estimate
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Robust uniform strategies

Theorem (Upper bounds for ROBUNI)

Any fi, ..., f, such that |f;(x)| < fmax for all x € X and t € [n].
Let f =157 . £, with associated (v, p).

Elr] = 0 <|og(n () />
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b =0 | stochastic (b > 0) | non-stochastic
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b =0 | stochastic (b > 0) | non-stochastic
T T
Stroqu0OL (%) d (%) 2 X
T
SequO0L (%) d X X
log Tk,
Uniform(s) %'°g’< 1/n og1/5 2
VROOM ? ? ?

® The rates of Uniform extends to the non-stochastic casel

® Best of both worlds?: Can we obtain the rates in the

stochastic setting. and

in the non-stochastic setting.
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Zipf exploration: Open best ; cells at depth h

X
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Noisy case

>

® need to pull more each x to limit uncertainty

¢ tradeoff: the more you pull each x the shallower you can
explore



Noisy case: Stroqu00OL (Bartlett et al. 2019)

At depth h:
® order the cells by decreasing value and

® open the i-th best cell with m = 7 estimations

h
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VROOM

Parameters: P = {Ph;}, b, n, fnax. Set § = - 4%-

Fort=1,...,n <« Exploration »
For each depth h € [|logy(n)]], rank the cells by decreasing

order of ;‘;_I.(t — 1) : Rank cell Py as </i\)h7t.

Xt ~ Z/fp(fpht’,'t) where

1
Phit = P(Phei. = Phi) =

—~

h{i)p,logk(n)

Output x(n) ~ Up(Ph(n),i(n))
where (h(n), i(n)) ¢ argmax Fp;(n) = Bp,i(n)

(h.i)
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Theorem Upper bounds for VROOM

In the non-stochastic setting,:

1
E[r] = O (1/,1@?‘17;;*2)

Moreover in the stochastic setting, we have,

(a+3355)
E[r,] = (5(1) d+3 k'f;gl'fp

n
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Discussion

® |s the rate ——— optimal? Lowerbound?

® Contrary to StroquOOL, VROOM requires the knowledge of b.
Can we get rid of this assumption.

e Can we obtain results for the deterministic setting (b=0)?
(without knowledge b=0)
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Thank youl!



