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Abstract
Rejection sampling is a technique for sampling
from difficult distributions. However, its use
is limited due to a high rejection rate. Com-
mon adaptive rejection sampling methods either
work only for very specific distributions or with-
out performance guarantees. In this paper, we
present pliable rejection sampling (PRS), a new
approach to rejection sampling, where we learn
the sampling proposal using a kernel estimator.
Since our method builds on rejection sampling,
the samples obtained are with high probability
i.i.d. and distributed according to f . Moreover,
PRS comes with a guarantee on the number of
accepted samples.

1. Introduction

In machine learning, we often need to sample from distri-
butions. Rejection sampling is a known textbook method
for sampling from density f with intractable direct sam-
pling. The basic method (SRS, Figure 1) constructs an en-
velope Mg that is an upper bound on f , where g is a pro-
posal distribution from which we can sample easily. Each
time we get a sample from g, we accept or reject it with
probability depending on the value of g and f in this point.
To guarantee efficiency, a good proposal distribution is a
necessary knowledge we need to provide to the sampler.
In the absence of such knowledge, we typically resort to
a uniform upper bound on f which results in high rejec-
tion rates and the method stays in textbooks. What’s wrong
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Figure 1. Simple rejection sampling

with a high rejection rate? The reason is that for every point
proposed, we need to call f to decide whether this point is
accepted. If many points are rejected, then f is called many
times with few generated samples. When evaluating f is
costly, then we are wasting resources.

To alleviate this problem, adaptive rejection sam-
plers (Gilks, 1992; Gilks & Wild, 1992; Martino & Mı́guez,
2011) increase the acceptance rate by taking advantage of
particular properties of f . They construct a proposal g
that is better adapted to f than just a uniform distribution.
Adaptive rejection sampling (ARS, Gilks & Wild, 1992) is
the most known among them. ARS works when the target
is log-concave and constructs a sequence of proposal den-
sities tailored to f . In particular, if a sample that is drawn
from a proposal gt(x) is rejected, this sample is used to
build an improved proposal, gt+1(x), with a higher accep-
tance rate. ARS then adds the rejected point to set S of
points defining an envelope of f in order to decrease the
area R between the proposal and the target density (Gilks
& Wild, 1992; Gilks, 1992). However, ARS can only be ap-
plied for log-concave (and thus unimodal) densities, which
is a stringent constraint in practice (Gilks & Wild, 1992;
Martino & Mı́guez, 2011) and therefore its use is limited.

1Research done during author’s stay at SequeL, INRIA Lille.
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The adaptive rejection Metropolis sampling (Gilks et al.,
1995) extends ARS to deal with non-log-concave densities
by adding a Metropolis-Hastings (MH) control step after
each accepted sample. However, the algorithm produces
a Markov chain where the resulting samples are correlated.
Another adaptive method is the convex-concave adaptive
rejection sampling (Görür & Teh, 2011) where the target
distribution is decomposed as the sum of convex and con-
cave functions. In this method, the concave part is treated
as in ARS and uses the same set S to construct an upper
bound for the convex part by considering the secant lines.

A recent approach is A? sampling (Maddison et al., 2014)
that was build on generalizing the Gumbel-Max trick to
the continuous case. This method allows to sample from
f(x) ∝ exp (φ(x)), where φ(x) = i(x) + o(x) for some
bounded o(x), and some tractable i(x) that is equivalent to
the proposal of a classical rejection sampling method. We
will relate to A? sampling and compare to it empirically as
well. A similar approach is done in OS? (Dymetman et al.,
2012) where the sampling is done according to the volume
of the region under the proposal.

All these adaptive rejection sampling methods either pose
strong assumptions on f or do not come with performance
guarantees. In this paper, give an adaptive strategy that
can work for a general class of densities and guarantee the
number of accepted samples. An interesting approach for
the related, yet different problem of adaptive importance
sampling, can be found in the work of Zhang (1996), where
the author aims at integrating a function according to a den-
sity. To be efficient and sequential, Zhang sequentially ap-
proximates the density times the absolute value of the func-
tion to be integrated by kernel methods and sample from
this approximation. In particular, Zhang estimates the inte-
gral of interest by a weighted sum of the collected samples,
where the weights depend on the distance between the esti-
mated product function and the true product. This method
is interesting because it is non-parametric and therefore re-
quires few assumptions about the shape of the target object.

In this paper, we consider a related idea for rejection sam-
pling. In particular, we use non-parametric kernel methods
to estimate the target density. This estimate is then used
to build a proposal density from which samples are drawn
in order to improve the acceptance. This idea is related to
the results of Zhang (1996) but there is a significant differ-
ence coming from a difference between importance sam-
pling and rejection sampling and which makes the rejection
sampling problem harder: While importance sampling re-
quires only a proposal estimator that is good according to
the L2 risk, rejection sampling requires a proposal estima-
tor that is good in L∞ risk and with high probability. This
highlights a fundamental difference between rejection sam-
pling and importance sampling and makes the problem of

adaptive rejection sampling significantly more challenging
than the problem of adaptive importance sampling.

To address this challenge, we present pliable rejection
sampling (PRS), a simple variation of rejection sampling.
Based on recent advances in density estimation and as-
sociated confidence sets, which allow to obtain a uni-
form bound on the estimation error of estimators (Tsy-
bakov, 1998; Korostelev & Nussbaum, 1999; Giné &
Nickl, 2010a;b) we propose a method where the proposal
is an upper bound on the density that is based on a kernel
estimator of the density. The motivation behind the choice
of a kernel estimator comes (i) from the guarantees on the
quality of the estimate and (ii) from the ability to easily
sample from it for some specific kernels.

PRS has several advantages. First, it does not pose strong
assumptions on f and assumes only mild smoothness prop-
erties. For instance, our assumptions are weaker than exist-
ing assumptions like log-concavity, concavity or convex-
ity, since if a function satisfies any of these assumptions,
then it is in a Besov ball of smoothness two, and therefore
smooth enough for our method. Second, it is easy to imple-
ment, since it combines common kernel density estimation
and traditional rejection sampling. Finally, it comes with a
clean and tractable analysis which provides guarantees on
the number of samples for a given number of calls to f .
Our results imply that asymptotically, if we have a budget
of n calls to f , then with high probability, we will obtain n
i.i.d samples distributed according to f up to a negligible
term. Our procedure is therefore asymptotically almost as
efficient as if we were sampling according to f itself.

