Adapting to game trees in zerosum imperfect information games

Côme Fiegel¹, Pierre Ménard², Tadashi Kozuno³, Rémi Munos⁴, Vianney Perchet^{1,5}, Michal Valko⁴ ¹ENSAE Paris ²ENS Lyon ³Omron Sinic X ⁴DeepMind ⁵Criteo AI Lab

International Conference on Machine Learning 2023

- \blacksquare State space $\mathbb{S},$ initial state $s_1\in\mathbb{S}$ and horizon H>0
- At timestep $h \in [1..H]$, the two players take actions $a \in A$ and $b \in B$
- Reward $r_h(s, a, b) \in [0, 1]$ and transition to the next state $p_h(\cdot|s, a, b)$

- \blacksquare State space $\mathbb{S},$ initial state $s_1\in\mathbb{S}$ and horizon H>0
- At timestep $h \in [1..H]$, the two players take actions $a \in A$ and $b \in B$
- Reward $r_h(s, a, b) \in [0, 1]$ and transition to the next state $p_h(\cdot|s, a, b)$

Assumptions:

 $\frac{\text{Zero-sum:}}{\text{min-player}} \xrightarrow{\text{max-player}} \text{receives } r_h,$

- \blacksquare State space $\mathbb{S},$ initial state $s_1\in\mathbb{S}$ and horizon H>0
- At timestep $h \in [1..H]$, the two players take actions $a \in A$ and $b \in B$
- Reward $r_h(s, a, b) \in [0, 1]$ and transition to the next state $p_h(\cdot|s, a, b)$

Assumptions:

 $\label{eq:receives} \begin{array}{l} \underline{\text{Zero-sum: max-player receives } r_h,} \\ \underline{\text{min-player receives } -r_h} \\ \underline{\text{Imperfect information: Players only}} \\ \text{observe information sets } x(s) \in \mathfrak{X} \text{ and} \\ y(s) \in \mathcal{Y} \end{array}$

- \blacksquare State space $\mathbb{S},$ initial state $s_1\in\mathbb{S}$ and horizon H>0
- At timestep $h \in [1..H]$, the two players take actions $a \in A$ and $b \in B$
- **•** Reward $r_h(s, \mathbf{a}, \mathbf{b}) \in [0, 1]$ and transition to the next state $p_h(\cdot | s, \mathbf{a}, \mathbf{b})$

Assumptions:

Zero-sum: max-player receives r_h , min-player receives $-r_h$ Imperfect information: Players only observe information sets $x(s) \in X$ and $y(s) \in \mathcal{Y}$ Perfect recall: Players do not forget past observations and actions

Policies: Non-deterministic $\mu = (\mu(\cdot|x))_{x \in \mathcal{X}}$ and $\nu = (\nu(\cdot|y))_{y \in \mathcal{Y}}$

Policies: Non-deterministic $\mu = (\mu(\cdot|x))_{x \in \mathcal{X}}$ and $\nu = (\nu(\cdot|y))_{y \in \mathcal{Y}}$

Value: $V^{\mu,\nu} = \mathbb{E}^{\mu,\nu} \left[\sum_{h=1}^{H} r_h \right]$

Policies: Non-deterministic $\mu = (\mu(\cdot|x))_{x \in \mathcal{X}}$ and $\nu = (\nu(\cdot|y))_{y \in \mathcal{Y}}$

Value:
$$V^{\mu,\nu} = \mathbb{E}^{\mu,\nu} \left[\sum_{h=1}^{H} r_h \right]$$

 (μ,ν) is a Nash equilibrium if $\mu\in \operatorname{argmax} V^{\cdot,\nu}$ and $\nu\in \operatorname{argmin} V^{\mu,\cdot}$

Policies: Non-deterministic $\mu = (\mu(\cdot|x))_{x \in \mathcal{X}}$ and $\nu = (\nu(\cdot|y))_{y \in \mathcal{Y}}$

Value:
$$V^{\mu,\nu} = \mathbb{E}^{\mu,\nu} \left[\sum_{h=1}^{H} r_h \right]$$

 (μ, ν) is a Nash equilibrium if $\mu \in \operatorname{argmax} V^{\cdot, \nu}$ and $\nu \in \operatorname{argmin} V^{\mu, \cdot}$

Objective \rightarrow Approximate a **Nash equilibrium**

Sequential learning

Interaction with the game: T episodes played using freely chosen profiles $(\mu^t,\nu^t)_{t\in[1..T]}$

Sequential learning

Interaction with the game: T episodes played using freely chosen profiles $(\mu^t,\nu^t)_{t\in[1..T]}$

Regrets: $\mathfrak{R}_{max}^{\mathsf{T}} = \max_{\mu} \sum_{t} \left[V^{\mu,\nu^{t}} - V^{\mu^{t},\nu^{t}} \right]$, $\mathfrak{R}_{min}^{\mathsf{T}} = \max_{\nu} \sum_{t} \left[V^{\mu^{t},\nu^{t}} - V^{\mu^{t},\nu} \right]$

Sequential learning

Interaction with the game: T episodes played using freely chosen profiles $(\mu^t,\nu^t)_{t\in[1..T]}$

