Adapting to game trees in zerosum imperfect information games

Côme Fiegel ${ }^{1}$, Pierre Ménard ${ }^{2}$, Tadashi Kozuno ${ }^{3}$,
Rémi Munos ${ }^{4}$, Vianney Perchet ${ }^{1,5}$, Michal Valko ${ }^{4}$
${ }^{1}$ ENSAE Paris ${ }^{2}$ ENS Lyon ${ }^{3}$ Omron Sinic $X{ }^{4}$ DeepMind ${ }^{5}$ Criteo AI Lab

Zero-sum (two players) imperfect information games

- State space \mathcal{S}, initial state $s_{1} \in \mathcal{S}$ and horizon $\mathrm{H}>0$
- At timestep $h \in[1 . . \mathrm{H}]$, the two players take actions $a \in \mathcal{A}$ and $b \in \mathcal{B}$
- Reward $r_{h}(s, a, b) \in[0,1]$ and transition to the next state $p_{h}(\cdot \mid s, a, b)$

Zero-sum (two players) imperfect information games

■ State space \mathcal{S}, initial state $s_{1} \in \mathcal{S}$ and horizon $\mathrm{H}>0$
■ At timestep $h \in[1 . . H]$, the two players take actions $a \in \mathcal{A}$ and $b \in \mathcal{B}$
■ Reward $r_{h}(s, a, b) \in[0,1]$ and transition to the next state $p_{h}(\cdot \mid s, a, b)$

Assumptions:

Zero-sum: max-player receives r_{h}, min-player receives $-r_{h}$

Zero-sum (two players) imperfect information games

■ State space \mathcal{S}, initial state $s_{1} \in \mathcal{S}$ and horizon $\mathrm{H}>0$
■ At timestep $h \in[1 . . H]$, the two players take actions $a \in \mathcal{A}$ and $b \in \mathcal{B}$
■ Reward $r_{h}(s, a, b) \in[0,1]$ and transition to the next state $p_{h}(\cdot \mid s, a, b)$

Assumptions:

Zero-sum: max-player receives r_{h}, min-player receives $-r_{h}$

Imperfect information: Players only

 observe information sets $x(s) \in \mathcal{X}$ and $y(s) \in y$
Zero-sum (two players) imperfect information games

■ State space \mathcal{S}, initial state $s_{1} \in \mathcal{S}$ and horizon $\mathrm{H}>0$
■ At timestep $h \in[1 . . H]$, the two players take actions $a \in \mathcal{A}$ and $b \in \mathcal{B}$
■ Reward $r_{h}(s, a, b) \in[0,1]$ and transition to the next state $p_{h}(\cdot \mid s, a, b)$

Assumptions:

Zero-sum: max-player receives r_{h}, min-player receives $-r_{h}$
Imperfect information: Players only observe information sets $x(s) \in \mathcal{X}$ and $y(s) \in y$
Perfect recall: Players do not forget past observations and actions

Approximate Nash equilibrium

Policies: Non-deterministic $\mu=(\mu(\cdot \mid x))_{x \in x}$ and $v=(v(\cdot \mid y))_{y \in y}$

Approximate Nash equilibrium

Policies: Non-deterministic $\mu=(\mu(\cdot \mid x))_{x \in x}$ and $v=(v(\cdot \mid y))_{y \in y}$
Value: $V^{\mu, \nu}=\mathbb{E}^{\mu, \nu}\left[\sum_{h=1}^{H} r_{h}\right]$

Approximate Nash equilibrium

Policies: Non-deterministic $\mu=(\mu(\cdot \mid x))_{x \in x}$ and $v=(v(\cdot \mid y))_{y \in y}$
Value: $V^{\mu, v}=\mathbb{E}^{\mu, \nu}\left[\sum_{h=1}^{H} r_{h}\right]$
(μ, v) is a Nash equilibrium if $\mu \in \operatorname{argmax} V^{\cdot, v}$ and $v \in \operatorname{argmin} V^{\mu}$,

Approximate Nash equilibrium

Policies: Non-deterministic $\mu=(\mu(\cdot \mid x))_{x \in x}$ and $v=(v(\cdot \mid y))_{y \in y}$
Value: $V^{\mu, v}=\mathbb{E}^{\mu, \nu}\left[\sum_{h=1}^{H} r_{h}\right]$
(μ, v) is a Nash equilibrium if $\mu \in \operatorname{argmax} \mathrm{V}^{\cdot, v}$ and $v \in \operatorname{argmin} \mathrm{~V}^{\mu,}$.

Objective \rightarrow Approximate a Nash equilibrium

Sequential learning

Interaction with the game: T episodes played using freely chosen profiles $\left(\mu^{\mathrm{t}}, \nu^{\mathrm{t}}\right)_{\mathrm{t} \in[1 . . \mathrm{T}]}$

Sequential learning

Interaction with the game: T episodes played using freely chosen profiles $\left(\mu^{\mathrm{t}}, \nu^{\mathrm{t}}\right)_{\mathrm{t} \in[1 . . \mathrm{T}]}$

Regrets: $\mathfrak{R}_{\text {max }}^{\top}=\max _{\mu} \Sigma_{t}\left[\mathrm{~V}^{\mu, \nu^{t}}-\mathrm{V}^{\mu^{t}, \nu^{t}}\right], \mathfrak{R}_{\text {min }}^{\top}=\max _{v} \Sigma_{t}\left[\mathrm{~V}^{\mu^{t}, \nu^{t}}-\mathrm{V}^{\mu^{t}, \nu}\right]$

Sequential learning

Interaction with the game: T episodes played using freely chosen profiles $\left(\mu^{\mathrm{t}}, \nu^{\mathrm{t}}\right)_{\mathrm{t} \in[1 . . \mathrm{T}]}$

