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Abstract
We consider the exploration-exploitation dilemma
in finite-horizon reinforcement learning problems
whose state-action space is endowed with a metric.
We introduce Kernel-UCBVI, a model-based opti-
mistic algorithm that leverages the smoothness of
the MDP and a non-parametric kernel estimator of
the rewards and transitions to efficiently balance
exploration and exploitation. For problems with
K episodes and horizon H , we provide a regret
bound of Õ

(
H3K

2d
2d+1

)
, where d is the covering

dimension of the joint state-action space. This is
the first regret bound for kernel-based RL using
smoothing kernels, which requires very weak as-
sumptions on the MDP and has been previously
applied to a wide range of tasks. We empirically
validate our approach in continuous MDPs with
sparse rewards.

1. Introduction
Reinforcement learning (RL) is a learning paradigm in
which an agent interacts with an environment by taking
actions and receiving rewards. At each time step t, the
environment is characterized by a state variable xt ∈ X ,
which is observed by the agent and influenced by its ac-
tions at ∈ A. In this work, we consider the online learning
problem where the agent has to learn how to act optimally
by interacting with an unknown environment. To learn ef-
ficiently, the agent has to trade-off exploration to gather
information about the environment and exploitation to act
optimally with respect to the current knowledge. The per-
formance of the agent is measured by the regret, i.e., the
difference between the rewards that would be gathered by an
optimal agent and the rewards obtained by the agent. This
problem has been extensively studied for Markov Decision
Processes (MDPs) with finite state-action space. Optimism
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in the face of uncertainty (OFU, Jaksch et al. 2010) and
Thompson Sampling (Strens, 2000; Osband et al., 2013)
principles have been used to design algorithms with sublin-
ear regret. However, the guarantees for these approaches
cannot be naturally extended to an arbitrarily large state-
action space since the regret depends on the number of
states and actions. When the state-action space is continu-
ous, additional structure in MDP is required to efficiently
solve the exploration-exploitation dilemma.

In this paper, we focus on the online learning problem in
MDPs with large or continuous state-action spaces. We
suppose that the state-action set X × A is equipped with
a known metric. For instance, this is typically the case
in continuous control problems in which the state space
is a subset of Rd equipped with the Euclidean metric. As
shown by Ormoneit & Sen (2002) and Barreto et al. (2016),
smoothing-kernel approaches converge asymptotically to
an optimal policy and perform well empirically in a wide
range of continuous MDPs. In this paper, we tackle the
problem of exploration in such approaches, by proposing an
optimistic algorithm based on smoothing-kernel estimators
of the reward and transition functions of the underlying
MDP. The advantages of this approach are: (i) it requires
weak assumptions on the MDP, (ii) it allows us to easily
provide expert knowledge to the algorithm through kernel
design, and (iii) it applies to problems with possibly infinite
states without relying on any kind of discretization.

Related work Kernel-based RL (KBRL) using smooth-
ing kernels has been initially proposed by Ormoneit & Sen
(2002), who analyzed the algorithm assuming that transi-
tions are generated from independent samples, and provide
asymptotic convergence guarantees. Barreto et al. (2016)
propose a stochastic factorization technique to reduce the
computational complexity of KBRL. In this paper, we pro-
vide a modification of KBRL that collects data online and
for which we prove finite-time regret guarantees under weak
conditions on the MDP. Under stronger conditions, that use
positive-define kernels defining reproducing kernel Hilbert
spaces (RKHS) or Gaussian Processes, regret bounds are
provided by Chowdhury & Gopalan (2019), Chowdhury &
Oliveira (2020) and Yang et al. (2020).

Regret minimization in finite MDPs has been extensively
studied both in model-based and model-free settings. While
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model-based algorithms (Jaksch et al., 2010; Azar et al.,
2017; Zanette & Brunskill, 2019) use the estimated rewards
and transitions to perform planning at each episode, model-
free algorithms (Jin et al., 2018) directly build an estimate
of the optimal Q-function that is updated incrementally.

For MDPs with continuous state-action space, the sample
complexity (Kakade et al., 2003; Kearns & Singh, 2002; Lat-
timore et al., 2013; Pazis & Parr, 2013) or regret have been
studied under structural assumptions. Regarding regret min-
imization, a standard assumption is that rewards and tran-
sitions are Lipschitz continuous. Ortner & Ryabko (2012)
studied this problem in average reward problems. They com-
bined the ideas of UCRL2 (Jaksch et al., 2010) and uniform
discretization, proving a regret bound of Õ

(
T

2d+1
2d+2

)
for a

learning horizon T in d-dimensional state spaces. This work
was later extended by Lakshmanan et al. (2015) to use a
kernel density estimator instead of a frequency estimator
for each region of the fixed discretization. For each discrete
region I(x), the density p(·|I(x), a) of the transition kernel
is computed through kernel density estimation. The granu-
larity of the discretization is selected in advance based on
the properties of the MDP and the learning horizon T . As
a result, they improve upon the bound of Ortner & Ryabko
(2012), but require the transition kernels to have densities
that are κ times differentiable.1 However, these two al-
gorithms rely on an intractable optimization problem for
finding an optimistic MDP. Jian et al. (2019) solve this issue
by providing an algorithm that uses exploration bonuses, but
they still rely on a uniform discretization of the state space.
Ok et al. (2018) studied the asymptotic regret in Lipschitz
MDPs with finite state and action spaces, providing a nearly
asymptotically optimal algorithm. Their algorithm lever-
ages ideas from asymptotic optimal algorithms in structured
bandits (Combes et al., 2017) and tabular RL (Burnetas &
Katehakis, 1997), but does not scale to continuous state-
action spaces.

Regarding exploration for finite-horizon MDP with continu-
ous state-action space, Ni et al. (2019) present an algorithm
for deterministic MDPs with Lipschitz transitions. Assum-
ing that the Q-function is Lipschitz continuous, Song &
Sun (2019) provided a model-free algorithm by combin-
ing the ideas of tabular optimistic Q-learning (Jin et al.,
2018) with uniform discretization, showing a regret bound
of O(H

5
2K

d+1
d+2 ) where d is the covering dimension of the

state-action space. This approach was extended by Sinclair
et al. (2019) and Touati et al. (2020) to use adaptive parti-
tioning of the state-action space, achieving the same regret
bound. Osband & Van Roy (2014) prove a Bayesian regret
bound in terms of the eluder and Kolmogorov dimension, as-
suming access to an approximate MDP planner. In addition,

1For instance, when d = 1 and κ → ∞, their bound ap-
proaches T

2
3 , improving the previous bound of T

3
4 .

there are many results for facing the exploration problem
in continuous MDP with parametric structure, e.g., linear-
quadratic systems (Abbasi-Yadkori & Szepesvári, 2011) or
other linearity assumptions (Yang & Wang, 2020; Jin et al.,
2020), which are outside the scope of our paper.

Contributions The main contributions of this paper are
the following. (1) We provide the first regret bound for
KBRL, which applies to a wide range of RL tasks with an
entirely data-dependent approach; (2) In order to derive our
regret bound, we provide novel concentration inequalities
for weighted sums (Lemmas 2 and 3) that permit to build
confidence intervals for non-parametric kernel estimators
(Propositions 1 and 2) that are of independent interest. (3)
We show that the regret of model-based algorithms, although
having a better empirical performance, seem to suffer from
a worse dependence on the state-action dimension d than
model-free ones. We discuss the origins of this issue by
looking at the regret bounds of tabular algorithms.

2. Setting

Notation For any j ∈ Z+, we define [j]
def
= {1, . . . , j}.

For a measure P and any function f , let Pf
def
=∫

f(y)dP (y). If P (·|x, a) is a measure for all (x, a), we let
Pf(x, a) = P (·|x, a)f =

∫
f(y)dP (y|x, a).

Markov decision processes Let X and A be the sets of
states and actions, respectively. We assume that there exists
a metric ρ : (X × A)2 → R≥0 on the state-action space
and that (X , TX ) is a measurable space with σ-algebra TX .
We consider an episodic Markov decision process (MDP),
defined by the tupleM def

= (X ,A, H, P, r) where H ∈ Z+

is the length of each episode, P = {Ph}h∈[H] is a set of
transition kernels from (X × A) × TX to R≥0, and r =
{rh}h∈[H] is a set of reward functions from X ×A to [0, 1].
A policy π is a mapping from [H] × X to A, such that
π(h, x) is the action chosen by π in state x at step h. The
Q-value of a policy π for state-action (x, a) at step h is the
expected sum of rewards obtained by taking action a in state
x at step h and then following the policy π, that is

Qπh(x, a)
def
= E

[
H∑

h′=h

rh′(xh′ , ah′)
∣∣∣xh = x, ah = a

]
,

where the expectation is under transitions in the MDP
xh′+1 ∼ Ph′(·|xh′ , ah′) and ah′ = π(h′, xh′). The value
function of policy π at step h is V πh (x) = Qπh(x, π(h, x)).

The optimal value functions, defined by V ∗h (x)
def
=

supπ V
π
h (x) for h ∈ [H], satisfy the optimal Bellman

equations (Puterman, 1994): V ∗h (x) = maxa∈AQ
∗
h(x, a),
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where

Q∗h(x, a)
def
= rh(x, a) +

∫
X
V ∗h+1(y)dPh(y|x, a)

and, by definition, V ∗H+1(x) = 0 for all x ∈ X .

Learning problem A reinforcerment learning agent inter-
acts with M in a sequence of episodes k ∈ [K] of fixed
length H by playing a policy πk in each episode, where
the initial state xk1 is chosen arbitrarily and revealed to the
agent. The learning agent does not know P and r and it
selects the policy πk based on the samples observed over
previous episodes. Its performance is measured by the regret
R(K)

def
=
∑K
k=1

(
V ∗1 (xk1)− V πk1 (xk1)

)
.

We make the following assumptions:

Assumption 1. The metric ρ is given to the learner. Also,
there exists a metric ρX on X and a metric ρA on A such
that, for all (x, x′, a, a′), ρ [(x, a), (x′, a′)] = ρX (x, x′) +
ρA (a, a′) .

Assumption 2. The reward functions are λr-Lipschitz and
the transition kernels are λp-Lipschitz with respect to the
1-Wasserstein distance: ∀(x, a, x′, a′) and ∀h ∈ [H],

|rh(x, a)− rh(x′, a′)| ≤ λrρ [(x, a), (x′, a′)] , and

W1 (Ph(·|x, a), Ph(·|x′, a′)) ≤ λpρ [(x, a), (x′, a′)]

where, for two measures µ and ν, we have W1 (µ, ν)
def
=

supf :Lip(f)≤1
∫
X f(y)(dµ(y) − dν(y)) and where, for a

function f : X → R, Lip(f) denotes its Lipschitz constant
w.r.t. ρX .

To assess the relevance of these assumptions, we show below
that they apply to deterministic MDPs with Lipschitz reward
and transition functions (whose transition kernels are not
Lipschitz w.r.t. the total variation distance).

Example 1 (Deterministic MDP in Rd). Consider an MDP
M with a finite action set, with a compact state space
X ⊂ Rd, and deterministic transitions y = f(x, a), i.e.,
Ph(y|x, a) = δf(x,a)(y). Let ρX be the Euclidean distance
on Rd and ρA (a, a′) = 0 if a = a′ and∞ otherwise. Then,
if for all a ∈ A, x 7→ rh(x, a) and x 7→ f(x, a) are Lips-
chitz,M satisfies assumptions 1 and 2.

Under our assumptions, the optimal Q functions are Lips-
chitz continuous:

Lemma 1. Let Lh
def
=
∑H
h′=h λrλ

H−h′
p . Under Assump-

tion 2, for all (x, a, x′, a′) and for all h ∈ [H], we have
|Q∗h(x, a)−Q∗h(x′, a′)| ≤ Lhρ [(x, a), (x′, a′)], i.e., the
optimal Q-functions are Lipschitz continuous.

Algorithm 1 Kernel-UCBVI
Input: global parameters K,H, δ, λr, λp, σ, β
initialize data lists Dh = ∅ for all h ∈ [H]
for episode k = 1, . . . ,K do

get initial state xk1
Qkh = optimisticQ(k, {Dh}h∈[H])

for step h = 1, . . . , H do
execute akh = argmaxaQ

k
h(x

k
h, a)

observe reward rkh and next state xkh+1

add sample (xkh, a
k
h, x

k
h+1, r

k
h) to Dh

end for
end for

3. Algorithm
In this section, we present Kernel-UCBVI, a model-based
algorithm for exploration in MDPs in metric spaces that
employs kernel smoothing to estimate the rewards and tran-
sitions, for which we derive confidence intervals. Kernel-
UCBVI uses exploration bonuses based on these confidence
intervals to efficiently balance exploration and exploitation.
Our algorithm requires the knowledge of the metric ρ on
X × A and of the Lipschitz constants of the rewards and
transitions.2

3.1. Kernel Function

We leverage the knowledge of the state-action space metric
to define the kernel function. Let u, v ∈ X ×A. For some
function g : R≥0 → [0, 1], we define the kernel function as

ψσ(u, v)
def
= g (ρ [u, v] /σ)

where σ is the bandwidth parameter that controls the degree
of “smoothing” of the kernel. In order to be able to construct
valid confidence intervals, we require certain structural prop-
erties for g.

Assumption 3. The function g : R≥0 → [0, 1] is differ-
entiable, non-increasing, g(4) > 0, and there exists two
constants Cg1 , C

g
2 > 0 that depend only on g such that

g(z) ≤ Cg1 exp(−z2/2) and sup
z
|g′(z)| ≤ Cg2 .

This assumption is trivially verified by the Gaussian kernel
g(z) = exp(−z2/2). Other examples include the kernels
g(z) = exp(−|z|p/2) for p > 2.