PRS is actually more efficient than A? sampling in the
sense of budget. Indeed, in order to generate a single sam-
ple from f using A? sampling, we need to consume several
calls to f . This implies that even in the asymptotic regime
if we have a budget of n calls to f , we will obtain less
than a × n i.i.d samples distributed according to f where
a < 1 is a small constant. Furthermore, an huge difference
between PRS and A? sampling, that makes PRS practically
appealing, is that the user does not need to provide any ma-
jor information such as a decomposition of f into i(x) and
o(x) as in the case of A? sampling.

Since PRS is based on rejection sampling, it is useful in the
case when the sample space is low-dimensional and when f
is not very peaky, which is also the case for A? sampling.
In particular, A? sampling needs, find the maximum of
the convolution of f and a Gumbel process, in order to
output a sample. A typical case of a peaky distribution
is a posterior distribution commonly present in Bayesian
approaches, where computationally efficient MCMC meth-
ods (Metropolis & Ulam, 1949; Andrieu et al., 2003) are
the tool of choice, as they also scale much better with the
dimension. However, the samples are typically correlated
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and additional measures need to be taken to make the sam-
ples perfect (Andrieu et al., 2003). Even though there ex-
ist MCMC methods that perform perfect sampling (Propp &
Wilson, 1998; Fill, 1998), they have to assume certain re-
strictions, and are not used in practice since they are not
efficient (Andrieu et al., 2003).

In contrast, our method is a perfect sampler with high prob-
ability. Our analysis shows that with high probability,
asymptotically, each computation of f leads to the sam-
pling of an i.i.d. sample according to f . In Section 3.6, we
also provide an extension on how to deal with the high di-
mensional case and the case of a peaky density (as in the
Bayesian posterior case) by a localization method.

2. Setting

Let d ≥ 1 and let f be a positive function with finite in-
tegral defined on [0, A]d where A > 0 (we provide an ex-
tension to density defined on Rd itself in the Appendix B),
that we will call the target density. Our objective is to pro-
vide an algorithm that samples from a normalized version
of f with a minimal number of requests to f , where a re-
quest is the evaluation of f in a given point of choice. More
precisely, the question we ask is the following.

Given a number n of requests to f , what is the
number T of samples Y1, . . . , YT that one can
generate such that they are i.i.d. and sampled ac-
cording to f?

2.1. Assumption on the target density

We make the following assumptions about f .

Assumption 1 (Assumption on the density). The positive
function f , defined on [0, A]d is bounded i.e., there exists
c > 0 such that the density f satisfies f(x) ≤ c. More-
over, f can be uniformly expanded by a Taylor expansion
in any point up to some degree 0 < s ≤ 2, i.e., there exists
c′′ > 0 such that, for any x ∈ Rd, and for any u ∈ Rd, we
have

|f(x+ u)− f(x)− 〈5f(x), u〉1{s > 1}| ≤ c′′‖u‖s2.

For this assumption, we impose that f is defined on [0, A]d,
but this could be relaxed to hold for any other convex com-
pact of Rd. For an alternative method and alternative as-
sumptions that do not assume that f has a bounded support,
see Appendix B, where this approach is described in detail.

Note that for this assumption, we do not impose that f is
a density: it must be a positive function, but it can be a
non-normalized density (its integral may not be equal to 1).
This remark is particularly useful for Bayesian methods.
The assumption also imposes that f is in a Hölder ball of

smoothness s. Notice that this is not very restrictive, in
particular for a the case with small s.

2.2. Assumption on the kernel

Let K0 be a positive univariate density kernel defined on R
and let

K =

d∏
i=1

K0

be the d-dimensional product kernel associated with K0.
This kernel will be used in the rest of the paper for inter-
polating f using collected samples. In order to be able to
sample from this kernel estimate, it would be more con-
venient to consider a kernel that corresponds to a density
on Rd (hence a non-negative kernel) from which sampling
is easier. A typical example of a useful kernel is then the
Gaussian kernel:

K0(x) =
1√
2π

exp
(
−x2/2

)
.

Let us already mention that the Gaussian kernel satisfies
also the prerequisites of the next assumption.
Assumption 2 (Assumption on the kernel). The kernel
K0 defined on R is uniformly bounded i.e., K0(x) ≤ C,
and it is a density kernel, i.e., it is non-negative and∫
Rd K(x)dx = 1. Furthermore, it is also of degree 2, i.e., it

satisfies ∫
R
xK0(x)dx = 0,

and, for some C ′ > 0∫
R
x2K0(x)dx ≤ C ′.

Also, K0 is ε-Hölder for some ε > 0, i.e. ∃ C ′′ > 0 such
that for any (x, y) ∈ R2,

|K0(y)−K0(x)| ≤ C ′′ |x− y|ε .

For the Gaussian kernel, the above assumption holds with
C = 1, C ′ = 1, C ′′ = 4, and ε = 1. In our work, we
mainly focus on the case of Gaussian kernel, since it is easy
to sample from the resulting estimate, as it is a mixture of
Gaussian distributions.

3. Algorithm and results

We first present the main tool which is a kernel estimator
and a uniform bound on its performance. We then use it to
describe our algorithm, pliable rejection sampling (PRS).
We call our sampler pliable, since it builds a proposal by
bending the original uniform distribution. Moreover, we
provide a guarantee on its performance and present exten-
sions to high dimensional situations.
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Figure 2. Pliable rejection sampling

3.1. Uniform bounds for kernel regression estimation

Let X1, . . . , XN be N points generated uniformly on
[0, A]d. Let us define h def=hs(δ) = (log(NA/δ)/N)

1
2s+1 ,

f̂(x) =
Ad

Nhd

N∑
k=1

f(Xi)K

(
Xi − x
h

)
. (1)

Theorem 1 (proved in Appendix A). Assume that Assump-
tions 1 and 2 hold with 0 < s ≤ 2, C,C ′, C ′′, c, c′′ > 0,
and ε > 0. The estimate f̂ is such that with probability
larger than 1− δ, for any point x ∈ [0, A]d,

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ H0

(
log(NAd/δ)

N

) s
2s+d

,

where v = log
(

1 + 1
c′′+c

)
2

min(1,s) + 3
ε log

(
1 + 1

C′′c

)
and

H0 is a constant that depends on d, v, c, c′′, C, C ′, and A.

3.2. Pliable rejection sampling

PRS (Figure 2, Algorithm 1) aims at sampling as many i.i.d.
points distributed according to f as we can with as little
computations of f as possible. It consists of three steps:

1. In the beginning PRS samples the domain uniformly
at random on [0, A]d for a number of N samples and
computes f for these samples.

2. Then, PRS uses these samples to estimate f by a kernel
regression method.

3. Finally, PRS uses the newly obtained estimate plus the
uniform bound on it, as a compact pliable proposal for
rejection sampling.