Regrets: $\mathfrak{R}_{max}^{\mathsf{T}} = \max_{\mu} \sum_{t} \left[V^{\mu,\nu^{t}} - V^{\mu^{t},\nu^{t}} \right]$, $\mathfrak{R}_{min}^{\mathsf{T}} = \max_{\nu} \sum_{t} \left[V^{\mu^{t},\nu^{t}} - V^{\mu^{t},\nu} \right]$

Small **regrets** \iff average profile $(\overline{\mu}, \overline{\nu})$ approximates a **Nash equilibrium**

Max player's point of view

Max player's point of view

Advantage

Episodic MDP with a tree-structure

Max player's point of view

Advantage

Episodic MDP with a tree-structure

Difficulty

Adversarial transitions $p^{\,t}$ that change between episodes

Back to regret minimization

Objective: minimize $\mathfrak{R}_{\max}^{\mathsf{T}} = \max_{\mu} \sum_{t=1}^{\mathsf{T}} \left[V^{\mu,\nu^{t}} - V^{\mu^{t},\nu^{t}} \right]$

FTRL approach : $\mu^{t+1} = \mathrm{argmax}_{\mu} \sum_{k=1}^t \tilde{V}^{\mu,\nu^k} - \Psi(\mu)$ with

- \blacksquare \tilde{V}^{\cdot,ν^t} estimated value at episode t as a function of μ
- $\blacksquare \ \Psi$ the regularizer

Back to regret minimization

Objective: minimize $\mathfrak{R}_{\max}^{\mathsf{T}} = \max_{\mu} \sum_{t=1}^{\mathsf{T}} \left[V^{\mu,\nu^{t}} - V^{\mu^{t},\nu^{t}} \right]$

FTRL approach : $\mu^{t+1} = \operatorname{argmax}_{\mu} \sum_{k=1}^{t} \tilde{V}^{\mu,\nu^{k}} - \Psi(\mu)$ with

- $\blacksquare ~ \tilde{V}^{\cdot, \nu^t}$ estimated value at episode t as a function of μ
- $\blacksquare \ \Psi$ the regularizer

How to choose Ψ ?

Regularizer choice

First choice: BalancedFTRL

- $\Psi_p(\mu) = \textit{negentropy}(\text{information set} | \mu, p) / \eta$
- \blacksquare Compute balanced transitions p^{\star} and use $\Psi_{p^{\star}}$

• $\Re_{\max}^{\mathsf{T}} = \widetilde{\mathbb{O}}\left(\sqrt{\mathsf{H}\left|\mathcal{X}\right|\left|\mathcal{A}\right|\mathsf{T}}\right)$

Regularizer choice

First choice: BalancedFTRL

- $\Psi_p(\mu) = \textit{negentropy}(\text{information set} | \mu, p) / \eta$
- \blacksquare Compute balanced transitions p^{\star} and use $\Psi_{p^{\star}}$
- $\Re_{\max}^{\mathsf{T}} = \widetilde{\mathbb{O}}\left(\sqrt{\mathsf{H}\left|\mathcal{X}\right|\left|\mathcal{A}\right|\mathsf{T}}\right)$

Impossible with initially unknown tree structure

Regularizer choice

First choice: BalancedFTRL

- $\Psi_p(\mu) = \textit{negentropy}(\text{information set} | \mu, p) / \eta$
- \blacksquare Compute balanced transitions p^{\star} and use $\Psi_{p^{\star}}$
- $\Re_{\max}^{\mathsf{T}} = \widetilde{\mathbb{O}}\left(\sqrt{\mathsf{H}|\mathfrak{X}||\mathcal{A}|\mathsf{T}}\right)$

Impossible with initially unknown tree structure

Second choice: AdaptiveFTRL

- \blacksquare Estimate cumulative transitions \tilde{P}^t
- "Replace" p^* with \tilde{P}^t

$$\blacksquare \ \mathfrak{R}_{\max}^{\mathsf{T}} = \widetilde{\mathbb{O}}\left(\mathsf{H}\sqrt{|\mathfrak{X}|\,|\mathcal{A}|\,\mathsf{T}}\right)$$

Conclusion

Algorithm	Sample complexity	Structure-free
IXOMD	$\widetilde{\mathbb{O}}(\mathbb{H}^2(\mathfrak{X} ^2 \mathcal{A} + \mathfrak{Y} ^2 \mathfrak{B})/\varepsilon^2)$	✓
BalancedOMD	$\widetilde{\mathbb{O}}(\mathbb{H}^{3}(\mathcal{X} \mathcal{A} + \mathcal{Y} \mathcal{B} /\epsilon^{2}))$	×
BalancedFTRL	$\widetilde{\mathbb{O}}(\mathbb{H}(\mathfrak{X} \mathcal{A} + \mathcal{Y} \mathfrak{B})/\varepsilon^2)$	×
	$\widetilde{\mathbb{O}}(\mathbb{H}^2(\mathfrak{X} \mathcal{A} + \mathfrak{Y} \mathcal{B})/\varepsilon^2)$	\checkmark
Lower bound	$\widetilde{\mathbb{O}}(\mathbb{H}(\mathfrak{X} \mathcal{A} + \mathfrak{Y} \mathfrak{B})/\varepsilon^2)$	-

Contact: come.fiegel@gmail.com