2This assumption is standard in previous works in RL (e.g.,
Ortner & Ryabko, 2012; Sinclair et al., 2019). Theoretically, we
could replace the Lipschitz constantL1 by log k, in each episode k,
and our regret bound would have an additive term of order HeL1 ,
since Qkh would be optimistic for log k ≥ L1 (see e.g., Reeve
et al., 2018). However, this would degrade the performance of the
algorithm in practice.
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Algorithm 2 optimisticQ
Input: episode k, data {Dh}h∈[H]

Initialize V kH+1(x) = 0 for all x
for step h = H, . . . , 1 do

// Compute optimistic targets
for m = 1, . . . , k − 1 do
Q̃kh(x

m
h , a

m
h ) =

∑k−1
s=1 w̃

s
h(x

m
h , a

m
h )
(
rsh + V kh+1(x

s
h+1)

)
Q̃kh(x

m
h , a

m
h ) = Q̃kh(x

m
h , a

m
h ) + Bkh(x

m
h , a

m
h )

end for
// Interpolate the Q function
Qkh(x, a) = min

s∈[k−1]

(
Q̃kh(x

s
h, a

s
h) + Lhρ [(x, a), (x

s
h, a

s
h)]
)

for m = 1, . . . , k − 1 do
V kh (x

m
h ) = min

(
H − h+ 1,maxa∈AQ

k
h(x

m
h , a)

)
end for

end for
return Qkh

3.2. Kernel Estimators and Optimism

In each episode k, Kernel-UCBVI computes an optimistic
estimate Qkh for all h, which is an upper confidence bound
on the optimal Q function Q∗h, and plays the associated
greedy policy. Let (xsh, a

s
h, x

s
h+1, r

s
h) be the random vari-

ables representing the state, the action, the next state and
the reward at step h of episode s, respectively. We denote
by Dh =

{
(xsh, a

s
h, x

s
h+1, r

s
h)
}
s∈[k−1] for h ∈ [H] the sam-

ples collected at step h before episode k.

For any (x, a) and (s, h) ∈ [K]×[H], we define the weights
and the normalized weights as

wsh(x, a)
def
= ψσ((x, a), (xsh, a

s
h)) and

w̃sh(x, a)
def
=

wsh(x, a)

β +
∑k−1
l=1 w

l
h(x, a)

,

where β > 0 is a regularization term. These weights are
used to compute an estimate of the rewards and transitions
for each state-action pair3:

r̂kh(x, a)
def
=

k−1∑
s=1

w̃sh(x, a)rsh,

P̂ kh (y|x, a)
def
=

k−1∑
s=1

w̃sh(x, a)δxsh+1
(y).

As other algorithms using OFU, Kernel-UCBVI computes
an optimistic Q-function Q̃kh through value iteration, a.k.a.
backward induction:

Q̃kh(x, a) = r̂kh(x, a) + P̂ khV
k
h+1(x, a) + Bkh(x, a) (1)

where V kH+1(x) = 0 for all x ∈ X and Bkh(x, a) is an
exploration bonus described later. From Lemma 1, the

3Here, δx denotes the Dirac measure with mass at x.

true Q function Q∗h is Lh-Lipschitz. Computing Q̃kh for all
previously visited state action pairs (xsh, a

s
h) for s ∈ [k− 1]

permits to define a Lh-Lipschitz upper confidence bound
and the associated value function:

Qkh(x, a)
def
= min

s∈[k−1]

(
Q̃kh(xsh, a

s
h) + Lhρ [(x, a), (xsh, a

s
h)]
)

and V kh (x)
def
= min

(
H − h+ 1,maxa′ Q

k
h(x, a′)

)
. The

policy πk executed by Kernel-UCBVI is the greedy policy
with respect to Qkh (see Alg. 1).

Let Ck
h(x, a)

def
= β +

∑k−1
s=1 w

s
h(x, a) be the generalized

counts, which are a proxy for the number of visits to (x, a).
The exploration bonus is defined based on the uncertainties
on the transition and reward estimates and takes the form

Bkh(x, a) ≈ H√
Ck
h(x, a)

+
βH

Ck
h(x, a)

+ L1σ

where we omit constants and logarithmic terms. Refer to
Eq. 4 in App. B for the exact definition.

4. Theoretical Guarantees & Discussion
The theorem below gives a high probability regret bound for
Kernel − UCBV I . It features the σ-covering number of
the state-action space. The σ-covering number of a metric
space, formally defined in Def. 2 (App. A), is roughly the
number of σ-radius balls required to cover the entire space.
The covering dimension of a space is the smallest number d
such that its σ-covering number is O

(
σ−d

)
. For instance,

the covering number of a ball in Rd with the Euclidean
distance is O

(
σ−d

)
and its covering dimension is d.

Theorem 1. With probability at least 1 − δ, the regret of
Kernel − UCBV I for a bandwidth σ satisfies

R(K) ≤ Õ
(
H2
√
|Cσ|K + L1KHσ +H3|Cσ||C̃σ|

)
,

where |Cσ| and |C̃σ| are the σ-covering numbers of (X ×
A, ρ) and (X , ρX ), respectively, and L1 is the Lipschitz
constant of the optimal Q-functions.

Proof. Restatement of Theorem 4 in App. D. A proof sketch
is given in Section 6.

Corollary 1. By taking σ = (1/K)1/(2d+1), R(K) =

Õ
(
H3Kmax( 1

2 ,
2d

2d+1 )
)

, where d is the covering dimension
of the state-action space.

Remark 1. As for other model-based algorithms, the depen-
dence onH can be improved if the transitions are stationary,
i.e., do not depend on h. In this case, the regret of Kernel-
UCBVI becomes Õ

(
H2K

2d
2d+1

)
due to a gain a factor of

H in the second order term (see App. E).
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To the best of our knowledge, this is the first regret bound for
kernel-based RL using smoothing kernels, and we present
below further discussions on this result.

Comparison to lower bound for Lipschitz MDPs In
terms of the number of episodes K and the dimension d,
the lower bound for Lipschitz MDPs is Ω(K(d+1)/(d+2)),
which is a consequence of the result for contextual Lipschitz
bandits (Slivkins, 2014). In terms of H , the optimal depen-
dence can be conjectured to be H3/2, which is the case for
tabular MDPs (Jin et al., 2018).4 For d = 1, our bound
has an optimal dependence on K, leading to a regret of
order Õ

(
H3K2/3

)
, or Õ

(
H2K2/3

)
when the transitions

are stationary (see Remark 1).

Comparison to other upper bounds for Lipschitz MDPs
The best available upper bound in this setting, in terms of K
and d, is Ω

(
H5/2K

d+1
d+2

)
, which is achieved by model-free

algorithms performing either uniform or adaptive discretiza-
tion of the state-action space (Song & Sun, 2019; Sinclair
et al., 2019; Touati et al., 2020).

Relevance of a kernel-based algorithm Although our
upper bound does not match the lower bound for Lips-
chitz MDPs, kernel-based RL can be a very useful tool
in practice to handle the bias-variance trade-off in RL. It al-
lows us to easily provide expert knowledge to the algorithm
through kernel design, which can be seen as introducing
more bias to reduce the variance of the algorithm and, con-
sequently, improve the learning speed. As shown by Kveton
& Theocharous (2012) and Barreto et al. (2016), KBRL are
empirically successful in medium-scale tasks (d ≈ 10), such
as control problems, HIV drug scheduling and an epilepsy
suppression task. In such problems, Kernel-UCBVI can be
used to enhance exploration, and the confidence intervals
we derive here may also be useful in settings such as robust
planning (Lim & Autef, 2019). Interestingly, Badia et al.
(2020) have shown that kernel-based exploration bonuses
similar to the ones derived in this paper can improve explo-
ration in Atari games.

Regularity assumptions The regret bound we provide
only requires only weak assumptions on the MDP: we as-
sume that both the transitions and rewards are Lipschitz
continuous, but we have no constraints on the behavior of
the Bellman operator. As a consequence, the regret bounds
suffer from the curse of dimensionality: as d goes to infinity,
both the lower and upper bounds become linear in the num-
ber of episodes K. Other settings, such as low-rank MDPs
(Jin et al., 2020) and RKHS approximations (Yang et al.,
2020; Chowdhury & Oliveira, 2020) achieve regret bounds
scaling with

√
K, but they require much stronger assump-

4See also (Sinclair et al., 2019, Sec. 4.4).

tions on the MDP, such as the closedness of the Bellman
operator in the function class used to represent Q functions,
which is a condition that is much harder to verify. Barreto
et al. (2016) show that KBRL (with smoothing kernels) can
be related to low-rank MDPs, and we believe that our anal-
ysis brings new elements to study this trade-off that exists
between regularity assumptions and regret bounds.

Model-free vs. Model-based An interesting remark
comes from the comparison between our algorithm and
recent model-free approaches in continuous MDPs (Song &
Sun, 2019; Sinclair et al., 2019; Touati et al., 2020). These
algorithms are based on optimistic Q-learning (Jin et al.,
2018), to which we refer as OptQL, and achieve a regret
of order Õ

(
H

5
2K

d+1
d+2

)
, which has an optimal dependence

on K and d. While we achieve the same Õ
(
K2/3

)
regret

when d = 1, our bound is slightly worse for d > 1. To
understand this gap, it is enlightening to look at the regret
bound for tabular MDPs.

Since our algorithm is inspired by UCBVI (Azar et al.,
2017) with Chernoff-Hoeffding bonus, we compare it to
OptQL, which is used by (Song & Sun, 2019; Sinclair et al.,
2019; Touati et al., 2020), with the same kind of explo-
ration bonus. Consider an MDP with X states and A ac-
tions and non-stationary transitions. UCBVI has a regret
bound of Õ

(
H2
√
XAK +H3X2A

)
while OptQL has

Õ
(
H5/2

√
XAK +H2XA

)
. As we can see, OptQL is a

√
H-factor worse than UCBVI when comparing the first-

order term, but it is HX times better in the second-order
term. For large values of K, second-order terms can be
neglected in the comparison of the algorithms in tabular
MDPs, since they do not depend on K. However, they play
an important role in continuous MDPs, where X and A are
replaced by the σ-covering number of the state-action space,
which is roughly 1/σd. In tabular MDPs, the second-order
term is constant (i.e., does not depend on K). On the other
hand, in continuous MDPs, the algorithms define the granu-
larity of the representation of the state-action space based
on the number of episodes, connecting the number of states
X with K. For example, in (Song & Sun, 2019) the ε-net
used by the algorithm is tuned such that ε = (HK)−1/(d+2)

(see also Ortner & Ryabko 2012; Lakshmanan et al. 2015;
Jian et al. 2019). Similarly, in our algorithm we have that
σ = K−1/(2d+1). For this reason, the second-order term in
UCBVI becomes the dominant term in our analysis, lead-
ing to a worse dependence on d compared to model-free
algorithms, as highlighted in the proof sketch (Sec. 6). For
similar reasons, Kernel-UCBVI has an additional

√
H fac-

tor compared to model-free algorithms based on (Jin et al.,
2018). This shows that the direction of achieving first-order
optimal terms at the expense of higher second-order terms
may not be justified outside the tabular case. Whether this
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is a flaw in the algorithm design or in the analysis is left
as an open question. However, as observed in Section 7,
model-based algorithms seem to enjoy a better empirical
performance.

5. Improving the Computational Complexity
Kernel-UCBVI is a non-parametric model-based algorithm
and, consequently, it inherits the weaknesses of these ap-
proaches. In order to be data adaptive, it needs to store all
the samples (xkh, a

k
h, x

k
h+1, r

k
h) and their optimistic values

Q̃kh and V kh for (k, h) ∈ [K]× [H], leading to a total mem-
ory complexity of O (HK). Like standard model-based
algorithms, it needs to perform planning at each episode
which gives a total runtime of O

(
HAK3

)
5, where the fac-

tor A takes into account the complexity of computing the
maximum over actions.6 Kernel-UCBVI has similar time
and space complexity of recent approaches for low-rank
MDPs (Jin et al., 2020; Zanette et al., 2019).

To alleviate the computational burden of Kernel-UCBVI,
we leverage Real-Time Dynamic Programming (RTDP),
see (Barto et al., 1995), to perform incremental planning.
Similarly to OptQL, RTDP-like algorithms maintain an
optimistic estimate of the optimal value function that is
updated incrementally by interacting with the MDP. The
main difference is that the update is done by using an es-
timate of the MDP (i.e., model-based) rather than the ob-
served transition sample. In episode k and step h, our al-
gorithm, named Greedy-Kernel-UCBVI, computes an up-
per bound Q̃kh(xkh, a) for each action a using the kernel
estimate as in Eq. (1). Then, it executes the greedy ac-
tion akh = argmaxa∈A Q̃

k
h(xkh, a). As a next step, it com-

putes Ṽ kh (xkh) = Q̃kh(xkh, a
k
h) and refines the previous Lh-

Lipschitz upper confidence bound on the value function

V k+1
h (x) = min

(
(V kh (x), Ṽ kh (xkh) + LhρX

(
x, xkh

))
.

The complete description of Greedy-Kernel-UCBVI is given
in Alg. 3 in App. F. The total runtime of this efficient version
is O

(
HAK2

)
with total memory complexity of O (HK).

RTDP has been recently analyzed by (Efroni et al., 2019) in
tabular MDPs. Following their analysis, we prove the fol-
lowing theorem, which shows that Greedy-Kernel-UCBVI
achieves the same guarantees of Kernel-UCBVI with a

5Since the runtime of an episode k is O
(
HAk2

)
.

6While in theory the algorithm works with a compact action
space, the main practical issue resides in the computation of the
best action (i.e., akh = argmaxaQ

k
h(x

k
h, a)). In this case, we

could resort to black box optimization algorithms (e.g., Munos,
2014, Sec. 3.3), which might require the discretization of the
action space. This is however less critical than the discretization of
the state-space, since the possible actions must always be known
in advance, unlike the set of possible states.

large improvement in computational complexity.

Theorem 2. With probability at least 1 − δ, the regret of
Greedy −Kernel − UCBV I for a bandwidth σ is of or-
der R(K) = Õ

(
R(K,Kernel − UCBV I) +H2|C̃σ|

)
,

where |C̃σ| is the σ-covering number of state space.
This results in a regret of Õ

(
H3K2d/(2d+1

)
when σ =

(1/K)1/(2d+1).

Proof. The complete proof is provided in App. F. The key
properties for proving this regret bound are: (i) optimism,
and (ii) the fact that (V kh ) are point-wise non-increasing.