Since this pliable proposal is close to the target density, the
rejection sampling will reject only a small number of points
by using it. In PRS, we set the constant

N
def=n

2s+d
3s+d ,

Algorithm 1 Pliable rejection sampling (PRS)

Parameters: s, n, δ, HC

Initial sampling
Draw uniformly at random N samples on [0, A]d

and evaluate f on them
Estimation of f

Estimate f by f̂ on these N samples (Section 3.1)
Generating the samples

Sample n−N samples from

the compact pliable proposal ĝ?

Perform rejection sampling on these samples

using M̂ as a rejection constant to get n̂ samples
Output: Return the n̂ samples

where N is the number of evaluations of the function f
needed for the first estimation step that optimizes the num-
ber of accepted samples in the second step. We also define

rN
def=AdHC

(
log(NAd/δ)

N

) s
2s+d

,

where HC is a parameter of the algorithm. Our method
samples most of the samples by rejection sampling accord-
ing to a pliable proposal that is defined as

ĝ?
def=

1
Ad

N

∑N
i=1 f(Xi) + rN

(
f̂ + rNU[0,A]d

)
, (2)

where U[0,A]d is the uniform distribution on [0, A]d, and f̂
is the estimate of f defined in (1) computed with the N
samples collected in the initial sampling phase of PRS. We
also define the empirical rejection sampling constant as

M̂
def=

Ad/N
∑
i f(Xi) + rN

Ad/N
∑
i f(Xi)− 5rN

.

3.3. Analysis

In the following, we state and prove the main result about
PRS, which is a guarantee on the number of samples.
Theorem 2. Assume that Assumptions 1, and 2 hold with
0 < s ≤ 2, and that HC is an upper bound on the constant
H0 from Theorem 1 (applied to f and f̂ ), and that

8rN ≤
∫

[0,A]d
f(x)dx.

Then with probability larger than 1 − δ, the samples are
generated as i.i.d. according to f and for n large enough,
the number n̂ of samples generated is at least

n̂ ≥ n

[
1−O

(
log(nAd/δ)

n

) s
3s+d

]
.
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Proof. By Theorem 1 and the definition of rN , we have
that with probability larger than 1− δ, for any x ∈ [0, A]d,∣∣∣f̂(x)− f(x)

∣∣∣ ≤ rN 1

Ad
= rNU[0,A]d .

Let ξ′ be the event where the above holds. It has probability
larger than 1− δ. Now let us define event ξ′′ as

ξ′′
def=

{∣∣∣∣∣Adn
n∑
i=1

f(Xi)−
∫

[0,A]d
f(x)dx

∣∣∣∣∣
≤ 2Adc

√
1

N
log(1/δ)

def= cN

}
.

By Hoeffding’s inequality, we know that the probability of
ξ′′ is larger than 1 − δ. Let ξ = ξ′ ∩ ξ′′, the probability of
ξ is larger than 1− 2δ. Therefore, we have that on ξ,

ĝ? =
f̂ + rNU[0,A]d

Ad/n
∑n
i=1 f(Xi) + rN

≥ f∫
[0,A]d

f(x)dx+ rN + cN

≥ f∫
[0,A]d

f(x)dx
(1− 4rN/m),

with m =
∫

[0,A]d
f(x)dx and where we used that

m ≥ 8rN ≥ 4rN + 4cN .

Note that on ξ

1

1− 4rN/m
=

m

m− 4rN

≤
Ad/N

∑
i f(Xi) + cN

Ad/N
∑
i f(Xi)− cn − 4rN

≤
Ad/N

∑
i f(Xi) + rN

Ad/N
∑
i f(Xi)− 5rN

= M̂,

so that on ξ, the rejection sampling constant M̂ is indeed
appropriate. We also have on ξ,

M̂ =
Ad/N

∑
i f(Xi) + rN

Ad/N
∑
i f(Xi)− 5rN

≤ m+ rN + cN
m− 5rN − cN

≤ m+ 2rN
m− 6rN

.

Therefore, on ξ, the rejection sampling is going to provide
samples that are i.i.d. according to f , and n̂ will be a sum
of Bernoulli random variables of parameter larger than

1

M̂
≥ m− 6rN
m+ 2rN

≥ (1− 6rN/m)(1− 4rN/m)

≥ 1− 20rN/m,

since m ≥ 8rN . We have that on ξ, with probability larger
than 1− δ,

n̂ ≥ (n−N)(1− 20rN/m)− 2
√
n log(1/δ).

This implies, together with the definition of rN , n̂ is with
probability larger than 1− 3δ lower bounded as

n̂ ≥ (n−N)

(
1− 20rN/m− 4

√
log(1/δ)

n

)
.

Since
N = n

2s+d
3s+d ,

we have that for n large enough, with probability larger
than 1− 3δ, there exists a constant K such that

n̂ ≥ n
[
1−K log(nAd/δ)

s
3s+dn−

s
3s+d

]
. (3)

Theorem 2 implies that the number of rejected samples is
negligible when compared to n: Indeed, the number of re-
jected samples divided by n is of order(

log(nd/δ)

n

) s
3s+d

.

This statement shows a light-years difference between SRS
and PRS. Therefore, unlike in SRS where we only accept a
fraction of samples, here we asymptotically accept almost
all the samples.

3.4. Discussion

Rejected samples. Theorem 2 states that if we have an
admissible proposal density g and associated upper bound,
as well as a lower bound s on the smoothness of den-
sity f , then with high probability, PRS rejects (asymptot-
ically) only a negligible number of samples with respect
to n: Almost one sample is generated for every unit of bud-
get spent, i.e., one call of f . This implies in particular that
our bounds in terms of a number of i.i.d. samples generated
according to f per computation of f are better than the ones
for A? sampling (Maddison et al., 2014).

On the other hand, it is not easy to do a direct compari-
son with MCMC methods since these methods generate cor-
related samples with stationary distribution f (asymptoti-
cally) while we generate exact i.i.d. samples generated ac-
cording to f (with high probability). However, for any
sample generated by MCMC, we need to call f once anyway,
which is asymptotically the same as for our strategy.

Sampling from the pliable target. If, for instance, one
takes a Gaussian kernelK0, then sampling from the pliable
proposal

ĝ? =
1

Ad/N
∑n
i=1 f(Xi) + rN

(
f̂ +AdrNU[0,A]d

)
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is very easy, since it is a mixture of Gaussian distributions
(in f̂ , by definition of a kernel estimator), and a uniform
distribution on [0, A]d.

The condition on
∫

[0,A]d
f(x)dx. In Theorem 2, we need

that ∫
[0,A]d

f(x)dx ≥ 8rN ,

so that the empirical rejection sampling M̂ is not too large.
If
∫

[0,A]d
f(x)dx is very small, then it means that f is very

peaky and therefore extremely difficult to estimate, besides
the trivial case where f = 0. This assumption is not very
constraining since rN converges to 0 with N and therefore
also with n.

