TRADING OFF REWARDS AND ERRORS IN MULTI-ARMED BANDIT FOR INTERACTIVE EDUCATION A. ERRAQABI (INRIA), A. LAZARIC (INRIA), M. VALKO (INRIA), E. BRUNSKILL (CMU), Y.-E. LIU (CMU-ENLEARN)

MOTIVATION

Serious Games (see Liu et al. (2014))

- Scientific discovery: collect as much information as possible about different learning options to accurately estimate their outcome (e.g., difficulty of an exercise).
- User experience: provide learning options that allow to move on in the game and learn how to solve the problem (e.g., exercises with increasing difficulty).

Other Examples

- Medical research studies: estimate the effectiveness of different treatments and provide more effective treatments at the same time.
- Crowdsourcing: estimate quality of different items and encourage users to engage in the test at the same time.
- *A-B testing*: estimate value of different alternatives and maximize the CTR at the same time.

Can we trade off estimation accuracy and rewards at the same time?

OBJECTIVE FUNCTION

The Multi-Armed Bandit Problem

- K arms, each characterized by a distribution ν_i of mean μ_i and variance σ_i^2
- Given an arbitrary sequence of n arms $\mathcal{I}_n = (I_1, I_2, ..., I_n)$ with $T_{i,n} = \sum_{t=1}^n \mathcal{I}_{t=1}^n$

[average rew

ward]
$$\rho(\mathcal{I}_n) = \mathbb{E}\left[\frac{1}{n}\sum_{t=1}^{K} X_{I_t,T_{I_t,t}}\right] = \frac{1}{n}\sum_{i=1}^{K} T_{i,n}\mu_i$$
$$\mathbb{E}\left[\left(\widehat{\mu}_{i,n} - \mu_i\right)^2\right] = \frac{1}{K}\sum_{i=1}^{K} \sqrt{\frac{n\sigma_i^2}{T_{i,n}}}$$

• How to maximize $\rho(\mathcal{I}_n)$ and how to minimize $\varepsilon(\mathcal{I}_n)$ is the topic of previous literature Auer et al. (2002); Antos et al. (2010); Carpentier et al. (2011).

Trading off Errors and Rewards

- Continuous relaxation: $\lambda \in \mathcal{D}_K$, with $\lambda_i = T_{i,n}/n$
- Given a weight parameter $w \in (0, 1)$

$$(\boldsymbol{\lambda}; \{\nu_i\}_i) = w\rho(\boldsymbol{\lambda}) - (1 - w)\varepsilon(\boldsymbol{\lambda})$$
$$= w \sum_{i=1}^K \lambda_i \mu_i - \frac{(1 - w)}{K} \sum_{i=1}^K \frac{\sigma_i}{\sqrt{\lambda_i}}$$

• Optimal (asymptotic) solution $\boldsymbol{\lambda}^* = \arg \max_{\boldsymbol{\lambda} \in \mathcal{D}_{W}} f_w(\boldsymbol{\lambda}; \{\nu_i\}_i) \quad \boldsymbol{f}^* = f_w(\boldsymbol{\lambda}^*; \{\nu_i\}_i)$

Properties

- w = 1 is average reward maximization, w = 0 is estimation error minimization
- w is a Lagrangian multiplier corresponding to a *constrained optimization problem*
- The two terms are *homogeneous* in n and in magnitude unlike in Liu et al. (2014)

Lemma 1. Let $\sigma_{\max} = \max_i \sigma_i$ and $\sigma_{\min} = \min_i \sigma_i > 0$, then $f_w(\lambda; \{\nu_i\})$ is α -strongly

concerve in $\mathcal{D}_{}$ with $\alpha = \frac{3(1-w)\sigma_{\min}}{2}$ and it is β smooth in $\overline{\mathcal{D}}_{}$ with β	$w (\cdot \cdot , (\cdot)$
Concave in \mathcal{D}_K with $\alpha = \frac{4K}{4K}$ and it is β -shooth in \mathcal{D}_K with β	$\beta = \frac{3(1-4)}{4}$

The Learning Problem

After n steps, an algorithm \mathcal{A} implemented an allocation $\widetilde{\lambda}_n$ (i.e., $\widetilde{\lambda}_{i,n} = T_{i,n}/n$) with *regret*

 $R_n(\widetilde{\boldsymbol{\lambda}}_n) = f^* - f_w(\widetilde{\boldsymbol{\lambda}}_n; \{\nu_i\}_i)$