Besides RTDP, other techniques previously proposed to
accelerate KBRL can also be applied, notably the use of
representative states (Kveton & Theocharous, 2012; Barreto
et al., 2016) that merge states that are close to each other to
avoid a per-episode runtime that increases with k.

6. Proof sketch
We now provide a sketch of the proof of our main re-
sult, Theorem 1. The complete proof is given in the Ap-
pendix. The analysis splits into three parts: (i) deriving
confidence intervals for the reward and transition kernel
estimators; (ii) proving that the algorithm is optimistic, i.e.,
that V kh (x) ≥ V ∗h (x) for any (x, k, h) on a high probability
event G; and (iii) proving an upper bound on the regret by
using the fact that R(K) =

∑
k

(
V ∗1 (xk1)− V πk1 (xk1)

)
≤∑

k

(
V k1 (xk1)− V πk1 (xk1)

)
.

6.1. Concentration

The most interesting part is the concentration of the transi-
tion kernel. Since P̂ kh (·|x, a) are weighted sums of Dirac
measures, we cannot bound the distance between Ph(·|x, a)

and P̂ kh (·|x, a) directly. Instead, for V ∗h+1 the optimal value
function at step h+ 1, we bound the difference∣∣∣(P̂ kh − Ph)V ∗h+1(x, a)

∣∣∣
=

∣∣∣∣∣
k−1∑
s=1

w̃hs (x, a)V
∗
h+1(x

s
h+1)− PhV ∗h+1(x, a)

∣∣∣∣∣
≤

∣∣∣∣∣
k−1∑
s=1

w̃hs (x, a) (V
∗
h+1(x

s
h+1)− PhV ∗h+1(x

s
h, a

s
h))

∣∣∣∣∣︸ ︷︷ ︸
(A)

+ λpLh+1

k−1∑
s=1

w̃hs (x, a)ρ [(x, a), (x
s
h, a

s
h)]︸ ︷︷ ︸

(B)

+
β ‖V ∗h+1‖∞
Ck
h(x, a)︸ ︷︷ ︸
(C)

·

The term (A) is a weighted sum of a martingale difference
sequence. To control it, we propose a new Hoeffding-type
inequality, Lemma 2, that applies to weighted sums with
random weights. The term (B) is a bias term that is ob-
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tained using the fact that V ∗h+1 is Lh+1-Lipschitz and that
the transition kernel is λp-Lipschitz, and can be shown to
be proportional to the bandwidth σ under Assumption 3
(Lemma 7). The term (C) is the bias introduced by the
regularization parameter β. Hence, for a fixed state-action
pair (x, a), we show that7, with high-probability,

∣∣∣(P̂ kh − Ph)V ∗h+1(x, a)
∣∣∣ . H√

Ck
h(x, a)

+
βH

Ck
h(x, a)

+ L1σ.

Then, we extend this bound to all (x, a) by leveraging the
continuity of all the terms involving (x, a) and a cover-
ing argument. This continuity is a consequence of kernel
smoothing, and it is a key point in avoiding a discretization
of X ×A in the algorithm.

In Theorem 3, we define a favorable event G, of probabil-
ity larger than 1 − δ/2, in which (a more precise version
of) the above inequality holds, the mean rewards belong to
their confidence intervals, and we further control the devia-
tions of (P̂ kh − Ph)f(x, a) for any 2L1-Lipschitz function
f . This last part is obtained thanks to a new Bernstein-like
concentration inequality for weighted sums (Lemma 3).

6.2. Optimism

To prove that the optimistic value function V kh is indeed an
upper bound on V ∗h , we proceed by induction on h and
we use the Q functions. When h = H + 1, we have
QkH+1(x, a) = Q∗H+1(x, a) = 0 for all (x, a), by definition.
Assuming that Qkh+1(x, a) ≥ Q∗h+1(x, a) for all (x, a), we
have V kh+1(x) ≥ V ∗h+1(x) for all x. Then, the bonuses are
defined so that Q̃kh(x, a) ≥ Q∗h(x, a) for all (x, a), on the
event G.

In particular Q̃kh(xsh, a
s
h) − Q∗h(xsh, a

s
h) ≥ 0 for all s ∈

[k − 1], which gives us

Q̃kh(xsh, a
s
h) + Lhρ [(x, a), (xsh, a

s
h)]

≥ Q∗h(xsh, a
s
h) + Lhρ [(x, a), (xsh, a

s
h)] ≥ Q∗h(x, a)

for all s ∈ [k − 1], since Q∗h is Lh-Lipschitz. It follows
from the definition of Qkh that Qkh(x, a) ≥ Q∗h(s, a), which
in turn implies that, for all x, V kh (x) ≥ V ∗h (x) in G.

6.3. Bounding the regret

To provide an upper bound on the regret in the event G, let
δkh

def
= V kh (xkh) − V πkh (xkh). The fact that V kh ≥ V ∗h gives

us R(K) ≤∑k δ
k
1 . Introducing (x̃kh, ã

k
h), the state-action

pair in the past data Dh that is the closest to (xkh, a
k
h) and

letting �kh = ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
, we bound δkh using the

7Here, . means smaller than or equal up to logarithmic terms.

following decomposition:

δkh ≤ Qkh(xkh, akh)−Qπkh (xkh, a
k
h)

≤ Q̃kh(x̃kh, ãkh)−Qπkh (xkh, a
k
h) + Lh�

k
h

≤ 2 Bkh(x̃
k
h, ã

k
h) + (Lh + λpLh + λr)�

k
h

+
(
P̂ kh − Ph

)
V ∗h+1(x̃

k
h, ã

k
h) (1)

+ Ph
(
V kh+1 − V πkh+1

)
(xkh, a

k
h) (2)

+
(
P̂ kh − Ph

)(
V kh+1 − V ∗h+1

)
(x̃kh, ã

k
h) (3).

The term (1) is shown to be smaller than Bkh(x̃kh, ã
k
h), by

definition of the bonus. The term (2) can be rewritten as
δkh+1 plus a martingale difference sequence ξkh+1. To bound
the term (3), we use that V kh+1 − V ∗h+1 is 2L1-Lipschitz.
The uniform deviations that hold on event G yield

Â .
1

H

(
δkh+1 + ξkh+1

)
+

H2|C̃σ|
Ck
h(x̃kh, ã

k
h)

+ L1�
k
h + L1σ .

When �kh > 2σ, we bound δkh by H and we verify that
H
∑H
h=1

∑K
k=1 I

{
�kh > 2σ

}
≤ H2|Cσ| by a pigeonhole

argument. Hence, we can focus on the case where�kh ≤ 2σ,
and add H2|Cσ| to the regret bound, to take into account
the steps (k, h) where �kh > 2σ. The sum of ξkh+1 over

(k, h) is bounded by Õ
(
H

3
2

√
K
)

by Hoeffding-Azuma’s
inequality, on some event F of probability larger than 1−
δ/2. Now, we focus on the case where �kh ≤ 2σ and we
omit the terms involving ξkh+1. Using the definition of the
bonus, we obtain

δkh .

(
1 +

1

H

)
δkh+1 +

H√
Ck
h(x̃

k
h, ã

k
h)

+
H2|C̃σ|

Ck
h(x̃

k
h, ã

k
h)

+ L1σ.

Using the fact that (1 + 1/H)H ≤ e, we have, on G ∩ F ,

R(K) .
∑
h,k

(
H√

Ck
h(x̃

k
h, ã

k
h)

+
H2|C̃σ|

Ck
h(x̃

k
h, ã

k
h)

)
+ L1KHσ.

The term in 1/Ck
h(x̃kh, ã

k
h) is the second order term (in K).

In the tabular case, it is multiplied by the number of states.
Here, it is multiplied by the covering number of the state
space |C̃σ|.
From there it remains to bound the sum of the first and
second-order terms, and we specifically show that∑

h,k

1√
Ck
h(x̃

k
h, ã

k
h)
. H

√
|Cσ|K (2)

and
∑
h,k

1

Ck
h(x̃

k
h, ã

k
h)
. H|Cσ| logK, (3)

where we note that (3) has a worse dependence on |Cσ|.
As mentioned before, unlike in the tabular case the sum of
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“second-order” terms will actually be the leading term, since
the choice of σ that minimizes the regret depends on K.

Finally, we obtain that on G ∩ F (of probability ≥ 1− δ)

R(K) . H2
√
|Cσ|K +H3|Cσ||C̃σ|+ L1KHσ +H2|Cσ| ,

where the extra H2|Cσ| takes into account the episodes
where �kh > 2σ.

If the transitions kernels are stationary, i.e., P1 = . . . = PH ,
the bounds (2) and (3) can be improved to

√
|Cσ|KH and

|Cσ| log(KH) respectively, thus improving the final scaling
in H .8 See App. E for details.

7. Experiments
To illustrate experimentally the properties of Kernel-
UCBVI, we consider a Grid-World environment with con-
tinuous states. This Grid-World is composed of two rooms
separated by a wall, such thatX = ([0, 1−∆]∪[1+∆, 2])×
[0, 1]) where 2∆ = 0.1 is the width of the wall, as illus-
trated by Figure 1. There are four actions: left, right, up,
and down, each one resulting to a displacement of 0.1 in
the corresponding direction. A two-dimensional Gaussian
noise is added to the transitions, and, in each room, there
is a single region with non-zero reward. The agent has 0.5
probability of starting in each of the rooms, and the starting
position is at the room’s bottom left corner.

We compare Kernel-UCBVI and Greedy-Kernel-UCBVI to
the following baselines: (i) UCBVI (Azar et al., 2017) using
a uniform discretization of the state-space; (ii) OptQL (Jin
et al., 2018) also on a uniform discretization; (iii) Adap-
tive-Q-Learning (Sinclair et al., 2019) that uses an adaptive
discretization of the state-space. We used the Euclidean
distance and the Gaussian kernel with a fixed bandwidth
σ = 0.025, matching the granularity of the uniform dis-
cretization used by some of the baselines. We also im-
plemented a version of Kernel-UCBVI using the “expert
knowledge” that the two rooms are equivalent under transla-
tion, by using a metric that is invariant with respect to the
change of rooms. More details about the experimental setup
are provided in Appendix I.9

We ran the algorithms for 5 × 104 episodes, and Figure 2
shows the sum of rewards obtained by each of them. When
the curves start behaving as a straight line, it roughly means
that the algorithm has converged to a policy whose value
is the slope of the line. We see that Kernel-UCBVI is
able to outperform the baselines, and that the use of expert
knowledge in the kernel design can considerably increase

8This is because, in the non-stationary case, we bound the
sums over k and then multiply the resulting bound by H . In the
stationary case, we can directly bound the sums over (k, h).

9Implementations of Kernel-UCBVI are available on GitHub,
and use the rlberry library (Domingues et al., 2021).

Figure 1. Continuous grid-world with two rooms separated by a
wall. The circles represent the regions with non-zero rewards.

the learning speed. Asymptotically, the extra bias introduced
by the kernel (especially its bandwidth) might make Kernel-
UCBVI converge to a worse policy at the end: the kernel
bandwidth and the discretization width are comparable, but
the Gaussian kernel introduces more bias due to sample
aggregation. On the other hand, we see that introducing
more bias can greatly improve the learning speed in the
beginning, especially when expert knowledge is used. This
flexibility in handling the bias-variance trade-off is one of
the strengths of kernel-based approaches.
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Figure 2. Total sum of rewards obtained by Kernel-UCBVI and
baselines versus the number of episodes. Average over 8 runs.

8. Conclusion
In this paper, we introduced Kernel-UCBVI, a model-based
algorithm for finite-horizon reinforcement learning in met-
ric spaces which employs kernel smoothing to estimate
rewards and transitions. By providing new high-probability
confidence intervals for weighted sums and non-parametric
kernel estimators, we generalize the techniques introduced
by (Azar et al., 2017) in tabular MDPs to the continuous
setting. We prove that the regret of Kernel-UCBVI is of
order H3Kmax( 1

2 ,
2d

2d+1 ), which is the first regret bound for
kernel-based RL using smoothing kernels. In addition, we
provide experiments illustrating the effectiveness of Kernel-
UCBVI in handling the bias-variance trade-off and in the
use of expert knowledge. Interesting directions for future
work include the use of learned metrics (e.g., using neu-
ral networks) and the use of adaptive kernel bandwidths to
better handle the bias-variance trade-off asymptotically.

https://github.com/omardrwch/kernel_ucbvi_experiments
https://github.com/rlberry-py/rlberry
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A. Notation and preliminaries
A.1. Notation

Table 1 presents the main notations used in the proofs. Also, we use the symbol . with the following meaning:

A . B ⇐⇒ A ≤ B × polynomial (log(k), log(1/δ), λr, λp, β, d1, d2) .

Table 1. Table of notations
Notation Meaning

ρ : (X ×A)2 → R+ metric on the state-action space X ×A
ψσ((x, a), (x′, a′)) kernel function with bandwidth σ
g : R+ → [0, 1] “mother” kernel function such that ψσ(u, v) = g(ρ [u, v] /σ)
Cg1 , C

g
2 positive constants that depend on g (Assumption 3)

N (ε,X ×A, ρ) ε-covering number of the metric space (X ×A, ρ)
G “good” event (see Theorem 3)
λr, λp Lipschitz constants of rewards and transitions, respectively
Lh, for h ∈ [H] Lipschitz constant of value functions (see Lemma 4)
log+(x) equal to log(x+ e)
Lip (f) Lipschitz constant of the function f
d1, d covering dimension of (X ×A, ρ)
d2 covering dimension of (X , ρX )

|Cσ|, |C̃σ| σ-covering numbers of (X ×A, ρ) and (X , ρX ), respectively

We consider the filtration defined as follows:
Definition 1. Let Fkh be the σ-algebra generated by the random variables

{
xsh, a

s
h, x

s
h+1, r

s
h

}k−1
s=1

∪{
xkh′ , a

k
h′ , x

k
h′+1, r

k
h′

}
h′<h

, and let (Fkh )k,h be its corresponding filtration.

A.2. Preliminaries

Let σ > 0. We define the weights and the normalized weights as

wsh(x, a)
def
= ψσ((x, a), (xsh, a

s
h)) and w̃sh(x, a)

def
=

wsh(x, a)

β +
∑k−1
l=1 w

l
h(x, a)

where β > 0 is a regularization parameter. We define the generalized count at (x, a) at time (k, h) as Ck
h(x, a)

def
=

β +
∑k−1
s=1 w

s
h(x, a).