Normalized distribution. If the distribution f is normal-
ized, i.e., ∫

[0,A]d
f = 1,

then the algorithm can be simplified. Indeed, the pliable
proposal can be taken as the mixture

1

1 + rN

(
f̂ + rNU[0,A]d

)
,

removing the normalisation constant Ad/N
∑
i f(Xi). In

this case, instead of M̂ , we can simply use 1 + rN as the
rejection sampling constant.

3.5. Case of a distribution with unbounded support

In the case where the distribution f is not assumed to have
bounded support, our method does not directly apply since
it involves uniform sampling on the domain. One way to go
around this, in the case where f is sub-Gaussian, is to sam-
ple on uniformly not on [0, A]d, but on a hypercube cen-
tered in 0 and of side length

√
log(n), and then perform

our method using this hypercube as the domain. Then, we
would estimate f as 0 outside this hypercube. Because of
the properties of sub-Gaussian distributions that have van-
ishing tails, this will provide results that are similar to the
ones on [0, A]d, but with A replaced by

√
log(n). Then,

for instance, the bound in Theorem 1 provides a bound that
would scale on Rd itself as∣∣∣f̂(x)− f(x)

∣∣∣ ≤ O(log(n)d/2
(

log(Nd/δ)

N

) s
2s+d

)
,

i.e., the bound would become worse by a factor log(n)d/2.
This would imply that the bound of Theorem 2 would also
become worse by a factor of log(n)d/2. This is not a prob-
lem when d is very small. However, even in the case
where d is moderately small, this becomes quickly a prob-
lem. For this reason, this may not necessarily be a good

approach in all cases, for a density with an unbounded sup-
port. To deal with this case, a better idea is to do a two-step
procedure of rejection sampling, and then estimate f by
density estimation instead of regression estimation. (See
Appendix B for more details.) In this way, we avoid the
problem of paying this additional log(n)d in the bound.
The algorithm is however slightly more complicated.

3.6. Extensions for high dimensional cases (large d)

One known limitation of rejection sampling is its lack of
scalability with the dimension d. While our methodology
mainly applies to small dimensions, we now discuss some
modifications of the method in order to better handle some
specific cases when the ambient dimension d is large, and
leverage the scalability of the initial phase. To this end,
we resort to optimization techniques that enable to approx-
imately localize the mass of the distribution in time at most
quadratic in d (and possibly

√
d), assuming that the density

is convex on the region of small mass and arbitrary on the
region of high mass:

Definition 1. We define the γ-support Suppf,γ of f as the
closure of its γ-level set Λf,γ , that is

Suppf,γ = Λf,γ where Λf,γ
def= {x ∈ D : f(x) > γ} ,

We say one localizes the γ-support of f if it finds some
x ∈ Suppf,γ . This is however non-trivial:

Lemma 1. In the general case when no assumption is
made on f , localizing the 0-support of f may take a number
of evaluation points exponential in the dimension d.

Proof. Indeed, using uniform sampling, this requires at
least |D|/|Suppf,0| samples on average. If we introduce R
such that D has the same volume as the Euclidean ball of
radius R centered at 0, Bd(R) ⊂ Rd, and similarly r0 such
that |Suppf,0| = |Bd(r0)|, this means we need (R/r0)d

samples on average.

Thus, without further structure, the initial sampling phase
of Algorithm 2 may require exponentially many steps. We
thus consider a more specific situation. In practice, for nu-
merical stability, it is important to be able to sample points
that are not only in Suppf,0 but also in Suppf,γ , for γ > 0
away from 0. Let rγ be such that |Suppf,γ | = |Bd(rγ)|.
We assume that Suppf,0 = D (and thus r0 = R) but
R/rγ = cγ > 1, where cγ is not small, say cγ ≥ 2, which
models a situation when it is easy to localize the 0-support
but a priori hard to localize the γ-support.

Now, we assume that the restriction of f on the comple-
ment of its γ-support, f|Suppcf,γ

is convex. This situation
captures practical situations when the mass of the distribu-
tion is localized in a few small subsets of Rd. Note that f
does not need to be convex on Suppf,γ and that Suppf,γ
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can consist of several disjoint connected sets; thus f does
not need to be unimodal.

Lemma 2. Under the previous assumptions, if we can ad-
ditionally evaluate f and its gradient point-wise, it is pos-
sible to find a solution x in Suppf,γ−ε in no more than
O(d2/ε2), that is to localize Suppf,γ in less than an expo-
nential number (with d) of trials, by replacing the uniform
sampling scheme in the initial sampling phase of PRS with a
combination of uniform sampling and convex optimization
techniques.

Proof. The proof is as follows. First, since r0 = R, we can
find a point x0 in Suppcf,γ in O(1) trials by uniform sam-
pling. Now, since f|Suppcf,γ

is convex, it is maximal on the
boundary of its domain, that is, on ∂Suppf,γ . Thus, we use
standard optimization techniques to find the maximum of
f , starting from x0: Using the fact that f and its gradient
can be evaluated point-wise, the simplest gradient descent
scheme (see e.g., Nesterov, 2004, Theorem 3.2.2 with pa-
rameter 3.2.10) finds a solution x in Suppf,γ−ε in no more
than O(d2/ε2) evaluation steps.

Note that using more refined (but more computationally
and memory-wise expensive) methods such as the one
from (Nesterov, 2004, 4.2.5 p.187) that relies on point-
wise evaluations of the Hessian, one can get a solution
x ∈ Suppf,γ−ε in no more than O(

√
ν ln(ν/ε)) steps, as-

suming we can build a ν-self concordant barrier function
(see Nesterov, 2004 for more explanations regarding such
functions). As we are able to build O(d)-self-concordant
barrier (and even (1 + O(1))d-self-concordant barrier, see
Bubeck & Eldan, 2015; Hildebrand, 2014, but at the price
of a possibly high computational cost), it is then possible to
get a solution in onlyO(

√
d ln(d/ε)) steps. This is another

example where one can get an exponential improvement
over the general situation.

Now, repeating this procedure Ts times (sample a start-
ing point uniformly at random in D, then optimizef
from this starting point), we can get Ts evaluation
points in Suppf,γ−ε in only O(Tsd

2/ε2) and respectively
O(Ts

√
d log(d/ε)) steps.

Finally, this naturally extends to cases when f|Suppcf,γ
may

not be convex, but T (f)|Suppcf,γ
is convex for some known

transformation T , and that T (f), its gradient and its Hes-
sian can all be evaluated point-wise: This is useful in par-
ticular when f can only be evaluated up to a normalization
constant, as is the case here and often in practice.