REFERENCES

- A. Antos, V. Grover, and Cs. Szepesvári. Active learning in heteroscedastic noise. Theoretical Computer Science, 411:2712-2728, June 2010.
- Y.-E. Liu, T. Mandel, E. Brunskill, and Z. Popovic. Trading off scientific knowledge and user learning with multi-armed bandits. In Proceedings of EDM, 2014.
- A. Carpentier, A. Lazaric, M. Ghavamzadeh, R. Munos, and P. Auer. Upper-confidence-bound algorithms for active learning in multi-armed bandits. In *Proceedings of ALT'11*, pages 189–203, 2011.
- P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine Learning*, 47(2-3):235-256, 2002.

$$u_i \text{ of mean } \mu_i \text{ and variance } \sigma_i^ I_1, I_2, ..., I_n) \text{ with } T_{i,n} = \sum_{t=1}^n \mathbb{I}\{I_t = i\}$$

$$\boxed{1 \quad \frac{n}{1}} \quad 1 \quad \frac{K}{1}$$

CONFIDENCE-BOUND ALGORITHMS

Given estimates $\hat{\mu}_{i,n}$, $\hat{\sigma}_{i,n}$ of the mean and standard deviation of each arm. Upper-confidence bound

$$f_w^{UB}(\boldsymbol{\lambda}; \{\widehat{\nu}_{i,n}\}) = w \sum_{i=1}^K \lambda_i \left(\widehat{\mu}_{i,n} + \sqrt{\frac{\log(1/\delta_n)}{2T_{i,n}}}\right) - (1-w) \sum_{i=1}^K \frac{1}{\sqrt{\lambda_i}} \left(\widehat{\sigma}_{i,n} - \sqrt{\frac{2\log(2/\delta_n)}{T_{i,n}}}\right)$$

Issues: despite being optimistic in f_w , it *fails* for $w \to 0$ since it does not explore arms with poorly estimated low variance. **Lower-confidence bound**: similar issues when $w \to 1$ since it does not explore arms with poorly

estimated low mean.

Open question: how to design *no-regret confidence-based* algorithm for this problem.

THE FORCINGBALANCE ALGORITHM

THEORETICAL GUARANTEES

Lemma 3. For any allocation
$$\lambda \in D_K$$

and any arm $i \in [K]$,
 $|\lambda_i - \lambda_i^*| \leq \sqrt{\frac{2K}{\alpha}} \sqrt{f^* - f(\lambda; \{\nu_i\})}$
Lemma 4. For any allocation $\lambda \in \overline{D}_K$
 $f(\lambda^*; \{\nu_i\}) - f(\lambda; \{\nu_i\}) \leq \frac{3\beta}{2} ||\lambda - \lambda^*||^2$
Lemma 2. Let $\hat{\nu}_i$ be s.t. $|\hat{\mu}_i - \mu_i| \leq \varepsilon_i^{\mu}$ and $|\hat{\sigma}_i - \sigma_i| \leq \varepsilon_i^{\mu}$

$$\left|f(\boldsymbol{\lambda}; \{\nu_i\}) - f(\boldsymbol{\lambda}; \{\widehat{\nu}_i\})\right| \le w \max_i \varepsilon_i^{\mu} + i$$

Assumption 1. Let
$$\lambda_{\min}^* = \min_i \lambda_i^*$$
, we assume that λ_{\max}^*

Theorem. Under Asm. 1, FORCINGBALANCE with a parameter $\eta \leq 21$ and a simplex $\overline{\mathcal{D}}_K$ restricted to λ_{\min} suffers a regret

$$R_n(\widetilde{\boldsymbol{\lambda}}) \leq \begin{cases} 1 & \text{if } n \leq n_0 \\ 43K^{5/2} \frac{\beta}{\alpha} \sqrt{\frac{\log(2/\delta_n)}{\eta \lambda_{\min}}} n^{-1/4} & \text{if } n_0 < n \leq n_0 \\ 153K^{5/2} \frac{\beta}{\alpha} \sqrt{\frac{\log(2/\delta_n)}{\lambda_{\min}\lambda_{\min}^*}} n^{-1/2} & \text{if } n > n_2, \end{cases}$$

w.p. $1 - \delta$ and $n_0 = K(K\eta^2 + \eta\sqrt{K} + 1)$ and $n_2 = \frac{C}{(\lambda_{\min}^*)^8} \frac{K^{10}}{\alpha^4} \frac{\log^2(1/\delta_n)}{\lambda_{\min}^2}.$

Remarks

- Dep. on n: multiple phases and asymptotic performance $O(n^{-1/2})$, which illustrates the fact that FORCINGBALANCE converges to the performance of the optimal allocation.
- Dep. on λ_{\min} : for $\lambda_{\min} = 0$, Asm.1 is always satisfied. It can be replaced by λ_{\min}^* as n grows.
- Dep. on λ_{\min}^* : as the allocation over arms becomes more "extreme" the higher the regret.