We define the following estimators for the transition kernels {Ph}h∈[H] and for for the reward functions {rh}h∈[H]:

P̂ kh (y|x, a)
def
=

k−1∑
s=1

w̃sh(x, a)δxsh+1
(y) and r̂kh(x, a)

def
=

k−1∑
s=1

w̃sh(x, a)rsh.

For any function V : R→ R, we recall that

PhV (x, a) =

∫
X
V (y)dPh(y|x, a) and P̂ khV (x, a) =

k−1∑
s=1

w̃sh(x, a)V (xsh+1).

We will also using the notion of covering of metric spaces, according to the definition below.
Definition 2 (covering of a metric space). Let (U , ρ) be a metric space. For any u ∈ U , let B(u, σ) = {v ∈ U : ρ(u, v) ≤ ε}.
We say that a set Cσ ⊂ U is a σ-covering of (U , ρ) if U ⊂ ⋃u∈Cσ B(u, σ). In addition, we define the σ-covering number of
(U , ρ) as

N (σ,U , ρ)
def
= min {|Cσ| : Cσ is a σ-covering of (U , ρ)} .
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B. Description of the algorithm
At the beginning of each episode k, the agent has observed the data Dh =

{
(xsh, a

s
h, x

s
h+1, r

s
h)
}
s∈[k−1] for h ∈ [H]. The

number of data tuples in each Dh is k − 1.

At each step h of episode k, the agent has access to an optimistic value function at step h+ 1, denoted by V kh+1. Using this
optimistic value function, the agent computes an upper bound for the Q function at each state-action pair in the data, denoted
by Q̃kh(xsh, a

s
h) for s ∈ [k − 1], which we call optimistic targets. For any (x, a), we can compute an optimistic target as

Q̃kh(x, a) = r̂kh(x, a) + P̂ khV
k
h+1(x, a) + Bkh(x, a)

where Bkh(x, a) is an exploration bonus for the pair (x, a) that represents the sum of uncertainties on the transitions and
rewards estimates and is defined below:

Definition 3 (exploration bonus).

Bkh(x, a) = pBkh(x, a) + rBkh(x, a)

=

(√
H2vp(k, δ/6)

Ck
h(x, a)

+
βH

Ck
h(x, a)

+ bp(k, δ/6)σ

)
︸ ︷︷ ︸

transition bonus

+

(√
vr(k, δ/6)

Ck
h(x, a)

+
β

Ck
h(x, a)

+ br(k, δ/6)σ

)
︸ ︷︷ ︸

reward bonus

(4)

where

vr(k, δ) = Õ (d1) = 2 log

(
HN

(
σ2/(KH),X ×A, ρ

) √1 + k/β

δ

)

br(k, δ) = Õ
(
L1 +

√
d1

)
=

4Cg2
β

+
√
vr(k, δ)

Cg2
β3/2

+ 2λrL1

(
1 +

√
log+(Cg1k/β)

)
vp(k, δ) = Õ (d1) = 2 log

(
HN

(
σ2/(KH),X ×A, ρ

) √1 + k/β

δ

)

bp(k, δ) = Õ
(
L1 +

√
d1

)
=

4Cg2
β

+
√
vp(k, δ)

Cg2
β3/2

+ 2λpL1

(
1 +

√
log+(Cg1k/β)

)

Then, we build an optimistic Q function Qkh by interpolating the optimistic targets:

∀(x, a), Qkh(x, a)
def
= min

s∈[k−1]

[
Q̃kh(xsh, a

s
h) + Lhρ [(x, a), (xsh, a

s
h)]
]

(5)

and the value function V kh is computed as

∀x, V kh (x)
def
= min

(
H − h+ 1,max

a′
Qkh(x, a′)

)
.

We can check that (x, a) 7→ Qkh(x, a) is Lh-Lipschitz with respect to ρ and that (x) 7→ V kh (x) is Lh-Lipschitz with respect
to ρX .

C. Concentration
The first step towards proving our regret bound is to derive confidence intervals for the rewards and transitions, which are
presented in propositions 1 and 2, respectively.

In addition, we need a Bernstein-type inequality for the transition kernels, which is stated in Proposition 3.

Finally, Theorem 3 defines a favorable event in which all the confidence intervals that we need to prove our regret bound are
valid and we prove that this event happens with high probability.



Kernel-Based Reinforcement Learning: A Finite-Time Analysis

C.1. Confidence intervals for the reward functions

Proposition 1. For all (k, h) ∈ [K]× [H] and all (x, a) ∈ X ×A, we have

∣∣r̂kh(x, a)− rh(x, a)
∣∣ ≤√ vr(k, δ)

Ck
h(x, a)

+
β

Ck
h(x, a)

+ br(k, δ)σ

with probability at least 1− δ, where

vr(k, δ) = Õ (d1) = 2 log

(
HN

(
σ2/(KH),X ×A, ρ

) √1 + k/β

δ

)

br(k, δ) = Õ
(
L1 +

√
d1

)
=

4Cg2
β

+
√
vr(k, δ)

Cg2
β3/2

+ 2λrL1

(
1 +

√
log+(Cg1k/β)

)

Proof. The proof is almost identical to the proof of Proposition 2. The main difference is that the rewards are bounded by 1,
and not by H .

C.2. Confidence intervals for the transition kernels

Proposition 2. For all (k, h) ∈ [K]× [H] and all (x, a) ∈ X ×A, we have

∣∣∣P̂ khV ∗h+1(x, a)− PhV ∗h+1(x, a)
∣∣∣ ≤√H2vp(k, δ)

Ck
h(x, a)

+
βH

Ck
h(x, a)

+ bp(k, δ)σ

with probability at least 1− δ, where

vp(k, δ) = Õ (d1) = 2 log

(
HN

(
σ2/(KH),X ×A, ρ

) √1 + k/β

δ

)

bp(k, δ) = Õ
(
L1 +

√
d1

)
=

4Cg2
β

+
√
vp(k, δ)

Cg2
β3/2

+ 2λpL1

(
1 +

√
log+(Cg1k/β)

)

Proof. Consider a fixed tuple (x, a, h), and let V = V ∗h+1. We have:

∣∣∣P̂ khV (x, a)− PhV (x, a)
∣∣∣ ≤ ∣∣∣∣∣

k−1∑
s=1

w̃sh(x, a)
(
V (xsh+1)− PhV (x, a)

)∣∣∣∣∣+

∣∣∣∣βPhV (x, a)

Ck
h(x, a)

∣∣∣∣
≤
∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)
(
V (xsh+1)− PhV (x, a)

)∣∣∣∣∣+
βH

Ck
h(x, a)
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since ‖V ‖∞ ≤ H . Now, by Assumption 2 and the fact that V is L1-Lipschitz:∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)
(
V (xsh+1)− PhV (x, a)

)∣∣∣∣∣
≤
∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)
(
V (xsh+1)− PhV (xsh, a

s
h)
)∣∣∣∣∣+

∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a) (PhV (xsh, a
s
h)− PhV (x, a))

∣∣∣∣∣
≤
∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)
(
V (xsh+1)− PhV (xsh, a

s
h)
)∣∣∣∣∣+ L1

∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)W1 (Ph(·|xsh, ash), Ph(·|x, a))

∣∣∣∣∣
≤
∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)
(
V (xsh+1)− PhV (xsh, a

s
h)
)∣∣∣∣∣+ λpL1

∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)ρ [(xsh, a
s
h), (x, a)]

∣∣∣∣∣
≤
∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)
(
V (xsh+1)− PhV (xsh, a

s
h)
)∣∣∣∣∣+ λpL12σ

(
1 +

√
log+(Cg1k/β)

)

where, in the last inequality, we used Lemma 7.

Let Ws
def
= V (xsh+1)− PhV (xsh, a

s
h). We have |Ws| ≤ 2H , and (Ws)s is a martingale difference sequence with respect to

the filtration (Fsh)s. Lemma 2 and an union bound over h gives us:

∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)Ws

∣∣∣∣∣ ≤
√√√√2H2 log

(√
1 + k/β

δ

)
1

Ck
h(x, a)

for all (k, h) and fixed (x, a), with probability at least 1− δH .

Now, let’s extend this inequality for all (x, a) using a covering argument. We define

f1(x, a)
def
=

∣∣∣∣∣ 1

Ck
h(x, a)

k−1∑
s=1

wsh(x, a)Ws

∣∣∣∣∣ and f2(x, a)
def
=

√
1

Ck
h(x, a)

Lemma 8 implies that Lip (f1) ≤ 4Cg2Hk/(βσ) and Lip (f2) ≤ (Cg2k/σ)β−3/2. Applying Technical Lemma 6 using a
σ2/(KH)-covering of (X ×A, ρ), we obtain:

∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)Ws

∣∣∣∣∣ ≤
√√√√2H2 log

(√
1 + k/β

δ

)
1

Ck
h(x, a)

+
σ2

KH
Lip (f1) +

σ2

KH

√√√√2H2 log

(√
1 + k/β

δ

)
Lip (f2)

for all (x, a, k, h) with probability at least 1− δHN
(
σ2/(KH),X ×A, ρ

)
.

The fact that

∣∣∣P̂ khV (x, a)− PhV (x, a)
∣∣∣ ≤ ∣∣∣∣∣

k−1∑
s=1

w̃sh(x, a)Ws

∣∣∣∣∣+ 2λpL1σ

(
1 +

√
log+(Cg1k/β)

)
+

βH

Ck
h(x, a)

allows us to conclude.
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C.3. A confidence interval for Phf uniformly over Lipschitz functions f

In the regret analysis, we will need to control quantities like (P̂ kh − Ph)(f̂kh ) for random Lipschitz functions f̂kh , which
motivate us to propose a deviation inequality for (P̂ kh − Ph)(f) which holds uniformly over f in a class of Lipschitz
functions. We provide such a result in Proposition 3.

Proposition 3. Consider the following function space:

F2L1

def
= {f : X → R such that f is 2L1-Lipschitz and ‖f‖∞ ≤ 2H} .

With probability at least 1− δ, for all (x, a, h, k) ∈ X ×A× [K]× [H] and for all f ∈ F2L1
, we have∣∣∣(P̂ kh − Ph) f(x, a)

∣∣∣ ≤ 1

H
Ph |f | (x, a) +

11H2θv(k, δ) + 2βH

Ck
h(x, a)

+ θ1b(k, δ)σ1+d2 + θ2b(k, δ)σ

with probability at least 1− δ, where

θv(k, δ) = Õ
(
|C̃σ|+ d1d2

)
= log

(
4e(2k + 1)

δ
HN

(
σ2+d2

KH2
,X ×A, ρ

)(
2H

L1σ

)N (σ,X ,ρX )
)

θ1b(k, δ) = Õ
(
|C̃σ|+ d1d2

)
=

(
2λpL1σ

KH2
+

4Cg2
Hβ

+
11Cg2θv(k, δ)

β2

)
θ2b(k, δ) = Õ (L1) = 32L1 + 6λpL1

(
1 +

√
log+(Cg1k/β)

)
where |C̃σ| = O

(
1/σd2

)
is the σ-covering number of (X , ρX ).

Proof. First, consider a fixed tuple (x, a, h, k). Using the same arguments as in the proof of Proposition 2, we show that:

∣∣∣P̂ kh f(x, a)− Phf(x, a)
∣∣∣ ≤ ∣∣∣∣∣

k−1∑
s=1

w̃sh(x, a)Ws(f)

∣∣∣∣∣︸ ︷︷ ︸
(A)

+4λpL1σ

(
1 +

√
log+(Cg1k/β)

)
+

2βH

Ck
h(x, a)

where Ws(f)
def
= f(xsh+1)− Phf(xsh, a

s
h). We have |Ws(f)| ≤ 4H , and (Ws)s is a martingale difference sequence with

respect to the filtration (Fsh)s for any fixed f . We will bound the term (A) using the Bernstein-type inequality given in
Lemma 3. We start by bounding the variance of f(xsh+1) given Fsh:

V
[
f(xsh+1)

∣∣∣Fsh] = E
[
f(xsh+1)2

∣∣∣Fsh]− (∫
X
f(y)dPh(y|xsh, ash)

)2

≤ 2HE
[∣∣f(xsh+1)

∣∣ ∣∣∣Fsh]
= 2HPh |f | (xsh, ash)
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and, consequently,
k−1∑
s=1

w̃sh(x, a)V
[
f(xsh+1)

∣∣∣Fsh] ≤ 2H

k−1∑
s=1

w̃sh(x, a)Ph |f | (xsh, ash)

= 2H

k−1∑
s=1

w̃sh(x, a)Ph |f | (x, a) + 2H

k−1∑
s=1

w̃sh(x, a) (Ph |f | (xsh, ash)− Ph |f | (x, a))

≤ 2H

k−1∑
s=1

w̃sh(x, a)Ph |f | (x, a) + 4HλpL1

k−1∑
s=1

w̃sh(x, a)ρ [(xsh, a
s
h)]

≤ 2HPh |f | (x, a) + 4HλpL1σ

(
1 +

√
log+(Cg1k/β)

)
, (6)

where, in the last two inequalities, we used Assumption 2 and Lemma 7.