4. Numerical experiments
We compared PRS to SRS and A? sampling numerically.
In particular, we evaluated the sampling rate, i.e., the pro-
portion of samples that a method gives with respect to the

number of evaluation of f . This is equal to the definition
of acceptance rate for SRS and PRS.

All the experiments were run with δ = 0.01. HC was set
through a cross-validation in order to provide a good pro-
posal quality, i.e., how close is the proposal to the target
distribution. HC is a problem dependent quantity and can
capture prior information on the smoothness of f .

The goal of our experiments is to (i) show that PRS outper-
forms SRS with the same amount of evaluations of f and
(ii) that PRS’s performance is comparable to A? sampling,
which is a recent state-of-the-art sampler, We use two of
the same settings in of Maddison et al. (2014). We empha-
size again that A? sampling is given extra information in
form of the decomposition, f(x) ∝ exp (i(x) + o(x)) that
PRS does not need and that is not available in general.

4.1. Scaling with peakiness

We first study the behavior of the acceptance rate with as a
function of to the peakiness of f . In particular, we use the
target density of Maddison et al. (2014),

f(x) ∝ e−x

(1 + x)a
,

where a is the peakiness parameter. By varying a, we can
control the difficulty of accepting a sample coming from a
proposal distribution. For A? sampling, we use the same
decomposition of φ(x) = i(x) + o(x) as Maddison et al. .

Figure 3 gives the acceptance rates of all these methods for
a ∈ {2, 5, 10, 15, 20} averaged over 10 trials. Figure 3a
corresponds to a budget of n = 105 requests to f and Fig-
ure 3b to a budget of n = 106 requests. PRS performs in
both cases better than the A? sampling and SRS. Moreover,
the performance of PRS improves with n. Indeed, with a
larger number of evaluations, the estimate f̂ gets better and
more precise, allowing the construction of a tighter upper
bound. This provides a good quality proposal that is, in this
case, able to perform better than SRS and even outperform
A? sampling even for a low peakiness.

4.2. Two-dimensional example

In this part, we compare the three methods on the distribu-
tion defined on [0,1]2 as

f(x, y) ∝
(

1 + sin
(

4πx− π

2

))(
1 + sin

(
4πy − π

2

))
.

Figure 3 (right) shows the target density, along with the
derived envelope. Table 1 gives the acceptance rates of the
three methods for n = 106, where PRS outperforms SRS
and approaches the performance of A? sampling.
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Figure 3. Left, center: Acceptance vs. peakiness. Right: 2D target (orange) and the pliable proposal (blue)

n = 106 acceptance rate standard deviation

PRS 66.4% 0.45%

A? sampling 76.1% 0.80%

SRS 25.0% 0.01%

Table 1. 2D example: Acceptance rates averaged over 10 trials

4.3. Clutter problem

In order to illustrate how PRS behaves for inference tasks,
we tested the methods on the clutter problem of Minka
(2001) as did Maddison et al. (2014). The goal is to sample
from the posterior distribution of the mean of normally dis-
tributed data with a fixed isotropic covariance, under the as-
sumption that some points are outliers. The setting is again
the same as the one of Maddison et al. (2014): In d dimen-
sions, we generate 20 data points, a half from [−5,−3]d

and another half from [2, 4]d, which provides a bimodal
posterior that is very peaky.

Table 2 gives the acceptance rates for the clutter problem
in the 1D and 2D cases with a budget of n = 105 requests
to the target f . This target is the posterior distribution of
the mean. In this case, even if PRS gives a reasonable ac-
ceptance rate, it is not performing better than A? sampling.

5. Conclusion
We propose pliable rejection sampling (PRS), an adaptive
rejection sampling method that learns its proposal distri-
bution. While previous work on adaptive rejection sam-
pling aimed at decreasing the area between the proposal
and the target by iteratively updating the proposals accord-
ing to sampling, we learn it using a kernel estimator. We
show that PRS outperforms traditional rejection sampling
and fares well with recent A? sampling. Our main con-
tribution is a high-probability guarantee on the number of

n = 105, 1D acceptance rate standard deviation

PRS 79.5% 0.2%

A? sampling 89.4% 0.8%

SRS 17.6% 0.1%

n = 105, 2D acceptance rate standard deviation

PRS 51,0% 0.4%

A? sampling 56.1% 0.5%

SRS 2.10−3% 10−5%

Table 2. Clutter problem: Acceptance rates averaged over 10 trials

accepted samples using PRS, and a guarantee that only a
provably negligible number of samples are rejected with
respect to the budget.

Since PRS only estimates the proposal once, a possible al-
gorithmic extension of PRS is to iteratively update the ker-
nel estimate as we gather more samples. While this would
result in the same theoretical acceptance guarantee as PRS,
the empirical performance is likely to be better.

We have also shown how to improve the scalability of the
method to handle moderate dimensions — in high dimen-
sions, one would still suffer from numerical and memory
cost. However, under the discussed assumptions, we get
a number of steps which is polynomial in d, as opposed
to exponential in d. Extending the method to even higher
dimension is an interesting research direction.
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A. Proofs of the main results
A.1. Proof of Theorem 1

Using Assumptions 1 and 2 and the fact that ‖ · ‖2 ≤ ‖ · ‖s, since s ≤ 2, we have that for any x ∈ [0, A]d,∣∣∣E [f̂(x)
]
− f(x)

∣∣∣ ≤ c′′Ad

Adhd

∫
Rd

∣∣∣∣K (y − xh
)∣∣∣∣ ‖y − x‖ssdy

=
c′′

hd

d∑
i=1

∫
Rd
|yi − xi|s

d∏
j=1

K0

(
yj − xj
h

)
dyj

=
c′′

hd

d∑
i=1

∫
R
K0

(
yi − xi
h

)
|yi − xi|sdyi

∏
j 6=i

∫
R
K0

(
yj − xj
h

)
dyj︸ ︷︷ ︸

=h

=
c′′

h

d∑
i=1

∫
R
K0

(
yi − xi
h

)
|yi − xi|sdyi

= c′′dhs
∫
R
K0(u)|u|sdu.

Since 0 < s ≤ 2, we have that s log |u| ≤ max(0, 2 log |u|), which means that |u|s ≤ max(1, |u|2) ≤ 1 + |u|2. Therefore,
we can write ∫

R
K0(u)|u|sdu ≤

∫
R
K0(u)

(
1 + |u|2

)
du ≤ 1 + C ′.

