TRADING OFF REWARDS AND ERRORS IN MULTI-ARMED BANDIT FOR INTERACTIVE EEDUCATION s’ S
el
A. ERRAQABI (INRIA), A. LAZARIC (INRIA), M. VALKO (INRIA), E. BRUNSKILL (CMU), Y.-E. L1U (CMU-ENLEARN)

MOTIVATION CONFIDENCE-BOUND ALGORITHMS

SYNTHETIC EXPERIMENTS

Serious Games (see Liu et al. (2014)) Given estimates [i; ,,, 0; of the mean and standard deviation of each arm. The setting.
' Upper-confidence bound P 0.9 (e, f . )
. P . . . . o — — V. .C. . *
e Scientific discovery: collect as much information as possi- K K o Parameigrrrs]s’ Qﬁ I, Amj | e—’()avor FEATES YRR v o2 A
ble about different learning options to accurately estimate UB (A: (D5 n}) = w Z N log(1/6n)\ (1—w) Z 1 - 21log(2/8,) =1 Amin = U. | 10 00: 100073
their outcome (e.g., difficulty of an exercise) w (A Wing) = i\ Hiyn T, . o\ 7o T . e Arm 4 has the largest variance and it should be pulled : : :
. & Al Y O . ' i=1 ’ =1 "7 ’ the most to minimize «. Arm2 || 1.5 | 0.1 0.01
e User experience: provide learning options that allow to _ _ o o _ _ _ .
move on in the game and learn how to solve the problem Issues: despite being optimistic in f,,, it fails for w — 0 since it does not explore arms with poorly e Arm 5 has the largest reward and it should be pulled Arm3 || 2.0 | 0.2 | 0.014
(e.g., exercises with increasing difficulty). estimated low variance. the most to maximize p. . Arm4 || 4.0 | 4.0 | 0.0794
| Lower-confidence bound: similar issues when w — 1 since it does not explore arms with poorly e The optimal allocation A™ is very unbalanced towards Arm5 || 5.0 | 05 | 0.8893
Other Examples estimated low mean. armb and a bit on arm4.
o Medical research studies: estimate the effectiveness of different treatments and provide more | | OPen question: how to design no-regret confidence-based algorithm for this problem. The results

effective treatments at the same time.

e Crowdsourcing: estimate quality of different items and encourage users to engage in the test at | NEIN X1 ToI W& YN N\ (e DA Hele ) aun v el ——95% Quantile 0.25
the same time. o W,
B " i . . . . . . . . . 45 0.2,
e A-B testing: estimate value of different alternatives and maximize the CTR at the same time. Input: forcing param 1, restricted simplex Dy (Ami)| INtuition R : 6
. . . fort —1. . e Forcing = accurate 1 and o and \ Sl s
Can we trade off estimation accuracy and rewards at the same time? ort=1...,ndo g H.s B <015
U; = argminT; e Tracking = accurate A N s 4 |
if Ty, + < nv't then | e Vanishing forcing (v/n/n) = XA — A~ E 2 = 01
OBJECTIVE FUNCTION Select arm I, = Uy (forcing) , ) 0
else ForC| ng pa ra meter 77 2000 4000 6000 8000 10000 0.05 | _
. . . . P
The Multi-Armed Bandit Problem Compute optimal estimated allocation e Small n: Faster tracking, poorer estimates 0 100 200 300 400 500 —\
e K arms, each characterized by a distribution v; of mean p; and variance o? Xt = arg max fu(X; {Dit}i) of it and o Step n % 100 200 300 400 500
e Given an arbitrary sequence of n arms Z,, = (I, Is, .., I,) with T; ,, = > I{I; =i} APk e Large n: Slower tracking, more accurate es- Rescaled regret tep n
' | f 1 o . . . :
) - — . Select arm (tracking) o timates of ;1 and o o In the first phase driven by forcing, the Trachklng | S,
[average reward] | p(Z,,) = E[l ZXIt ™ t] _ 1 ZTZ' ol [y = arg P it = At Restricted simplex (D, Amin) rescaled regret increases. o The esftm;ated optimal allocation A con-
&L Ly, ) . .
. n —1 n P ) end if e Small )\min: Cons|stency, slow convergence e Later the rescaled regret starts decreasmg. \_;_e}:ges a-s ol f X ¢ el ’
) . Pull arm I, observe X7, ;, update 7, . o Large \i,: potential bias, faster conver- e Difficult to asses whether it stabilizes or it e The empirical frequency A effectively tracks
1 K 1 1 [no? end for gence keeps decreasing (i.e., true regret O(1/n)?7) the estimated optimal allocation
average error| | e(Z,)=— nE{ Wi — i }:— .
perage etor] | e(T,) = 3 [ (o) = 122 | 7 R
\ — — J Optimal Frontier
THEORETICAL GUARANTEES - | Poreing n 100
e How to maximize p(Z,) and how to minimize (Z,,) is the topic of previous literature Auer et al Pareto Frontier #3]| - Forcing n = 250
P " P P ' e Varying w from 0.01 to 0.96. jJ=Forcing n = 750
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(2002); Antos et al. (2010); Carpentier et al. (2011).
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Lemma 3. For any allocation A € Dg e For w = 0, the minimization of ¢ induces an optimal