Let �(k, δ) = log(4e(2k + 1)/δ). Using Lemma 3 and the facts that
√
u+ v ≤ √u+

√
v and

√
uv ≤ (u+ v)/2 for all

u, v > 0, we obtain

(A) =

∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)Ws(f)

∣∣∣∣∣ =

∣∣∣∣∣
∑k−1
s=1 w

s
h(x, a)Ws(f)

β +
∑k−1
s=1 w

s
h(x, a)

∣∣∣∣∣
≤

√√√√√2�(k, δ)

∑k−1
s=1 w

s
h(x, a)2V

[
f(xsh+1)|Fsh

]
+ 16H2(

β +
∑k−1
s=1 w

s
h(x, a)

)2 +
(8/3)H�(k, δ)

β +
∑k−1
s=1 w

s
h(x, a)

≤ H2�(k, δ)

β +
∑k−1
s=1 w

s
h(x, a)

+
1

2H2

∑k−1
s=1 w

s
h(x, a)2V

[
f(xsh+1)|Fsh

]
β +

∑k−1
s=1 w

s
h(x, a)

+
(8/3 + 4

√
2)H�(k, δ)

β +
∑k−1
s=1 w

s
h(x, a)

≤ (H2 + 10H)�(k, δ)

Ck
h(x, a)

+
1

2H2

∑k−1
s=1 w

s
h(x, a)V

[
f(xsh+1)|Fsh

]
β +

∑k−1
s=1 w

s
h(x, a)

=
(H2 + 10H)�(k, δ)

Ck
h(x, a)

+
1

2H2

k−1∑
s=1

w̃sh(x, a)V
[
f(xsh+1)|Fsh

]
for all k, with probability at least 1− δ. Above, we also used the fact that wsh(x, a)2 ≤ wsh(x, a) since the weights are in
[0, 1].

Inequality 6 yields

(A) ≤ 1

H
Ph |f | (x, a) +

(H2 + 10H)�(k, δ)

Ck
h(x, a)

+
2λpL1σ

H

(
1 +

√
log+(Cg1k/β)

)
with probability at least 1− δ.

Extending to all (x, a) Assumption 2 implies that (x, a) 7→ (1/H)Ph |f | (x, a) is 2λpL1-Lipschitz. Let

f1(x, a) =

∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)Ws(f)

∣∣∣∣∣ and f2(x, a) =
1

Ck
h(x, a)

.

Lemma 8 implies that Lip (f1) ≤ 4HCg2k/(βσ) and Lip (f2) ≤ Cg2k/(β
2σ). Applying Technical Lemma 6 using a

σ2+d2/(KH2)-covering of (X ×A, ρ), and doing an union bound over [H], we obtain:∣∣∣∣∣
k−1∑
s=1

w̃sh(x, a)Ws(f)

∣∣∣∣∣ ≤ 1

H
Ph |f | (x, a) +

(H2 + 10H)�(k, δ)

Ck
h(x, a)

+
2λpL1σ

H

(
1 +

√
log+(Cg1k/β)

)
+
σ2+d2

KH2

(
2λpL1 +

4HCg2k

βσ
+
Cg2k(H2 + 10H)�(k, δ)

β2σ

)
for all (x, a, h, k) with probability at least 1− δHN

(
σ2+d2

KH2 ,X ×A, ρ
)

.
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Extending to all f ∈ F2L1
The inequalities above give us

∣∣∣P̂ kh f(x, a)− Phf(x, a)
∣∣∣ ≤ 1

H
Ph |f | (x, a) +

(H2 + 10H)�(k, δ)

Ck
h(x, a)

+
σ2+d2

KH2

(
2λpL1 +

4HCg2k

βσ
+
Cg2k(H2 + 10H)�(k, δ)

β2σ

)
+ 6λpL1σ

(
1 +

√
log+(Cg1k/β)

)
+

2βH

Ck
h(x, a)

for all (x, a, h, k) with probability at least 1− δHN
(
σ2+d2

KH2 ,X ×A, ρ
)

.

According to Lemma 5, the 8L1σ-covering number of F2L1 is bounded by (2H/(L1σ))N (σ,X ,ρX ). The functions f 7→∣∣∣P̂ kh f(x, a)− Phf(x, a)
∣∣∣ and f 7→ 1

HPh |f | (x, a) are 2-Lipschitz with respect to ‖·‖∞. Hence, Lemma 6 gives us:

∣∣∣P̂ kh f(x, a)− Phf(x, a)
∣∣∣ ≤ 1

H
Ph |f | (x, a) +

(H2 + 10H)�(k, δ)

Ck
h(x, a)

+
σ2+d2

KH2

(
2λpL1 +

4HCg2k

βσ
+
Cg2k(H2 + 10H)�(k, δ)

β2σ

)
+ 6λpL1σ

(
1 +

√
log+(Cg1k/β)

)
+

2βH

Ck
h(x, a)

+ 32L1σ

for all (x, a, h, k) with probability at least 1− δHN
(
σ2+d2

KH2 ,X ×A, ρ
)

(2H/(L1σ))N (σ,X ,ρX ), which concludes the proof.
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C.4. Good event

Theorem 3 (Good event). Let G = G1 ∪ G2 ∪ G3, where

G1 def
=

{
∀(x, a, k, h),

∣∣r̂kh(x, a)− rh(x, a)
∣∣ ≤√vr(k, δ/6)

Ck
h(x, a)

+
β

Ck
h(x, a)

+ br(k, δ/6)σ

}

G2 def
=

{
∀(x, a, k, h),

∣∣∣P̂ khV ∗h+1(x, a)− PhV ∗h+1(x, a)
∣∣∣ ≤√H2vp(k, δ/6)

Ck
h(x, a)

+
βH

Ck
h(x, a)

+ bp(k, δ/6)σ

}

G3 def
=

{
∀(x, a, k, h, f),

∣∣∣(P̂ kh − Ph) f(x, a)
∣∣∣ ≤ 1

H
Ph |f | (x, a) +

11H2θv(k, δ/6) + 2βH

Ck
h(x, a)

+ θ1b(k, δ/6)σ1+d2 + θ2b(k, δ/6)σ

}

for (x, a, k, h) ∈ X ×A× [K]× [H] and f ∈ F2L1
, and where

vr(k, δ) = Õ (d1) , br(k, δ) = Õ
(
L1 +

√
d1

)
vp(k, δ) = Õ (d1) , bp(k, δ) = Õ

(
L1 +

√
d1

)
,

θv(k, δ) = Õ
(
|C̃σ|+ d1d2

)
, θ1b(k, δ) = Õ

(
|C̃σ|+ d1d2

)
, θ2b(k, δ) = Õ (L1)

are defined in Propositions 1, 2 and 3. Then,

P [G] ≥ 1− δ/2.

Proof. Immediate consequence of Propositions 1, 2 and 3.

D. Optimism and regret bound

Proposition 4 (Optimism). In the event G, whose probability is greater than 1− δ/2, we have:

∀(x, a), Qkh(x, a) ≥ Q∗h(x, a)

Proof. We proceed by induction.

Initialization When h = H + 1, we have Qkh(x, a) = Q∗h(x, a) = 0 for all (x, a).

Induction hypothesis Assume that Qkh+1(x, a) ≥ Q∗h+1(x, a) for all (x, a).

Induction step The induction hypothesis implies that V kh+1(x) ≥ V ∗h+1(x) for all x. Hence, for all (x, a), we have

Q̃kh(x, a)−Q∗h(x, a) = (r̂kh(x, a)− rh(x, a)) + (P̂ kh − Ph)V ∗h+1(x, a) + B
k
h(x, a)︸ ︷︷ ︸

≥0 in G

+ P̂ kh (V
k
h+1 − V ∗h+1)(x, a)︸ ︷︷ ︸

≥0 by induction hypothesis

≥ 0.

In particular Q̃kh(xsh, a
s
h)−Q∗h(xsh, a

s
h) ≥ 0 for all s ∈ [k − 1]. This implies that

Q̃kh(xsh, a
s
h) + Lhρ [(x, a), (xsh, a

s
h)] ≥ Q∗h(xsh, a

s
h) + Lhρ [(x, a), (xsh, a

s
h)] ≥ Q∗h(x, a)

for all s ∈ [k − 1], since Q∗h is Lh-Lipschitz. Finally, we obtain

∀(x, a), Qkh(x, a) = min
s∈[k−1]

[
Q̃kh(xsh, a

s
h) + Lhρ [(x, a), (xsh, a

s
h)]
]
≥ Q∗h(x, a).
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Corollary 2. Let δkh
def
= V kh (xkh)− V πkh (xkh). Then, on G,R(K) ≤∑K

k=1 δ
k
1 .

Proof. Combining the definition of the regret with Proposition 4 easily yields, on the event G,

R(K) =

K∑
k=1

(
V ?1 (xk1)− V πk1 (xk1)

)
=

K∑
k=1

(
max
a

Q?1(xk1 , a)− V πk1 (xk1)
)

≤
K∑
k=1

(
min

[
H − h+ 1,max

a
Qk1(xk1 , a)

]
− V πk1 (xk1)

)
=

K∑
k=1

(
V k1 (xk1 , a)− V πk1 (xk1)

)
,

Definition 4. For any (k, h), we define (x̃kh, ã
k
h) as state-action pair in the past data Dh that is the closest to (xkh, a

k
h), that

is

(x̃kh, ã
k
h)

def
= argmin

(xsh,a
s
h):s<k

ρ
[
(xkh, a

k
h), (xsh, a

s
h)
]
.

Proposition 5. With probability 1− δ, the regret of Kernel − UCBV I is bounded as follows

R(K) .H2|Cσ|+ L1KHσ +

K∑
k=1

H∑
h=1

(
1 +

1

H

)h
ξ̃kh+1

+

K∑
k=1

H∑
h=1

 H√
Ck
h(x̃kh, ã

k
h)

+
H2|C̃σ|

Ck
h(x̃kh, ã

k
h)

 I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}

where ξ̃kh+1 is a martingale difference sequence with respect to (Fkh )k,h such that
∣∣∣ξ̃kh+1

∣∣∣ ≤ 4H .

Proof. On G, we have

δkh = V kh (xkh)− V πkh (xkh)

≤ Qkh(xkh, a
k
h)−Qπkh (xkh, a

k
h)

≤ Qkh(x̃kh, ã
k
h)−Qπkh (xkh, a

k
h) + L1ρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
, since Qkh is L1-Lipschitz

≤ Q̃kh(x̃kh, ã
k
h)−Qπkh (xkh, a

k
h) + L1ρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
, since Qkh(x̃kh, ã

k
h) ≤ Q̃kh(x̃kh, ã

k
h) by definition of Qkh

= r̂kh(x̃kh, ã
k
h)− rh(xkh, a

k
h) + L1ρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+ Bkh(x̃kh, ã
k
h) + P̂ khV

k
h+1(x̃kh, ã

k
h)− PhV πkh+1(xkh, a

k
h)

= r̂kh(x̃kh, ã
k
h)− rh(xkh, a

k
h)︸ ︷︷ ︸

(A)

+
[
P̂ kh − Ph

]
V ∗h+1(x̃kh, ã

k
h)︸ ︷︷ ︸

(B)

+
[
P̂ kh − Ph

] (
V kh+1 − V ∗h+1

)
(x̃kh, ã

k
h)︸ ︷︷ ︸

(C)

+ PhV
k
h+1(x̃kh, ã

k
h)− PhV πkh+1(xkh, a

k
h)︸ ︷︷ ︸

(D)

+L1ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+ Bkh(x̃kh, ã
k
h)

Now, let’s bound each of the terms (A), (B), (C) and (D)
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Term (A) Using the fact that rh is λr-Lipschitz and the definition of G:

(A) = r̂kh(x̃kh, ã
k
h)− rh(xkh, a

k
h) ≤ λrρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+ rBkh(x̃kh, ã
k
h)

. λrρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+

√
1

Ck
h(x, a)

+
β

Ck
h(x, a)

+ L1σ.

Term (B) Using the definition of G:

(B) =
[
P̂ kh − Ph

]
V ∗h+1(x̃kh, ã

k
h) .

√
H2

Ck
h(x, a)

+
βH

Ck
h(x, a)

+ L1σ

Term (C) Using again the definition of G, where V kh+1 ≥ V ∗h+1, and the fact that V ∗h+1 ≥ V πkh+1:

(C) =
[
P̂ kh − Ph

] (
V kh+1 − V ∗h+1

)
(x̃kh, ã

k
h)

.
1

H
Ph
(
V kh+1 − V ∗h+1

)
(x̃kh, ã

k
h) +

H2|C̃σ|
Ck
h(x̃kh, ã

k
h)

+ L1σ

≤ 1

H
Ph
(
V kh+1 − V ∗h+1

)
(xkh, a

k
h) + 2λpL1ρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+
H2|C̃σ|

Ck
h(x̃kh, ã

k
h)

+ L1σ

.
1

H
Ph
(
V kh+1 − V πkh+1

)
(xkh, a

k
h) + L1ρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+
H2|C̃σ|

Ck
h(x̃kh, ã

k
h)

+ L1σ

=
1

H

(
δkh+1 + ξkh+1

)
+ L1ρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+
H2|C̃σ|

Ck
h(x̃kh, ã

k
h)

+ L1σ

where

ξkh+1 = Ph
(
V kh+1 − V πkh+1

)
(xkh, a

k
h)− δkh+1

is a martingale difference sequence with respect to (Fkh )k,h bounded by 4H .

Term (D) We have

(D) = PhV
k
h+1(x̃kh, ã

k
h)− PhV πkh+1(xkh, a

k
h)

≤ λpL1ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+ PhV
k
h+1(xkh, a

k
h)− PhV πkh+1(xkh, a

k
h)

= δkh+1 + ξkh+1 + λpL1ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
.

Putting together the bounds above, we obtain

δkh .

(
1 +

1

H

)(
δkh+1 + ξkh+1

)
+ L1ρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+

√
H2

Ck
h(x̃kh, ã

k
h)

+
H2|C̃σ|

Ck
h(x̃kh, ã

k
h)

+ L1σ

where the constant in front of δkh+1 is exact (not hidden by .).

Now, consider the event Ekh
def
=
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}
and let E

k

h be its complement. Using the fact that δkh+1 ≥ 0
on G, the inequality above implies

I
{
Ekh
}
δkh . I

{
Ekh
}(

1 +
1

H

)(
δkh+1 + ξkh+1

)
+ 3L1σ + I

{
Ekh
}√ H2

Ck
h(x̃kh, ã

k
h)

+ I
{
Ekh
} H2|C̃σ|
Ck
h(x̃kh, ã

k
h)

.