Thus, ∣∣∣E [f̂(x)
]
− f(x)

∣∣∣ ≤ c′′(1 + C ′)dhs. (4)

Let 0 < δ < 1
2 . Note that since K0 is non-negative and bounded by C, we have that K ≤ Cd. For y ∈ Rd, let us write

Yi = Adf(Xi)K
(
y−Xi
h

)
, where Xi ∼ U([0, Ad]). This implies that |Yi| ≤ c(CA)d. Moreover, since f ≤ c, we have

V(Yi) ≤ E
[
Y 2
i

]
=
A2d

Ad

∫
[0,A]d

K2

(
y − x
h

)
f2(x)dx

≤ c2Ad
∫
Rd
K2

(
y − x
h

)
dx

≤ c2Adhd
∫
Rd
K2(u)du

≤ c2CdAdhd
∫
Rd
K(u)du

= c2AdCdhd.

Therefore, by Bernstein’s inequality, for any x ∈ [0, A]d, we know that with probability larger than 1− δ

∣∣∣E [f̂(x)
]
− f̂(x)

∣∣∣ =

∣∣∣∣∣ AdNhd

n∑
k=0

(
f(Xi)K

(
Xi − x
h

)
− E

[
f(Xi)K

(
Xi − x
h

)]) ∣∣∣∣∣
≤ 1

Nhd

(
2c
√
CdAdhdN log(1/δ) + 2cAdCd log(1/δ)

)
≤ 2c

√
CdAd

log(1/δ)

Nhd
+ 2cAdCd

log(1/δ)

Nhd
, (5)

for n large enough with respect to δ.
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By Equations 4 and 5, we have for any x ∈ [0, A]d, with probability larger than 1− δ, that

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ 2c

√
CdAd

log(1/δ)

Nhd
+ 2cCdAd

log(1/δ)

Nhd
+ c′′(1 + C ′)dhs. (6)

Therefore, for h def=hs(δ) =
(

log(NA/δ)
N

) 1
2s+d

, we get that with probability larger than 1− δ,

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ (2c

√
CdAd + c′′(1 + C ′)d

)( log(NA/δ)

N

) s
2s+d

+ 2cCdAd
(

log(NA/δ)

N

) 2s
2s+d

. (7)

Let X be a 1/Nv covering set in ‖.‖2 norm and of minimal cardinality of the hypercube [0, A]d. Its cardinality is at most
(ANv

√
d)d ≤ (ANd)d(v+1), since the covering number of [0, A]d with small hypercubes of side N−v/

√
d is smaller than(

A/N
−v
√
d

)d
= (ANv

√
d)d, and hypercubes of sideN−v/

√
d are contained in `2 balls of diameterN−v . By a union bound

and Equation 7, it holds that with probability larger than 1− δ, for any x ∈ X , we have

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ 4d(v + 1)

(
2c
√
AdCd + c′′(1 + C ′)d

)( log(NAd/δ)

N

) s
2s+d

+ 4cd(v + 1)AdCd
(

log(NAd/δ)

N

) 2s
2s+d

.

Let ξ be the event of probability larger than 1 − δ where this is satisfied. Let y ∈ [0, A]d. Then, there exists x ∈ X such
that ‖x− y‖2 ≤ 1/Nv . Since K0 is ε-Hölder and since f is bounded by c, we have that

∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤ cN(C ′′)d

cd

hs(δ)dNdεv
≤ (C ′′)dcd+1N

1+ d
2s+1

Ndεv
,

and for v > 3/ε log(1 + 1/(C ′′c)), we get ∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤ N−1.

In the same way, by Assumption 3, we get also that for v ≥ 2 log(1 + 1/(c′′ + c))/min(1, s),

|f(x)− f(y)| ≤ c′′N−v + cN−vs ≤ N−1.

This implies that ∣∣∣f̂(y)− f(y)
∣∣∣ ≤ ∣∣∣f̂(x)− f(x)

∣∣∣+ 2/N,

which means that on ξ, for any x ∈ [0, A]d we have

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ 4d(v + 1)

(
2
√
cAdCd + cdC ′

)( log(NAd/δ)

N

) s
2s+d

+ 4cd(v + 1)AdCd
(

log(NAd/δ)

N

) 2s
2s+d

+ 2/N,

where v = log
(

1 + 1
c′′+c

)
2

min(1,s) + 3
ε log

(
1 + 1

C′′c

)
. Therefore, we get that for any x ∈ [0, A]d,∣∣∣f̂(x)− f(x)

∣∣∣
≤ 4d(v + 1)

(
2
√
cAdCd + c′′(1 + C ′)d

)( log(NAd/δ)

N

) s
2s+d

+ 4cd(v + 1)AdCd
(

log(NAd/δ)

N

) 2s
2s+d

+ 2/N

≤

(
2
√
cAdCd + c′′(1 + C ′)d+ c(AC)d

(
log(NAd/δ)

N

) s
2s+d

)
8d(v + 1)

(
log(NAd/δ)

N

) s
2s+d

,

≤ H0

(
log(NAd/δ)

N

) s
2s+d

,

where v = log
(

1 + 1
c′′+c

)
2

min(1,s) + 3
ε log

(
1 + 1

C′′c

)
and H0 a constant that depends on d, v, c, c′′, C, C ′, and A.
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B. Extension to densities with unbounded support
In this part of the appendix, we extend our method to densities that do not have a compact support. For the sake of clarity,
we assume that f is normalized here. In fact, we have already shown how to deal with the unnormalized case in the
Section 3, where the normalization constant is estimated by a Monte-Carlo sum over the same samples used to estimate f .

Assumption 3 (Assumption on the density). The density f , defined on Rd, is sub-Gaussian, i.e., there exist constants
c, c′ > 0 such that the density f satisfies for any x ∈ Rd

f(x) ≤ c exp
(
−c′‖x‖22

)
.

Moreover, f can be uniformly expanded by a Taylor expansion in any point up to degree s for some 0 < s ≤ 2, i.e., there
exists c′′ > 0 such that, for any x ∈ Rd, and for any u ∈ Rd, we have

|f(x+ u)− f(x)− 〈5f(x), u〉1{s > 1}| ≤ c′′‖u‖s2.

The above assumption means that the tails of f are sub-Gaussian, and also that f is in a Hölder ball of smoothness s. Note
that a bounded function f with a compact support in Rd is sub-Gaussian. The fact that f is in a Hölder ball of smoothnes s
is also not very restrictive, in particular for a small s.