Regrets: $\mathfrak{R}_{\text {max }}^{\top}=\max _{\mu} \Sigma_{t}\left[\mathrm{~V}^{\mu, \nu^{t}}-\mathrm{V}^{\mu^{t}, \nu^{t}}\right], \mathfrak{R}_{\text {min }}^{\top}=\max _{\nu} \Sigma_{t}\left[\mathrm{~V}^{\mu^{t}, \nu^{t}}-\mathrm{V}^{\mu^{t}, \nu}\right]$

Small regrets \Longleftrightarrow average profile $(\bar{\mu}, \bar{v})$ approximates a Nash equilibrium

Max player's point of view

Max player's point of view

Advantage

Episodic MDP with a tree-structure

Max player's point of view

Advantage

Episodic MDP with a tree-structure

Difficulty

Adversarial transitions p^{t} that change between episodes

Back to regret minimization

Objective: minimize $\mathfrak{R}_{\max }^{\top}=\max _{\mu} \sum_{\mathrm{t}=1}^{\mathrm{T}}\left[\mathrm{V}^{\mu, \nu^{\mathrm{t}}}-\mathrm{V}^{\mu^{\mathrm{t}}, \nu^{\mathrm{t}}}\right]$
FTRL approach : $\mu^{t+1}=\operatorname{argmax}_{\mu} \sum_{k=1}^{\mathrm{t}} \tilde{\mathrm{V}}^{\mu, v^{k}}-\Psi(\mu)$ with
■ $\tilde{V}^{\cdot}, \nu^{\mathrm{t}}$ estimated value at episode t as a function of μ
■ Ψ the regularizer

Back to regret minimization

Objective: minimize $\mathfrak{R}_{\max }^{\top}=\max _{\mu} \sum_{\mathrm{t}=1}^{\mathrm{T}}\left[\mathrm{V}^{\mu, \nu^{\mathrm{t}}}-\mathrm{V}^{\mu^{\mathrm{t}}, \nu^{\mathrm{t}}}\right]$
FTRL approach : $\mu^{t+1}=\operatorname{argmax}_{\mu} \sum_{k=1}^{\mathrm{t}} \tilde{\mathrm{V}}^{\mu, v^{k}}-\Psi(\mu)$ with
■ $\tilde{V}^{\cdot}, \nu^{\mathrm{t}}$ estimated value at episode t as a function of μ
■ Ψ the regularizer

How to choose Ψ ?

Regularizer choice

First choice: BalancedFTRL

■ $\Psi_{p}(\mu)=$ negentropy (information set $\left.\mid \mu, p\right) / \eta$
■ Compute balanced transitions p^{\star} and use $\Psi_{p^{*}}$

- $\mathfrak{R}_{\text {max }}^{\top}=\widetilde{\mathcal{O}}(\sqrt{\mathrm{H}|\mathcal{X}||\mathcal{A}| \mathrm{T}})$

Regularizer choice

First choice: BalancedFTRL

■ $\Psi_{p}(\mu)=$ negentropy (information set $\left.\mid \mu, p\right) / \eta$

- Compute balanced transitions p^{\star} and use $\Psi_{p^{*}}$

■ $\mathfrak{R}_{\text {max }}^{\top}=\widetilde{\mathcal{O}}(\sqrt{\mathrm{H}|\mathcal{X}||\mathcal{A}| \mathrm{T}})$
Impossible with initially unknown tree structure

Regularizer choice

First choice: BalancedFTRL

■ $\Psi_{p}(\mu)=$ negentropy (information set $\left.\mid \mu, p\right) / \eta$
■ Compute balanced transitions p^{\star} and use $\Psi_{p^{*}}$

- $\mathfrak{R}_{\text {max }}^{\top}=\widetilde{\mathcal{O}}(\sqrt{\mathrm{H}|\mathcal{X}||\mathcal{A}| \mathrm{T}})$

Impossible with initially unknown tree structure

Second choice: AdaptiveFTRL

- Estimate cumulative transitions \tilde{P}^{t}

■ "Replace" p^{\star} with $\tilde{\mathrm{P}}^{\mathrm{t}}$
■ $\mathfrak{R}_{\text {max }}^{\top}=\widetilde{\mathcal{O}}(\mathrm{H} \sqrt{|\mathcal{X}||\mathcal{A}| \mathrm{T}})$

Conclusion

Algorithm	Sample complexity	Structure-free
IXOMD	$\widetilde{\mathcal{O}}\left(\mathrm{H}^{2}\left(\|\mathcal{X}\|^{2}\|\mathcal{A}\|+\|\mathcal{Y}\|^{2}\|\mathcal{B}\|\right) / \epsilon^{2}\right)$	\checkmark
BalancedOMD	$\widetilde{\mathcal{O}}\left(\mathrm{H}^{3}\left(\|\mathcal{X}\|\|\mathcal{A}\|+\|y\|\|\mathcal{B}\| / \epsilon^{2}\right)\right)$	x
BalancedFTRL	$\widetilde{\mathcal{O}}\left(\mathrm{H}(\|\mathcal{X}\|\|\mathcal{A}\|+\|y\|\|\mathcal{B}\|) / \epsilon^{2}\right)$	x
AdaptiveFTRL	$\widetilde{\mathcal{O}}\left(\mathrm{H}^{2}(\|\mathcal{X}\|\|\mathcal{A}\|+\|y\|\|\mathcal{B}\|) / \epsilon^{2}\right)$	\checkmark
Lower bound	$\widetilde{\mathcal{O}}\left(\mathrm{H}(\|\mathcal{X}\|\|\mathcal{A}\|+\|y\|\|\mathcal{B}\|) / \epsilon^{2}\right)$	-

Contact: come.fiegel@gmail.com