(
1 +

1

H

)(
δkh+1 + I

{
Ekh
}
ξkh+1

)
+ 3L1σ + I

{
Ekh
}√ H2

Ck
h(x̃kh, ã

k
h)

+ I
{
Ekh
} H2|C̃σ|
Ck
h(x̃kh, ã

k
h)
. (7)
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Now, using the fact that δkh ≤ H , we obtain

δkh = I
{
Ekh
}
δkh + I

{
E
k

h

}
δkh (8)

≤ I
{
Ekh
}
δkh +HI

{
E
k

h

}
. HI

{
E
k

h

}
+

(
1 +

1

H

)(
δkh+1 + I

{
Ekh
}
ξkh+1

)
+ 3L1σ + I

{
Ekh
}√ H2

Ck
h(x̃kh, ã

k
h)

+ I
{
Ekh
} H2|C̃σ|
Ck
h(x̃kh, ã

k
h)
.

This yields

δk1 .
H∑
h=1

I
{
Ekh
}(√ H2

Ck
h(x̃kh, ã

k
h)

+
H2|C̃σ|

Ck
h(x̃kh, ã

k
h)

)

+

H∑
h=1

(
1 +

1

H

)h
I
{
Ekh
}
ξkh+1 + L1Hσ +H

H∑
h=1

I
{
E
k

h

}
.

Let ξ̃kh+1
def
= I

{
Ekh
}
ξkh+1. We can verify that ξ̃kh+1 is a martingale difference sequence with respect to (Fkh )k,h bounded by

4H .

Applying Corollary 2, we obtain:

R(K) ≤
K∑
k=1

δk1 .
K∑
k=1

H∑
h=1

I
{
Ekh
}(√ H2

Ck
h(x̃kh, ã

k
h)

+
H2|C̃σ|

Ck
h(x̃kh, ã

k
h)

)

+

K∑
k=1

H∑
h=1

(
1 +

1

H

)h
ξ̃kh+1 + L1KHσ +H

K∑
k=1

H∑
h=1

I
{
E
k

h

}
.

Finally, we bound the sum

H

K∑
k=1

H∑
h=1

I
{
E
k

h

}
= H

H∑
h=1

K∑
k=1

I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
> 2σ

}
≤ H2|Cσ|

since, for each h, the number of episodes where the event
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
> 2σ

}
occurs is bounded by |Cσ|.

Recalling the definition Ekh
def
=
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}
, this concludes the proof.

Proposition 6. We have

K∑
k=1

H∑
h=1

1

Ck
h(x̃kh, ã

k
h)

I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}
. H|Cσ|

and

K∑
k=1

H∑
h=1

1√
Ck
h(x̃kh, ã

k
h)

I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}
. H|Cσ|+H

√
|Cσ|K.

Proof. First, we will need some definitions. Let Cσ = {(xj , aj) ∈ X ×A, j = 1, . . . , |Cσ|} be a σ-covering of (X ×A, ρ).
We define a partition {Bj}|Cσ|j=1 of X ×A as follows:

Bj =

{
(x, a) ∈ X ×A : (xj , aj) = argmin

(xi,ai)∈Cσ
ρ [(x, a), (xi, ai)]

}
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where ties in the argmin are broken arbitrarily.

We define the number of visits to each set Bj as Nk
h(Bj)

def
=
∑k−1
s=1 I {(xsh, ash) ∈ Bj} .

Now, assume that (xkh, a
k
h) ∈ Bj . If, in addition, ρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ, we obtain

Ck
h(x̃kh, ã

k
h) = β +

k−1∑
s=1

ψσ((x̃kh, ã
k
h), (xsh, a

s
h)) = β +

k−1∑
s=1

g

(
ρ
[
(x̃kh, ã

k
h), (xsh, a

s
h)
]

σ

)

≥ β +

k−1∑
s=1

g

(
ρ
[
(x̃kh, ã

k
h), (xsh, a

s
h)
]

σ

)
I {(xsh, ash) ∈ Bj}

≥ β + g(4)

k−1∑
s=1

I {(xsh, ash) ∈ Bj} = β
(
1 + g(4)β−1Nk

h(Bj)
)

since, if (xsh, a
s
h) ∈ Bj , we have ρ

[
(x̃kh, ã

k
h), (xsh, a

s
h)
]
≤ 4σ and we use the fact that g is non-increasing.

We are now ready to bound the sums involving 1/Ck
h(x̃kh, ã

k
h). We will use the fact that g(4) > 0 by Assumption 3.

Bounding the sum of the first order terms

K∑
k=1

H∑
h=1

√
1

Ck
h(x̃kh, ã

k
h)

I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}
=

K∑
k=1

H∑
h=1

|Cσ|∑
j=1

√
1

Ck
h(x̃kh, ã

k
h)

I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}
I
{

(xkh, a
k
h) ∈ Bj

}
≤ β−1/2

K∑
k=1

H∑
h=1

|Cσ|∑
j=1

1√
1 + g(4)β−1Nk

h(Bj)
I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}
I
{

(xkh, a
k
h) ∈ Bj

}

≤ β−1/2
H∑
h=1

|Cσ|∑
j=1

K∑
k=1

I
{

(xkh, a
k
h) ∈ Bj

}√
1 + g(4)β−1Nk

h(Bj)
≤ β−1/2

H∑
h=1

|Cσ|∑
j=1

(
1 +

∫ NK+1
h (Bj)

0

dz√
1 + g(4)β−1z

)
by Lemma 9

≤ β−1/2H |Cσ|+
2β1/2

g(4)

H∑
h=1

|Cσ|∑
j=1

√
1 + g(4)β−1NK+1

h (Bj)

≤ β−1/2H |Cσ|+
2β1/2

g(4)

H∑
h=1

√
|Cσ|

√
|Cσ|+ g(4)β−1K by Cauchy-Schwarz inequality

≤ H
(
β−1/2 +

2β1/2

g(1)

)
|Cσ|+

2H

g(4)

√
g(4) |Cσ|K . H|Cσ|+H

√
|Cσ|K .
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Bounding the sum of the second order terms

K∑
k=1

H∑
h=1

1

Ck
h(x̃kh, ã

k
h)

I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}
=

K∑
k=1

H∑
h=1

|Cσ|∑
j=1

1

Ck
h(x̃kh, ã

k
h)

I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}
I
{

(xkh, a
k
h) ∈ Bj

}
≤ β−1

K∑
k=1

H∑
h=1

|Cσ|∑
j=1

1

1 + g(4)β−1Nk
h(Bj)

I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}
I
{

(xkh, a
k
h) ∈ Bj

}
≤ β−1

H∑
h=1

|Cσ|∑
j=1

K∑
k=1

I
{

(xkh, a
k
h) ∈ Bj

}
1 + g(4)β−1Nk

h(Bj)
≤ β−1

H∑
h=1

|Cσ|∑
j=1

(
1 +

∫ NK+1
h (Bj)

0

dz

1 + g(4)β−1z

)
by Lemma 9

≤ β−1H |Cσ|+
1

g(4)

H∑
h=1

|Cσ|∑
j=1

log
(
1 + g(4)β−1NK+1

h (Bj)
)

≤ β−1H |Cσ|+
1

g(4)

H∑
h=1

|Cσ| log

(∑|Cσ|
j=1

(
1 + g(4)β−1NK+1

h (Bj)
)

|Cσ|

)
by Jensen’s inequality

≤ β−1H |Cσ|+
1

g(4)
H |Cσ| log

(
1 +

1 + g(4)β−1K

|Cσ|

)
. H|Cσ| .

Theorem 4. With probability at least 1− δ, the regret of Kernel − UCBV I is bounded as

R(K) .H2
√
|Cσ|K +H3|Cσ||C̃σ|+H3/2

√
K + L1KHσ +H2|Cσ|,

where |Cσ| and |C̃σ| are the σ-covering numbers of (X ×A, ρ) and (X , ρX ), respectively.

Proof. The result follows from propositions 5 and 6 and from Hoeffding-Azuma’s inequality, which ensures that the term∑K
k=1

∑H
h=1(1 + 1/H)H ξ̃kh+1 is bounded by

(
√

8e2H2 log(2/δ))
√
KH

with probability at least 1− δ/2.

D.1. Proof of Corollary 1

Assumption 1 states that ρ [(x, a), (x′, a′)] = ρX (x, x′) + ρA (a, a′), which implies that |C̃σ| ≤ |Cσ|. Using Theorem 1 and
the fact that |Cσ| = O

(
σ−d

)
, we obtain R(K) = Õ

(
H2σ−d/2

√
K +H3σ−2d +HKσ

)
. Taking σ = (1/K)1/(2d+1),

we see that the regret is Õ
(
H2K

3d+1
4d+2 +H3K

2d
2d+1

)
. The fact that (3d+ 1)/(4d+ 2) ≤ 2d/(2d+ 1) for d ≥ 1 allows us

to conclude.

E. Remarks & regret bounds in different settings
E.1. Improved regret for stationary MDPs

The regret bound of Kernel-UCBVI can be improved if the MDP is stationary, i.e., P1 = . . . = PH and r1 = . . . = rH . Let
t = kh be the total time at step h of episode k, and now we index by t all the quantities that were indexed by (k, h), e.g.,
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wt(x, a) = wkh(x, a). In the stationary case, the rewards and transitions estimates become

P̂t(y|x, a)
def
=

1

Ct(x, a)

t−1∑
t′=1

wt′(x, a)δxt′+1
(y) and r̂t(x, a)

def
=

1

Ct(x, a)

t−1∑
t′=1

wt′(x, a)rt′ ,

respectively, where we redefine the generalized counts as

Ct(x, a)
def
= β +

t−1∑
t′=1

wt′(x, a).

The proofs of the concentration results and of the regret bound remain valid, in particular Proposition 5, up to minor changes
in the constants vp(k, h),bp(k, h),vr(k, h),br(k, h), θv(k, h) and θ1b(k, h) . However, the bounds presented in Proposition
6 can be improved to obtain a better regret bound in terms of the horizon H . Consider the sets Bj introduced in the proof of
Proposition 6 and let

Nt(Bj)
def
=

t−1∑
t′=1

I {(xt, at) ∈ Bj} .

As we did in the proof Proposition 6, we can show that Ct(x̃t, ãt) ≥ β + g(4)Nt(Bj) if (xt, at) ∈ Bj and
ρ [(x̃t, ãt), (xt, at)] ≤ 2σ. The sum of the first order terms

∑
t 1/
√

Ct(x̃t, ãt) is now bounded as

KH∑
t=1

√
1

Ct(x̃t, ãt)
I {ρ [(x̃t, ãt), (xt, at)] ≤ 2σ}

≤ β−1
|Cσ|∑
j=1

KH∑
t=1

I {(xt, at) ∈ Bj}√
1 + g(4)β−1Nt(Bj)

≤ β−1
|Cσ|∑
j=1

(
1 +

∫ NKH+1(Bj)

0

dz√
1 + g(4)β−1z

)
by Lemma 9

≤ β−1 |Cσ|+
2

g(4)

|Cσ|∑
j=1

√
1 + g(4)β−1NKH+1(Bj)

≤ β−1 |Cσ|+
2

g(1)

√
|Cσ|

√
|Cσ|+ g(4)β−1KH by Cauchy-Schwarz inequality

≤
(
β−1 +

2

g(4)

)
|Cσ|+

2

g(4)

√
g(4)β−1 |Cσ|HK

= O
(
|Cσ|+

√
|Cσ|HK

)
.

When compared to the non-stationary case, where the corresponding sum is bounded by O
(
H |Cσ|+H

√
|Cσ|K

)
, we

gain a factor of
√
H in the term multiplying

√
K and a factor of H in the term multiplying |Cσ|.

Similarly, the sum of the second order terms
∑
t 1/Ct(x̃t, ãt) is now bounded as

KH∑
t=1

1

Ct(x̃t, ãt)
I {ρ [(x̃t, ãt), (xt, at)] ≤ 2σ} ≤ β−1 |Cσ|+

1

g(4)
|Cσ| log

(
1 +

1 + g(4)β−1KH

|Cσ|

)
= Õ (|Cσ|) .

In the non-stationary case, the corresponding sum is bounded by Õ (H |Cσ|), thus we gain a factor of H .

Hence, if the MDP is stationary, we obtain a regret bound of

Rstationary(K) = Õ
(
H3/2

√
|Cσ|K + L1HKσ +H2 |Cσ|2

)
which is Õ

(
H2Kmax( 1

2 ,
2d

2d+1 )
)

by taking σ = (1/K)1/(2d+1).
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E.1.1. IMPORTANT REMARK

Computationally, in order to achieve this improved regret for Kernel-UCBVI, every time a new transition and a new reward
are observed at a step h, the estimates P̂t(y|x, a) and r̂t(x, a) need to be updated, and the optimistic Q-functions need to be
recomputed through backward induction, which increases the computational complexity by a factor of H .

The UCBVI-CH algorithm of (Azar et al., 2017) in the tabular setting for stationary MDPs also suffers from this prob-
lem. If the optimistic Q-function is not recomputed at every step h, its regret is Õ

(
H3/2

√
XAK +H3X2A

)
and not

Õ
(
H3/2

√
XAK +H2X2A

)
, where X is the number of states, as claimed in their paper. To see why, let’s analyze its

second order term, which is O
(
H2X

∑
k,h 1/Nk(xkh, a

k
h)
)

10, where Nk(x, a) is the number of visits to (x, a) before
episode k, i.e.,

Nk(x, a) = max

(
1,

H∑
h=1

k−1∑
s=1

I {(xsh, ash) = (x, a)}
)
.

If K ≥ XA, and if Nk(x, a) is updated only at the end of each episode, we can show that there exists a sequence (xkh, a
k
h)

such that the sum
∑
k,h 1/Nk(xkh, a

k
h) is greater than HXA. Let (xk, ak)k∈[XA] be XA distinct state-action pairs, and take

the sequence (xkh, a
k
h)h∈[H],k∈[XA] such that (xkh, a

k
h) = (xk, ak). That is, in each of the XA episodes, the algorithm visits,

in each of the H steps, only one state-action pair that has never been visited before. Since Nk(x, a) is updated only at the
end of the episodes, we have Nk(xkh, a

k
h) = 1 for all h ∈ [H] and k ∈ [XA], with this choice of (xkh, a

k
h)h,k. Hence,

H2X

XA∑
k=1

H∑
h=1

1

Nk(xkh, a
k
h)

= H2X

XA∑
k=1

H∑
h=1

1 = H3X2A.