 $m{ng} \Rightarrow {\sf accurate} \ \widehat{\mu} \ {\sf and} \ \widehat{\sigma} \ {\sf and} \ \widehat{m{\lambda}}$ $\lambda ing \Rightarrow$ accurate λ shing forcing $(\sqrt{n}/n) \Rightarrow \widetilde{oldsymbol{\lambda}} o oldsymbol{\lambda}^*$

parameter η

 η : Faster tracking, poorer estimates and $\widehat{\sigma}$

 η : Slower tracking, more accurate eses of $\widehat{\mu}$ and $\widehat{\sigma}$.

ted simplex ($\overline{\mathcal{D}}_K$, λ_{\min})

 λ_{\min} : consistency, slow convergence λ_{\min} : potential bias, faster conver-

Synthetic Experiments

The setting.

- K = 5 arms, w = 0.9 (i.e., favor rewards over errors).
- Parameters $\eta = 1$, $\lambda_{\min} = 0$.
- Arm 4 has the largest variance and it should be pulled the most to minimize ε .
- Arm 5 has the largest reward and it should be pulled the most to maximize ρ .
- The optimal allocation λ^* is very unbalanced towards arm5 and a bit on arm4.

The results.

Rescaled regret

- In the first phase driven by forcing, the rescaled regret increases.
- Later the rescaled regret starts decreasing.
- Difficult to asses whether it stabilizes or it keeps decreasing (i.e., true regret O(1/n)?)

Pareto Frontier

- Varying w from 0.01 to 0.96.
- For w = 0, the minimization of ε induces an optimal allocation with $\lambda_4^* = 0.41$ and $\lambda_5^* = 0.20$.
- For w = 0.95, the maximization of ρ induces an optimal allocation with $\lambda_4^* = 0.0484$ and $\lambda_5^* = 0.9326$.
- FORCINGBALANCE is more effective in approaching the performance of λ^* for small values of w. In fact, for w = 0, $\lambda_{\min}^* = 0.097$, while for w = 0.95, $\lambda_{\min}^* = 0.004$.

EDUCATIONAL EXPERIMENT

The setting.

- K = 64 arms (2 representations of the fraction, 2 representations of the label fractions, tick marks on/off, hinting animations on/off, 4 different rates of backoff hints) • Means and variances determined from real interaction data
- Let π^* be the true ranking and $\hat{\pi}$ the estimated ranking

$$\mathsf{DCG}_{\pi} = \sum_{k=1}^{K} \frac{\mu_{\pi(k)}}{\log(k+1)}; \quad \mathsf{RelDCG} = \frac{\mathsf{DCG}_{\pi^*} - \mathsf{DCG}_{\widehat{\pi}}}{\mathsf{DCG}_{\pi^*}}; \quad \operatorname{RankErr} = \frac{1}{K} \sum_{i=1}^{K} |\pi^*(i) - \widehat{\pi}(i)|$$

The results.

- UCB maximizes reward ρ , GAFS minimizes errors ε , but FORCE is the most effective in minimizing the regret and trading off rewards and accuracy of the estimates.
- For w = 0.95 ForcingBalance achieves a much higher reward than GAFS without compromising the accuracy (in terms of *ReIDCG* and RankErr).
- For w = 0.6 ForcingBalance still achieves the best reward among explorative algorithm but is now even more accurate in ranking performance.

informatics mathematics

	μ	σ^2	$oldsymbol{\lambda}^*$
Arm1	1.0	0.05	0.0073
Arm2	1.5	0.1	0.01
Arm3	2.0	0.2	0.014
Arm4	4.0	4.0	0.0794
Arm5	5.0	0.5	0.8893

- Tracking
- The estimated optimal allocation $\widehat{\lambda}$ converges fast
- The empirical frequency λ effectively tracks the estimated optimal allocation

Alg.	$rac{arepsilon(oldsymbol{\lambda})}{\sigma_{ ext{max}}^2}$	$rac{ ho(oldsymbol{\lambda})}{\mu_{ ext{max}}}$	R_n	RelDCG	RankErr				
w = 0.95									
$oldsymbol{\lambda}^*$	6.549	0.9405	-	-	-				
Force	6.708	0.9424	1.878	0.1871	5.935				
UCB	11.03	0.9712	95.15	1.119	8.629				
GAFS	5.859	0.9183	17.79	0.1268	5.117				
Unif	5.861	0.9168	20.49	0.132	5.25				
w = 0.6									
$oldsymbol{\lambda}^*$	5.857	0.9189	-	-	-				
Force	5.859	0.92	0.4437	0.1227	5.178				
UCB	11.03	0.9712	1343	1.119	8.629				
GAFS	5.859	0.9183	1.314	0.1268	5.117				
Unif	5.861	0.9168	3.482	0.132	5.25				
	-								