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Motivation
Serious Games (see Liu et al. (2014))

• Scientific discovery : collect as much information as possi-
ble about different learning options to accurately estimate
their outcome (e.g., difficulty of an exercise).

• User experience: provide learning options that allow to
move on in the game and learn how to solve the problem
(e.g., exercises with increasing difficulty).

Other Examples
• Medical research studies: estimate the effectiveness of different treatments and provide more

effective treatments at the same time.
• Crowdsourcing : estimate quality of different items and encourage users to engage in the test at

the same time.
• A-B testing : estimate value of different alternatives and maximize the CTR at the same time.

Can we trade off estimation accuracy and rewards at the same time?

Objective Function
The Multi-Armed Bandit Problem
• K arms, each characterized by a distribution νi of mean µi and variance σ2
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• Given an arbitrary sequence of n arms In = (I1, I2, .., In) with Ti,n =
∑n
t=1 I{It = i}

[average reward] ρ(In) = E
[
1

n

n∑
t=1

XIt,TIt,t

]
=

1

n

K∑
i=1

Ti,nµi

[average error] ε(In)=
1

K

K∑
i=1

√
nE
[(
µ̂i,n−µi

)2]
=

1

K

K∑
i=1

√
nσ2

i

Ti,n

• How to maximize ρ(In) and how to minimize ε(In) is the topic of previous literature Auer et al.
(2002); Antos et al. (2010); Carpentier et al. (2011).

Trading off Errors and Rewards
• Continuous relaxation: λ ∈ DK , with λi = Ti,n/n
• Given a weight parameter w ∈ (0, 1)

f(λ; {νi}i) = wρ(λ)− (1− w)ε(λ)
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• Optimal (asymptotic) solution
λ∗ = arg max

λ∈DK
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Properties
• w = 1 is average reward maximization, w = 0 is estimation error minimization
• w is a Lagrangian multiplier corresponding to a constrained optimization problem
• The two terms are homogeneous in n and in magnitude unlike in Liu et al. (2014)

Lemma 1. Let σmax = maxi σi and σmin = mini σi > 0, then fw(λ; {νi}) is α-strongly
concave in DK with α = 3(1−w)σmin

4K and it is β-smooth in DK with β = 3(1−w)σmax

4Kλ
5/2
min

.

The Learning Problem
After n steps, an algorithm A implemented an allocation λ̃n (i.e., λ̃i,n = Ti,n/n) with regret

Rn(λ̃n) = f∗ − fw(λ̃n; {νi}i)

Confidence-Bound Algorithms
Given estimates µ̂i,n, σ̂i,n of the mean and standard deviation of each arm.
Upper-confidence bound
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)
Issues: despite being optimistic in fw, it fails for w → 0 since it does not explore arms with poorly
estimated low variance.
Lower-confidence bound: similar issues when w → 1 since it does not explore arms with poorly
estimated low mean.
Open question: how to design no-regret confidence-based algorithm for this problem.

The ForcingBalance Algorithm

Input: forcing param η, restricted simplex DK(λmin)
for t = 1, . . . , n do
Ut = argminTi,t
if TUt,t < η

√
t then

Select arm It = Ut (forcing)
else

Compute optimal estimated allocation
λ̂t = arg max

λ∈DK

fw(λ; {ν̂i,t}i)

Select arm (tracking)
It = arg max

i=1,...,K
λ̂i,t − λ̃i,t

end if
Pull arm It, observe XIt,t, update ν̂It .

end for

Intuition
• Forcing ⇒ accurate µ̂ and σ̂ and λ̂
• Tracking ⇒ accurate λ̃
• Vanishing forcing (

√
n/n) ⇒ λ̃→ λ∗

Forcing parameter η
• Small η: Faster tracking, poorer estimates

of µ̂ and σ̂
• Large η: Slower tracking, more accurate es-

timates of µ̂ and σ̂

Restricted simplex (DK , λmin)
• Small λmin: consistency, slow convergence
• Large λmin: potential bias, faster conver-

gence

Theoretical Guarantees

Lemma 3. For any allocation λ ∈ DK
and any arm i ∈ [K],

|λi − λ∗i | ≤
√

2K

α

√
f∗ − f(λ; {νi})

Lemma 4. For any allocation λ ∈ DK

f(λ∗; {νi})−f(λ; {νi}) ≤
3β

2
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Lemma 2. Let ν̂i be s.t. |µ̂i − µi| ≤ εµi and |σ̂i − σi| ≤ εσi , then for any λ ∈ DK∣∣f(λ; {νi})−f(λ; {ν̂i})∣∣ ≤ wmax
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Assumption 1. Let λ∗min = mini λ
∗
i , we assume that λ∗min ≥ λmin (i.e., λ∗ ∈ DK).