Consequently, the sum of second order term is lower bounded (in a worst case sense) byH3X2A and cannot be Õ
(
H2X2A

)
as claimed by (Azar et al., 2017), since their bound must hold for any possible sequence (xkh, a

k
h)h,k. An application of

Lemma 9 with c = H can be used to show that the second order term is indeed Õ
(
H3X2A

)
when updates are done at the

end of the episodes only.

To gain a factor of H (i.e., have Õ
(
H2X2A

)
as second order term), one solution is to update the counts Nk(xkh, a

k
h) every

time a new state-action pair is observed, and recompute the optimistic Q-function. Another solution is to recompute it every
time the number of visits of the current state-action pair is doubled, as done by (Jaksch et al., 2010) in the average-reward
setting.

The efficient version of our algorithm, Greedy-Kernel-UCBVI, does not suffer from this increased computational complexity
in the stationary case. This is due to the fact that the value functions are updated in real time, and there is no need to run a
backward induction every time a new transition is observed. Hence, in the stationary case, Greedy-Kernel-UCBVI has a
regret bound that is H times smaller than in the non-stationary case, without an increase in the computational complexity.

E.2. Dependence on the Lipschitz constant & regularity w.r.t. the total variation distance

Notice that the regret bound of Kernel-UCBVI has a linear dependency on L1 that appears in the bias term L1HKσ:

R(K) ≤ Õ
(
H2
√
|Cσ|K + L1HKσ +H3|Cσ||C̃σ|+H2 |Cσ|

)
.

As long as the Lipschitz constant L1 =
∑H
h=1 λrλ

H−h
p isO (H) orO

(
H2
)
, our regret bound has no additional dependency

on H . However, if λp > 1, the constant L1 can be exponential in H . This issue is caused by the smoothness of the MDP and
not by algorithmic design. With minor modifications to our proof, we could also consider that the transitions are Lipschitz
with respect to the total variation distance, in which case L1 would always be O (H) and the regret of Kernel-UCBVI
would remain Õ

(
H3Kmax( 1

2 ,
2d

2d+1 )
)

by taking σ = (1/K)1/(2d+1). The regret bounds of other algorithms for Lipschitz
MDPs also depend on the Lipschitz constant, which always appears in a bias term (e.g., (Ortner & Ryabko, 2012)).

10See page 7 of (Azar et al., 2017).
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Algorithm 3 Greedy-Kernel-UCBVI
Input: global parameters K,H, δ, λr, λp, σ, β
initialize Dh = ∅ and V 1

h (x) = H − h+ 1, for all h ∈ [H]
for episode k = 1, . . . ,K do

get initial state xk1
for step h = 1, . . . , H do

// define, for all a:
Q̃kh(x

k
h, a) =

∑k−1
s=1 w̃

s
h(x

k
h, a)

(
rsh + V kh+1(x

s
h+1)

)
+ Bkh(x

k
h, a)

execute akh = argmaxa Q̃
k
h(x

k
h, a)

observe rkh and xkh+1

Ṽ kh (x
k
h) = min

(
H − h+ 1,maxa∈A Q̃

k
h(x

k
h, a)

)
// interpolate: define V k+1

h for all x ∈ Dh as

V k+1
h (x) = min

(
mins∈[k−1]

[
V kh (x

s
h) + LhρX (x, xsh)

]
, Ṽ kh (x

k
h) + LhρX

(
x, xkh

) )
add (xkh, a

k
h, x

k
h+1, r

k
h) to Dh

end for
end for

In addition, the value Lh =
∑H
h′=h λrλ

H−h′
p represents simply an upper bound on the Lipschitz constant of the Q-function

Q∗h. If the functions Q∗h for h ∈ [H] are L̃h-Lipschitz with L̃h known and such that L̃h < Lh, Kernel-UCBVI could exploit
the knowledge of L̃h and use it instead of Lh, which would also improve the regret bound. For instance, if all rewards
functions rh are 0 except for rH , we could use L̃h = λr, the Lipscthiz constant of rH , which is independent of H .

F. Efficient implementation
In this Appendix, following (Efroni et al., 2019), we show that if we only apply the optimistic Bellman operator once instead
of doing a complete value iteration we obtain almost the same guaranties as for Algorithm 1 but with a large improvement in
computational complexity. Indeed, the time complexity of each episode k is reduced from O(k2) to O(k). This complexity
is comparable to other model-based algorithm in structured MDPs (e.g., Jin et al., 2020).

The algorithm goes as follows. Assume we are at episode k at step h at state xkh. To compute the next action we will apply
the optimistic Bellman operator to the previous value function. That is, for all a ∈ A we compute the upper bounds on the
Q-value based on a kernel estimator:

Q̃kh(xkh, a) = r̂kh(x, a) + P̂ khV
k
h+1(x, a) + Bkh(x, a) .

Then we act greedily
akh = argmax

a∈A
Q̃kh(xkh, a) ,

and define a new optimistic target Ṽ kh (xkh) = min
(
H − h+ 1, Q̃kh(xkh, a

k
h)
)

for the value function at state xkh. Then we
build an optimistic value function V kh by interpolating the previous optimistic target and the new one we just defined

∀x, V k+1
h (x) = min

(
min

s∈[k−1]

[
V kh (xsh) + LhρX (x, xsh)

]
, Ṽ kh (xkh) + LhρX

(
x, xkh

))
.

The complete procedure is detailed in Algorithm 3.

Proposition 7 (Optimism). In the event G, whose probability is greater than 1− δ, we have:

∀(k, h),∀x, V kh (x) ≥ V ∗h (x) and V kh (x) ≥ V k+1
h (x) .

Proof. To show that V kh (x) ≥ V k+1
h (x), notice that

∀x, V k+1
h (x) = min

(
V kh (x), Ṽ kh (xkh) + LhρX

(
x, xkh

))
≤ V kh (x)

since, by definition, V kh (x) = mins∈[k−1]
[
V kh (xsh) + LhρX (x, xsh)

]
.
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To show that V kh (x) ≥ V ∗h (x), we proceed by induction on k. For k = 1, V kh (x) = H − h ≥ V ∗h (x) for all x and h.

Now, assume that V k−1h ≥ V ∗h for all h. As in the proof of Proposition 4, we prove that V kh ≥ V ∗h by induction on h. For
h = H + 1, V kh (x) = V ∗h (x) = 0 for all x. Now, assume that V kh+1(x) ≥ V ∗h+1(x) for all x. We have, for all (x, a),

Q̃kh(x, a) = r̂kh(x, a) + P̂ khV
k
h+1(x, a) + Bkh(x, a)

≥ r̂kh(x, a) + P̂ khV
∗
h+1(x, a) + Bkh(x, a) by induction hypothesis on h

≥ rh(x, a) + PhV
∗
h+1(x, a) = Q∗h(x, a) in G

which implies that Ṽ kh (xkh) ≥ V ∗h (xkh) and, consequently,

Ṽ kh (xkh) + LhρX
(
x, xkh

)
≥ V ∗h (xkh) + LhρX

(
x, xkh

)
≥ V ∗h (x)

=⇒ V kh (x) = min
(
V k−1h (x), Ṽ kh (xkh) + LhρX

(
x, xkh

))
≥ V ∗h (x) by induction hypothesis on k

and we used the fact that V ∗h is Lh-Lipschitz.

Proposition 8. With probability at least 1− δ, the regret of Greedy −Kernel − UCBV I is bounded as

R(K) .H2
√
|Cσ|K +H3|Cσ||C̃σ|+H3/2

√
K + L1KHσ +H2|Cσ|+H2|C̃σ|,

where |Cσ| and |C̃σ| are the σ-covering numbers of (X ×A, ρ) and (X , ρ), respectively.

Proof. On G, we have

δ̃kh
def
= V k+1

h (xkh)− V πkh (xkh) ≤ V kh (xkh)− V πkh (xkh)

≤ Ṽ kh (xkh)− V πkh (xkh) ≤ Q̃kh(xkh, a
k
h)−Qπkh (xkh, a

k
h)

From this point we can follow the proof of Proposition 5 to obtain

δkh .

(
1 +

1

H

)(
δkh+1 + ξkh+1

)
+ L1ρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+

√
H2

Ck
h(x̃kh, ã

k
h)

+
H2|C̃σ|

Ck
h(x̃kh, ã

k
h)

+ L1σ

.

(
1 +

1

H

)(
δ̃kh+1 +

(
V kh+1 − V k+1

h+1

)
(xkh+1) + ξkh+1

)
+ L1ρ

[
(x̃kh, ã

k
h), (xkh, a

k
h)
]

+

√
H2

Ck
h(x̃kh, ã

k
h)

+
H2|C̃σ|

Ck
h(x̃kh, ã

k
h)

+ L1σ

On G, using that V ∗h ≤ V k+1
h and the same arguments as in equations (7) and (8) in Proposition 5 (which can be used since
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V kh+1 ≥ V k+1
h+1 ), we obtain

R(K) ≤
K∑
k=1

δ̃k1

. H2|Cσ|+ L1KHσ +

K∑
k=1

H∑
h=1

(
1 +

1

H

)h
ξkh+1

+

K∑
k=1

H∑
h=1

 H√
Ck
h(x̃kh, ã

k
h)

+
H2|C̃σ|

Ck
h(x̃kh, ã

k
h)

 I
{
ρ
[
(x̃kh, ã

k
h), (xkh, a

k
h)
]
≤ 2σ

}

+

K∑
k=1

H∑
h=1

(
1 +

1

H

)h (
V kh+1 − V k+1

h+1

)
(xkh+1)

This bound differs only by the last additive term above from the bound given in Proposition 5. Thus we just need to handle
this sum and rely on the previous analysis to upper bound the other terms. We consider the following partition of the state
space:

Definition 5. Let C̃σ be a σ-covering of X . We write C̃σ def
= {xj , j ∈ [|Cσ|]}. For each xj ∈ C̃σ, we define the set Bj ⊂ X

as the set of points in X whose nearest neighbor in C̃σ is xj , with ties broken arbitrarily, such that {Bj}j∈[|Cσ|] form a
partition of X .

Using the fact that the V kh are point-wise non-increasing we can transform the last sum in the previous inequality in a
telescopic sum

K∑
k=1

H∑
h=1

(
1 +

1

H

)h (
V kh+1 − V k+1

h+1

)
(xkh+1) ≤ e

K∑
k=1

H∑
h=1

(
V kh+1 − V k+1

h+1

)
(xkh+1)

≤ e
|C̃σ|∑
j=1

K∑
k=1

H∑
h=1

(
V kh+1 − V k+1

h+1

)
(xkh+1)I

{
xkh+1 ∈ Bj

}

≤ e
|C̃σ|∑
j=1

K∑
k=1

H∑
h=1

(
V kh+1 − V k+1

h+1

)
(xj)I

{
xkh+1 ∈ Bj

}
+ 2LhρX

(
xj , x

k
h+1

)
I
{
xkh+1 ∈ Bj

}
≤ e
|C̃σ|∑
j=1

K∑
k=1

H∑
h=1

(
V kh+1 − V k+1

h+1

)
(xj) + eK

H∑
h=1

2L1σ

≤ eH2
∣∣∣C̃σ∣∣∣+ 2eσL1HK ,

where in the third inequality, we used the fact that the function V kh+1 − V k+1
h+1 is 2Lh-Lipschitz. Combining the previous

inequalities and the proof of Theorem 4, as explained above, allows us to conclude.

G. New concentration inequalities
In this section we present two new concentration inequalities that control, uniformly over time, the deviation of weighted
sums of zero-mean random variables. They both follow from the so-called method of mixtures (e.g., (Peña et al., 2008)),
and can have applications beyond the scope of this work.

Lemma 2 (Hoeffding type inequality). Consider the sequences of random variables (wt)t∈N∗ and (Yt)t∈N∗ adapted to

a filtration (Ft)t∈N. Assume that, for all t ≥ 1, wt is Ft−1 measurable and E
[
exp(λYt)

∣∣∣Ft−1] ≤ exp(λ2c2/2) for all
λ > 0.
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Let

St
def
=

t∑
s=1

wsYs and Vt
def
=

t∑
s=1

w2
s .

Then, for any β > 0, with probability at least 1− δ, for all t ≥ 1,

|St|∑t
s=1 ws + β

≤
√√√√2c2

[
log

(
1

δ

)
+

1

2
log

(
Vt + β

β

)]
Vt + β(∑t

s=1 ws + β
)2 .

In addition, if ws ≤ 1 almost surely for all s, we have Vt ≤
∑t
s=1 ws ≤ t and the above can be simplified to

|St|∑t
s=1 ws + β

≤

√√√√2c2 log

(√
1 + t/β

δ

)
1∑t

s=1 ws + β
.

Proof. Let

Mλ
t = exp

(
λSt −

λ2c2Vt
2

)
,

with the convention Mλ
0 = 1. The process

{
Mλ
t

}
t≥0 is a supermartingale, since

E
[
Mλ
t

∣∣∣Ft−1] = E
[
exp

(
wtYt −

λ2c2w2
t

2

) ∣∣∣Ft−1]Mλ
t−1 ≤Mλ

t−1, (9)

which implies that E
[
Mλ
t

]
≤ E

[
Mλ

0

]
= 1. Now, we apply the method of mixtures, as in (Peña et al., 2008) see also

(Abbasi-Yadkori et al., 2011). We define the supermartingale Mt as

Mt =

√
βc2

2π

∫
R
Mλ
t exp

(
−βc

2λ2

2

)
dλ =

√
β

Vt + β
exp

(
S2
t

2(Vt + β)c2

)
.

The maximal inequality for non-negative supermartingales gives us:

P
[
∃t ≥ 0 : Mt ≥ δ−1

]
≤ δE [M0] = δ.

Hence, with probability at least 1− δ, we have

∀t ≥ 0, |St| ≤
√

2c2 [log(1/δ) + (1/2) log((Vt + β)/β)] (Vt + β).

Dividing both sides by
∑t
s=1 ws + β gives the result.