3.5/
Trading off Errors and Rewards and any arm i € [K], 15 | allocation with A} = 0.41 and A = 0.20. 2,
e Continuous relaxation: A € Dk, with \; =T ,,/n e For w = 0.95, the maximization of p induces an optimal ~
e Given a weight parameter w € (0, 1) “ MM <P | : allocation with \} = 0.0484 and A} = 0.9326. 251 j |
X o ) e FORCINGBALANCE is more effective in approaching the 2f xw"“/“"%‘
X Avite) = wp(X) — (1 —w)e(A) p; Y o _ performance of A* for small values of w. In fact, for 15 sossERsT="
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w =20, \*. =0.097, while for w = 0.95, \*. = 0.004. 1

Lemma 4. For any allocation A € Dg min min 35 4 45 5
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e Optimal (asymptotic) solution
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 Allocation A1 .
A" =arg max fo,(N{vibi) [T = fuAS5{vih) 2 o . — — - — . The setting.
ACPx " ‘ambda Lemma 2. Let I; be s.t. [1; — pi| < &5 and |05 — 04| < €7, then for any A € Dk e K = 64 arms (2 representations of the fraction, 2 representations of the label fractions, tick
Properties 1 — w marks on/off, hinting animations on/off, 4 different rates of backoff hints)
e w = 1 is average reward maximization, w = 0 is estimation error minimization ‘f(A; {vi})— (N {/V\z})} < wmiaxez” + — oy miaxeff e Means and variances determined from real interaction data
e w is a Lagrangian multiplier corresponding to a constrained optimization problem L Vo ) e Let m* be the true ranking and 7 the estimated ranking
e The two terms are homogeneous in n and in magnitude unlike in Liu et al. (2014) . — \ K DCG.. — DCCa | K
. _ . Assumption 1. Let \* . = min; \}, we assume that \* . > A\, (i.e., A* € Dg). DCG,, = Z P (k) : RelDCG = i . RankBErr = — Z 7" (2) — (7))
Lemma 1. Let 0, = max; o; and oy, = min; o; > 0, then f,(A;{v;}) is a-strongly \ / 1 log(k + 1) DCG,- K —
concave in Dx with a = 30=%min 4n4 it is B-smooth in Dy with 3 = 3(1_7“”);;;““. ( . . —
4K AKN/2 Theorem. Under Asm. 1, FORCINGBALANCE with a parameter n < 21 and a simplex Dk The results.
) ’ restricted to A\, suffers a regret . Alg. £ pA) R, ReIDCG | RankErr
The Learning Problem B B (g y e UCB maximizes rebward P, G_AIES g = T e a
After n steps, an algorithm A implemented an allocation A, (i.e., \; , = T; ,/n) with regret 1 TN < ng MINIMIzEs errors &, t L!t E?RCE 's the w = 0.99
’ ’ 8 [1og(2/5,) most effective in minimizing the re- A\ 6549 | 0.9405 _ _ _
~ ~ 5/2 n) —1/4 - -
Rn(An) — f* — fw(Ana {V’L}z) Rn(X) S < 43K / a n)\min / if Ng < n S o gret and tradlng OfF rewards and ac- FORCE 6.708 0.9424 1878 0.1871 5.935
curacy of the estimates. UCB | 11.03 | 0.9712 | 95.15 | 1.119 | 8.629
1535528 [1082/0n) _1pp e o For w = 0.95 FORCINGBALANCE ["GATS [ 5.850 | 0.9183 | 17.79 | 0.1268 | 5.117
\ @\ AminAfin | achieves a much higher reward than I™(,;7 175 861 | 0.0168 | 2049 | 0.132 | 5.25
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