Theorem. Under Asm. 1, ForcingBalance with a parameter η ≤ 21 and a simplex DK
restricted to λmin suffers a regret
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Remarks
• Dep. on n: multiple phases and asymptotic performance O(n−1/2), which illustrates the fact

that ForcingBalance converges to the performance of the optimal allocation.
• Dep. on λmin: for λmin = 0, Asm.1 is always satisfied. It can be replaced by λ∗min as n grows.
• Dep. on λ∗min: as the allocation over arms becomes more “extreme” the higher the regret.

Synthetic Experiments
The setting.

• K = 5 arms, w = 0.9 (i.e., favor rewards over errors).
• Parameters η = 1, λmin = 0.
• Arm 4 has the largest variance and it should be pulled

the most to minimize ε.
• Arm 5 has the largest reward and it should be pulled

the most to maximize ρ.
• The optimal allocation λ∗ is very unbalanced towards

arm5 and a bit on arm4.

µ σ2 λ∗

Arm1 1.0 0.05 0.0073
Arm2 1.5 0.1 0.01
Arm3 2.0 0.2 0.014
Arm4 4.0 4.0 0.0794
Arm5 5.0 0.5 0.8893

The results.

0 100 200 300 400 500
0

2

4

6

8

10

Step n

R
e
sc
a
le
d
re
g
re
t

 

 

95% Quantile

R̃n =
√

nRn

2000 4000 6000 8000 10000
0

2

4

6

Rescaled regret
• In the first phase driven by forcing, the

rescaled regret increases.
• Later the rescaled regret starts decreasing.
• Difficult to asses whether it stabilizes or it

keeps decreasing (i.e., true regret O(1/n)?)
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Tracking
• The estimated optimal allocation λ̂ con-

verges fast
• The empirical frequency λ̃ effectively tracks

the estimated optimal allocation

Pareto Frontier
• Varying w from 0.01 to 0.96.
• For w = 0, the minimization of ε induces an optimal

allocation with λ∗4 = 0.41 and λ∗5 = 0.20.
• For w = 0.95, the maximization of ρ induces an optimal

allocation with λ∗4 = 0.0484 and λ∗5 = 0.9326.
• ForcingBalance is more effective in approaching the

performance of λ∗ for small values of w. In fact, for
w = 0, λ∗min = 0.097, while for w = 0.95, λ∗min = 0.004.
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Educational Experiment
The setting.
• K = 64 arms (2 representations of the fraction, 2 representations of the label fractions, tick

marks on/off, hinting animations on/off, 4 different rates of backoff hints)
• Means and variances determined from real interaction data
• Let π∗ be the true ranking and π̂ the estimated ranking

DCGπ =

K∑
k=1

µπ(k)

log(k + 1)
; RelDCG =

DCGπ∗ − DCGπ̂
DCGπ∗

; RankErr =
1

K

K∑
i=1

|π∗(i)− π̂(i)|

The results.
• UCB maximizes reward ρ, GAFS

minimizes errors ε, but Force is the
most effective in minimizing the re-
gret and trading off rewards and ac-
curacy of the estimates.

• For w = 0.95 ForcingBalance
achieves a much higher reward than
GAFS without compromising the
accuracy (in terms of RelDCG and
RankErr).

• For w = 0.6 ForcingBalance
still achieves the best reward among
explorative algorithm but is now
even more accurate in ranking per-
formance.

Alg. ε(λ)

σ2
max

ρ(λ)
µmax

Rn RelDCG RankErr

w = 0.95
λ∗ 6.549 0.9405 - - -

Force 6.708 0.9424 1.878 0.1871 5.935
UCB 11.03 0.9712 95.15 1.119 8.629
GAFS 5.859 0.9183 17.79 0.1268 5.117
Unif 5.861 0.9168 20.49 0.132 5.25

w = 0.6
λ∗ 5.857 0.9189 - - -

Force 5.859 0.92 0.4437 0.1227 5.178
UCB 11.03 0.9712 1343 1.119 8.629
GAFS 5.859 0.9183 1.314 0.1268 5.117
Unif 5.861 0.9168 3.482 0.132 5.25
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