B.1. Uniform bounds for kernel density estimation

Let X1, . . . , XN be N points generated by f . Let us define for h def=hs(δ) =
(

log(N/δ)
N

) 1
2s+1

,

f̂(x) =
1

Nhd

N∑
k=1

K

(
Xi − x
h

)
,

and f̃ be such that

f̃(x) = f̂(x)1 {‖x‖2 ≤ log(N)} . (8)

Theorem 3. Assume that Assumptions 2 and 3 hold with 0 < s ≤ 2, C,C ′, C ′′, c, c′, c′′ > 0, and ε > 0. The estimate f̃ is
such that with probability larger than 1− δ, for any point x ∈ Rd,∣∣∣f̃(x)− f(x)

∣∣∣ ≤ 8d(v + 1)(2
√
cCd + c′′(1 + C ′)d+ Cd)

(
log(N/δ)

N

) s
2s+d

+ c exp
(
−c′‖x‖22

)
1‖x‖2≥log(N)

≤ H1

(
log(N/δ)

N

) s
2s+d

+ c exp
(
−c′‖x‖22

)
1‖x‖2≥log(N)

where v = log
(

1 + 1
c′′+c

)
2

min(1,s) + 3
ε log

(
1 + 1

C′′c

)
, and H1 is a constant that depends on d, v, c, c′′, C, C ′.

Theorem 3 provides a uniform bound on the error of f̃ on a large centered ball of radius log n denoted by Bd (log n)), and
bounds the far fluctuations by an upper bound on f itself. Note that the previous bound implies in particular that

∣∣∣f̃(x)− f(x)
∣∣∣ ≤ O(( log(N/δ)

N

) s
2s+d

)
.

B.2. Proof of Theorem 3

By Assumptions 2 and 3, similarly to the starting point of proof of Theorem 1 (see Appendix A), we have that for any
x ∈ Rd ∣∣∣E [f̂(x)

]
− f(x)

∣∣∣ ≤ c′′(1 + C ′)dhs. (9)
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Let 0 < δ < 1
2 . Note that since K0 is non-negative and bounded by C, we have that K ≤ Cd. For y ∈ Rd, let us write

Yi = K
(
y−Xi
h

)
, where Xi ∼ f . This implies that |Yi| ≤ Cd. Moreover, since f(x) ≤ c exp

(
−c′‖x‖22

)
≤ c, we have

V(Yi) ≤
∫
Rd
K2

(
y − x
h

)
f(x)dx

≤ c
∫
Rd
K2

(
y − x
h

)
dx

≤ chd
∫
Rd
K2(u)du

≤ cCdhd
∫
Rd
K(u)du

= cCdhd.

Therefore, by Bernstein’s inequality, for any x ∈ Rd, we know that with probability larger than 1− δ∣∣∣E [f̂(x)
]
− f̂(x)

∣∣∣ =

∣∣∣∣∣ 1

Nhd

n∑
k=0

(
K

(
Xi − x
h

)
− E

[
K

(
Xi − x
h

)])∣∣∣∣∣
≤ 1

Nhd

(
2
√
cCdhdN log(1/δ) + 2Cd log(1/δ)

)
≤ 2

√
cCd

log(1/δ)

Nhd
+ 2Cd

log(1/δ)

Nhd
, (10)

for n large enough with respect to δ.

By Equations 9 and 10, we thus know that for any x ∈ Rd, with probability larger than 1− δ,∣∣∣f̂(x)− f(x)
∣∣∣ ≤ 2

√
cCd

log(1/δ)

Nhd
+ 2Cd

log(1/δ)

Nhd
+ c′′(1 + C ′)dhs. (11)

Therefore, for h = hs(δ) =
(

log(N/δ)
N

) 1
2s+d

, we get that with probability larger than 1− δ,

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ (2

√
cCd + c′′(1 + C ′)d

)( log(N/δ)

N

) s
2s+d

+ 2Cd
(

log(N/δ)

N

) 2s
2s+d

. (12)

Now, since the Ψ2 norm of f is bounded by c′, we know that for any x ∈ Rd,

f(x) ≤ c exp
(
−c′‖x‖22

)
.

This implies in particular that for any x such that ‖x‖2 ≥ log(N), we have

f(x) ≤ c exp
(
−c′‖x‖22

)
1‖x‖2≥logN . (13)

Let X be a 1/Nv covering set in ‖.‖2 norm and of minimal cardinality of the ball of Rd of center 0 and radius logN that
we will denote by Bd(logN). Its cardinality is at most (2Nv logN)d ≤ Nd(v+1) (by a similar reasoning as in the proof
of Thm 1). By a union bound and Equation 12, it holds that with probability larger than 1− δ, for any x ∈ X , we have∣∣∣f̂(x)− f(x)

∣∣∣ ≤ 4d(v + 1)
(

2
√
cCd + c′′(1 + C ′)d

)( log(N/δ)

N

) s
2s+d

+ 4d(v + 1)Cd
(

log(N/δ)

N

) 2s
2s+d

· (14)

Let ξ be the event of probability larger than 1 − δ where this is satisfied. Let y ∈ Bd(logN). Then, there exists x ∈ X
such that ‖x− y‖2 ≤ 1/Nv . Since K0 is ε-Hölder, we have that∣∣∣f̂(x)− f̂(y)

∣∣∣ ≤ N(C ′′)d
cd

hs(δ)dNdεv
≤ (C ′′)dcd

N1+ d
2s+1

Ndεv
,
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and for v > 3/ε log(1 + 1/(C ′′c)), we get ∣∣∣f̂(x)− f̂(y)
∣∣∣ ≤ N−1.

In the same way, by Assumption 3, we also get that for v ≥ 2 log(1 + 1/(c′′ + c))/(min(1, s)),

|f(x)− f(y)| ≤ c′′N−v + cN−vs ≤ N−1.

This implies that ∣∣∣f̂(y)− f(y)
∣∣∣ ≤ ∣∣∣f̂(x)− f(x)

∣∣∣+ 2/N,

which means that on ξ, for any x ∈ Bd(logN) we have

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ 4d(v + 1)

(
2
√
cCd + c′′(1 + C ′)d

)( log(N/δ)

N

) s
2s+d

+ 4d(v + 1)Cd
(

log(N/δ)

N

) 2s
2s+d

+ 2/N,

where v = log
(

1 + 1
c′′+c

)
2

min(1,s) + 3
ε log

(
1 + 1

C′′c

)
. Combining this with the definition of f̃ , and Equation 13, we get

that for any x ∈ Rd,∣∣∣f̃(x)− f(x)
∣∣∣

≤ 4d(v + 1)
(

2
√
cCd + c′′(1 + C ′)d

)( log(N/δ)

N

) s
2s+d

+ 4d(v + 1)Cd
(

log(N/δ)

N

) 2s
2s+d

+ 2/N + f(x)1‖x‖2≥logN

≤ 8d(v + 1)
(

2
√
cCd + c′′(1 + C ′)d

)( log(N/δ)

N

) s
2s+d

+ 4d(v + 1)Cd
(

log(N/δ)

N

) 2s
2s+d

+ f(x)1‖x‖2≥logN

≤ 8d(v + 1)
(

2
√
cCd + c′′(1 + C ′)d

)( log(N/δ)

N

) s
2s+d

+ 4d(v + 1)Cd
(

log(N/δ)

N

) 2s
2s+d

+ c exp
(
−c′‖x‖22

)
1‖x‖2≥logN ,

where v = log
(

1 + 1
c′′+c

)
2

min(1,s) + 3
ε log

(
1 + 1

C′′c

)
B.3. Extended pliable rejection sampling

Our modified algorithm, extended pliable rejection sampling (EPRS), aims at sampling as many i.i.d. points distributed
according to f as possible with a fixed budget of evaluations of f . It consists of three main steps: (i) a first rejection
sampling step where it generates N̂ initial samples from f by rejection sampling using an initial proposal. Then, (ii)
EPRS uses these samples to estimate f by a kernel density estimation method. Finally, (iii) EPRS uses the newly obtained
estimate, plus a uniform bound on it, as a new extended pliable proposal for rejection sampling. Since this pliable proposal
is closer to the target density than the initial proposal, the rejection sampling will reject significantly fewer points by using
it. Our EPRS method is described as Algorithm 2.

As mentioned, our method makes use of an initial proposal density g that must satisfy the following properties with respect
to the target density.

Assumption 4 (Assumption on the initial proposal). Let M > 0. We have

f ≤Mg.

Furthermore, the density g is sub-Gaussian, i.e., there exist constants a, a′ > 0 such that the density g defined on Rd
satisfies

g(x) ≤ a exp
(
−a′‖x‖22

)
.

We set the following constants:

Ts
def=n

2s+d
3s+d , and N̄

def=Ts/M − 2
√
Ts log(1/δ).
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N̄ is actually a high probability lower bound of N̂ given by our algorithm (it is the number of samples obtained by the
initial rejection sampling step). Ts is the number of calls needed for the first estimation step that will optimize the number
of accepted samples in the second step.

We also define

rN̄
def=VnHE

(
log(N̄/δ)

N̄

) s
2s+d

, and

ḡN̄
def=
∫
Bd(log(N̄))C

g(x)dx,

where Vn = V (Bd (log (n))) is the volume ofBd (log n) the centered ball in Rd of radius log n and whereH is a parameter
of the algorithm.

Our method samples most of the samples by rejection sampling according to a pliable proposal that is defined as

ĝ?
def=

1

1 + rN̄ +MḡN̄

(
f̃ + rN̄UBd(log(n)) +Mg1‖x‖2≥log(N̄)

)
,

where UBd(log(n)) is the uniform distribution on Bd(log(n)), and f̃ the estimate of f defined in (8).

Algorithm 2 Extended pliable rejection sampling (EPRS)

Parameters: s, n, δ, H g, and M .
Initial sampling

Draw Ts samples at random according to g, and evaluate f on them
Estimation of f

Perform rejection sampling on the samples using M as the constant
Obtain this way N̂ samples from f
Estimate f by f̃ on these N̂ samples (Section B.1)

Generating the sample
Sample n− Ts samples from the pliable proposal ĝ?

Perform rejection sampling on these samples using 1 + rN̄/Vn +MḡN̄ as a constant
Obtain this way n̂ samples from f

Output: Return the n̂ samples.

Theorem 4. Assume that Assumptions 2, 3, and 4 hold with 0 < s ≤ 2, g, M > 0, and that HE > 0 is an upper bound on
the constant H1 defined in Theorem 3 (applied to f and f̃ ). The number n̂ of samples generated in an i.i.d. way according
to f in this way is such that for n large enough, with probability larger than 1− δ,

n̂ ≥ n
[
1−O

(
log (n/δ)

d+1
n−

s
3s+d

)]
.

B.4. Proof of Theorem 4

By definition of ḡN̄ and since the g is sub-Gaussian by Assumption 3, we have that

ḡN̄ =

∫
Bd(log N̄)C

g(x)dx ≤
∫
Bd(log N̄)C

a exp(−a′‖x‖22)dx ≤ a(N̄)−da
′(log N̄)/4 ≤ N̄−1,

for n (and thus N̄ ) large enough.

By definition of rejection sampling, the probability of accepting a sample is exactly 1/M , where M is the upper bound
used in the rejection sampling (provided that f ≤ Mg). Therefore, and since the first rejection sampling step uses Ts
samples, N̂ is a sum of Ts independent Bernoulli random variables of parameter 1/M . Thus, we have with probability
larger than 1− δ that

N̂ ≥ Ts/M − 2
√
Ts log(1/δ)

def= N̄ . (15)
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Let us write ξ′ for the event where this happens. On ξ′, we have by Theorem 3 (end of the proof) that with probability
larger than 1− δ, for any x ∈ Rd∣∣∣f̃(x)− f(x)

∣∣∣ ≤ rN̂
Vn

+ f1‖x‖2≥log N̂ ≤
rN̄
Vn

+Mg1‖x‖2≥log N̄ .

Let ξ be the intersection of ξ′ and the event where Equation 15 holds. It has probability larger than 1− 2δ. On ξ, we thus
have that

f̃ + rN̄UBd(logn) +Mg1‖x‖2≥log N̄ ≥ f.

Therefore, the rejection sampling is going to provide samples that are i.i.d. according to f , and n̂ will be a sum of Bernoulli
random variables of parameter 1

1+rN̄+MḡN̄
. We thus have that on ξ, with probability larger than 1− δ,

n̂ ≥ (n− Ts)
1

1 + rN̄ +MḡN̄
− 2
√
n log(1/δ).

This implies, together with the definition of rN̄ and the upper bound on ḡN̄ , that n̂ is with probability larger than 1 − 3δ
lower bounded as

n̂ ≥ (n− Ts)

(
1− πd log

(
N̄
)d
H

(
log(N̄/δ)

N̄

) s
2s+d

−MN̄−1

)
− 2
√
n log(1/δ)

≥ n

1− Ts
n
− πd log (n)

d
H

(
log(n/δ)

Ts/M − 2
√
Ts log(1/δ)

) s
2s+d

− M

Ts/M − 2
√
Ts log(1/δ)

− 4

√
log(1/δ)

n

 .
Since

Ts = n
2s+d
3s+d ,

we have that with probability larger than 1− 3δ, for n large enough, there exists a constant K such that

n̂ ≥ n
[
1−K log(n/δ)d+1n−

s
3s+d .

]
(16)
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