Lemma 3 (Bernstein type inequality). Consider the sequences of random variables (wt)t∈N∗ and (Yt)t∈N∗ adapted to a
filtration (Ft)t∈N. Let

St
def
=

t∑
s=1

wsYs, Vt
def
=

t∑
s=1

w2
sE
[
Y 2
s

∣∣∣Fs−1] and Wt
def
=

t∑
s=1

ws ,

and h(x) = (x+ 1) log(x+ 1)− x. Assume that, for all t ≥ 1,

• wt is Ft−1 measurable,

• E
[
Yt

∣∣∣Ft−1] = 0,

• wt ∈ [0, 1] almost surely,
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• there exists b > 0 such that |Yt| ≤ b almost surely.

Then, we have

P
[
∃t ≥ 1, (Vt/b

2 + 1)h

(
b|St|
Vt + b2

)
≥ log(1/δ) + log

(
4e(2t+ 1)

)]
≤ δ .

The previous inequality can be weakened to obtain a more explicit bound: for all β > 0, with probability at least 1− δ, for
all t ≥ 1,

|St|
β +

∑t
s=1 ws

≤
√√√√2 log

(
4e(2t+ 1)/δ

) Vt + b2(
β +

∑t
s=1 ws

)2 +
2b

3

log
(
4e(2t+ 1)/δ

)
β +

∑t
s=1 ws

.

Proof. By homogeneity we can assume that b = 1 to prove the first part. First note that for all λ > 0,

eλwtYt − λwtYt − 1 ≤ (wtYt)
2(eλ − λ− 1) ,

because the function y → (ey − y− 1)/y2 (extended by continuity at zero) is non-decreasing. Taking the expectation yields

E
[
eλwtYt |Ft−1

]
− 1 ≤ w2

tE
[
Y 2
t |Ft−1

]
(eλ − λ− 1) ,

thus using y + 1 ≤ ey we get

E
[
eλ(wtYt)|Ft−1

]
≤ ew2

tE[Y 2
t |Ft−1](eλ−λ−1) .

We just proved that the following quantity is a supermartingale with respect to the filtration (Ft)t≥0,

Mλ,+
t = eλ(St+Vt)−Vt(e

λ−1) .

Similarly, using that the same inequality holds for −Xt, we have

E
[
e−λwtYt |Fn−1

]
≤ ew2

tE[Y 2
t |Ft−1](eλ−λ−1) ,

thus, we can also define the supermartingale

Mλ,−
t = eλ(−St+Vt)−Vt(e

λ−1) .

We now choose the prior over λx = log(x+ 1) with x ∼ E(1), and consider the (mixture) supermartingale

Mt =
1

2

∫ +∞

0

eλx(St+Vt)−Vt(e
λ
x−1)e−xdx+

1

2

∫ +∞

0

eλx(−St+Vt)−Vn(e
λ
x−1)e−xdx .

Note that by construction it holds E [Mt] ≤ 1. We will apply the method of mixtures to that super martingale thus we need
to lower bound it with the quantity of interest. To this aim we will we will lower bound the integral by the one only around
the maximum of the integrand. Using the change of variable λ = log(1 + x), we obtain

Mt ≥
1

2

∫ +∞

0

eλx(|St|+Vt)−Vt(e
λx−1)e−xdx ≥ 1

2

∫ +∞

0

eλ(|St|+Vt+1)−(Vt+1)(eλ−1)dλ

≥ 1

2

∫ log
(
|St|/(Vt+1)+1+1/(Vt+1)

)
log
(
|St|/(Vt+1)+1

) eλ(|St|+Vt+1)−(Vt+1)(eλ−1)dλ

≥ 1

2

∫ log
(
|St|/(Vt+1)+1+1/(Vt+1)

)
log
(
|St|/(Vt+1)+1

) elog
(
|St|/(Vt+1)+1

)
(|St|+Vt+1)−|St|−1dλ

=
1

2e
e(Vt+1)h

(
|St|/(Vt+1)

)
log

(
1 +

1

|St|+ Vt + 1

)
≥ 1

4e(2t+ 1)
e(Vt+1)h

(
|St|/(Vt+1)

)
,
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where in the last line we used log(1 + 1/x) ≥ 1/(2x) for x ≥ 1 and the trivial bounds |St| ≤ 1, Vt ≤ t. The method of
mixtures, see (Peña et al., 2008), allows us to conclude for the first inequality of the lemma. The second inequality is a
straightforward consequence of the previous one. Indeed, using that (see Exercise 2.8 of (Boucheron et al., 2013)) for x ≥ 0

h(x) ≥ x2

2(1 + x/3)
,

we get

|St|/b
Vt/b2 + 1

≤
√

2 log
(
4e(2t+ 1)/δ

)
Vt/b2 + 1

+
2

3

log
(
4e(2t+ 1)/δ

)
Vt/b2 + 1

.

Dividing by β +
∑t
s=1 ws and multiplying by b(Vt/b2 + 1) the previous inequality allows us to conclude.

H. Auxiliary results
H.1. Proof of Lemma 1

In this section, we prove that the optimal Q-functions Qh are Lipschitz continuous.

Lemma 4 (Value functions are Lipschitz continuous). Under assumption 2 we have:

∀(x, a, x′, a′), ∀h ∈ [H], |Q∗h(x, a)−Q∗h(x′, a′)| ≤ Lhρ [(x, a), (x′, a′)]

where Lh
def
=
∑H
h′=h λrλ

H−h′
p .

Proof. We proceed by induction. For h = H , Q∗h(x, a) = r(x, a) and the statement is true, since r is λr-Lipschitz. Now,
assume that it is true for h+ 1 and let’s prove it for h.

First, we note that V ∗h+1(x) is Lipschitz by the induction hypothesis:

V ∗h+1(x)− V ∗h+1(x′) = max
a

Q∗h+1(x, a)−max
a

Q∗h+1(x′, a) ≤ max
a

(
Q∗h+1(x, a)−Q∗h+1(x′, a)

)
≤ max

a

H∑
h′=h+1

λrλ
H−h′
p ρ [(x, a), (x′, a)] =

H∑
h′=h+1

λrλ
H−h′
p ρX (x, x′) ,

where, in the last equality, we used the fact that ρ [(x, a), (x′, a′)] = ρX (x, x′) + ρA (a, a′) by Assumption 1.

By applying the same argument and inverting the roles of x and x′, we obtain

∣∣V ∗h+1(x)− V ∗h+1(x′)
∣∣ ≤ H∑

h′=h+1

λrλ
H−h′
p ρX (x, x′) .

Now, we have

Q∗h(x, a)−Q∗h(x′, a′) ≤ λrρ [(x, a), (x′, a′)] +

∫
X
V ∗h+1(y)(Ph(dy|x, a)− Ph(dy|x′, a′))

≤ λrρ [(x, a), (x′, a′)] + Lh+1

∫
X

V ∗h+1(y)

Lh+1
(Ph(dy|x, a)− Ph(dy|x′, a′))

≤
[
λr + λp

H∑
h′=h+1

λrλ
H−h′
p

]
ρ [(x, a), (x′, a′)] =

H∑
h′=h

λrλ
H−h′
p ρ [(x, a), (x′, a′)]

where, in last inequality, we use fact that V ∗h+1/Lh+1 is 1-Lipschitz, the definition of the 1-Wasserstein distance and
Assumption 2.
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H.2. Covering-related lemmas

Lemma 5. Let FL be the set of L-Lipschitz functions from the metric space (X , ρ) to [0, H]. Then, its ε-covering number
with respect to the infinity norm is bounded as follows

N (ε,FL, ‖·‖∞) ≤
(

8H

ε

)N (ε/(4L),X ,ρ)

Proof. Let’s build an ε-covering of FL. Let CX = {x1, . . . , xM} be an ε1-covering of (X , ρ) such that ρ(xi, xj) > ε1 for
all i, j ∈ [M ] (i.e., CX is also an ε1-packing). Let C[0,H] = {y1, . . . , yN} be an ε2-covering of [0, H]. For any function
p : [M ]→ [N ], we build a 2L-Lipschitz function f̂p : X → R as follows

f̂p(x) = min
i∈[M ]

[
yp(i) + 2Lρ(x, xi)

]
.

Let ε1 = ε/(4L) and ε2 = ε/8. We now show that the set CFL
def
=
{
f̂p : p is a function from [M ] to [N ]

}
is an ε-covering

of FL. Take an arbitrary function f ∈ FL. Let p : [M ]→ [N ] be such that
∣∣f(xi)− yp(i)

∣∣ ≤ ε2 for all i ∈ [M ]. For any
x ∈ X , let j ∈ [M ] be such that ρ(x, xj) ≤ ε1. We have∣∣∣f(x)− f̂p(x)

∣∣∣ ≤ ∣∣∣f(xj)− f̂p(xj)
∣∣∣+ |f(x)− f(xj)|+

∣∣∣f̂p(xj)− f̂p(x)
∣∣∣

≤
∣∣∣f(xj)− f̂p(xj)

∣∣∣+ 3Lρ(x, xj)

≤
∣∣f(xj)− yp(j)

∣∣+
∣∣∣yp(j) − f̂p(xj)∣∣∣+ 3Lε1

≤
∣∣∣yp(j) − f̂p(xj)∣∣∣+ 3Lε1 + ε2 .

Now, let’s prove that f̂p(xj) = yp(j), which is true if and only if yp(j) ≤ yp(i) + 2Lρ(x, xi) for all i ∈ [M ]. By definition
of p and the fact that f is L-Lipschitz, we have yp(j) ≤ yp(i) + Lρ(xj , xi) + 2ε2 ≤ yp(i) + 2Lρ(xj , xi) for all i ∈ [M ],
since Lρ(xj , xi) > Lε1 = 2ε2. Consequently,

∀x,
∣∣∣f(x)− f̂p(x)

∣∣∣ ≤ 3Lε1 + ε2 < ε

which shows that CFL is indeed an ε-covering of FL whose carnality is bounded by NM . To conclude, we take C[0,H] =
{0, ε2, . . . , Nε2} for N = dH/ε2e and CX such that |CX | = M = N (ε1,X , ρ).

For H = 1, this result is also given by (Gottlieb et al., 2017), Lemma 5.2.

Lemma 6. Let (X × A, ρ) be a metric space and (Ω, T ,P) be a probability space. Let F and G be two functions from
X×A×Ω to R such that ω → F (x, a, ω) and ω → G(x, a, ω) are random variables. Also, assume that (x, a)→ F (x, a, ω)
and (x, a)→ G(x, a, ω) are LF and LG-Lipschitz, respectively, for all ω ∈ Ω. If

∀(x, a), P [ω ∈ Ω : G(x, a, ω) ≥ F (x, a, ω)] ≤ δ

then

P [ω ∈ Ω : ∃(x, a), G(x, a, ω) ≥ F (x, a, ω) + (LG + Lf )ε] ≤ δN (ε,X ×A, ρ).

Proof. Let Cε be an ε-covering of (X ×A, ρ) and let

(xε, aε)
def
= argmin

(x′,a′)∈Cε
ρ [(x′, a′), (x, a)] .

Let E def
= {ω ∈ Ω : ∃(x, a), G(x, a, ω) ≥ F (x, a, ω) + (LG + Lf )ε}. In E, we have, for some (x, a),

G(xε, aε, ω) + LGε ≥ G(x, a, ω) ≥ F (x, a, ω) + (LG + Lf )ε ≥ F (xε, aε, ω) + LGε.
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Hence, in E, there exists (x, a) such that:

G(xε, aε, ω) ≥ F (xε, aε, , ω)

and

P [E] ≤ P [ω ∈ Ω : ∃(xε, aε) ∈ Cε, G(xε, aε, ω) ≥ F (xε, aε, ω)]

≤
∑

(xε,aε)∈Cε

P [ω ∈ Ω : G(xε, aε, ω) ≥ F (xε, aε, , ω)] ≤
∑

(xε,aε)∈Cε

δ

which gives us P [E] ≤ δN (ε,X ×A, ρ).

H.3. Technical lemmas

We state and prove three technical lemmas that help controlling some of the sums that appear in our regret analysis.

Lemma 7. Consider a sequence of non-negative real numbers {zs}ts=1 and let g : R+ → [0, 1] satisfy Assumption 3. Let

ws
def
= g

(zs
σ

)
and w̃s

def
=

ws

β +
∑t
s′=1 ws′

.

for β > 0. Then, for t ≥ 1, we have

t∑
s=1

w̃szs ≤ 2σ

(
1 +

√
log(Cg1 t/β + e)

)
.

Proof. We split the sum into two terms:

t∑
s=1

w̃szs =
∑
s:zs<c

w̃szs +
∑
s:zs≥c

w̃szs ≤ c+
∑
s:zs≥c

w̃szs

From Assumption 3, we havews ≤ Cg1 exp
(
−z2s/(2σ2)

)
. Hence, w̃s ≤ (Cg1/β) exp

(
−z2s/(2σ2)

)
, since β+

∑t
s′=1 ws′ ≥

β.

We want to find c such that:

zs ≥ c =⇒ Cg1
β

exp

(
− z2s

2σ2

)
≤ 1

t

2σ2

z2s

which implies, for zs ≥ c, that w̃s ≤ 1
t
2σ2

z2s
.

Let x = z2s/2σ
2. Reformulating, we want to find a value c′ such that Cg1 exp(−x) ≤ β/(xt) for all x ≥ c′. Let

c′ = 2 log(Cg1 t/β + e). If x ≥ c′, we have:

x

2
≥ log

(
Cg1 t

β
+ e

)
=⇒ x ≥ x

2
+ log

(
Cg1 t

β
+ e

)
=⇒ x ≥ log x+ log(Cg1 t/β + e)

=⇒ (Cg1/β) exp(−x) ≤ 1/(xt)

as we wanted. Hence, we choose c′ = 2 log(Cg1 t/β + e).

Now, x ≥ c′ is equivalent to zs ≥
√

2σ2c′ = 2σ
√

log(Cg1 t/β + e). Therefore, we take c = 2σ
√

log(Cg1 t/β), which gives
us ∑

s:zs≥c

w̃szs ≤
∑
s:zs≥c

1

t

2σ2

z2s
zs ≤

2σ2

t

∑
s:zs≥c

1

zs
≤ 2σ2

c

|{s : zs ≥ c}|
t

≤ 2σ2

c
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Finally, we obtain:

t∑
s=1

w̃szs ≤ c+
∑
s:zs≥c

w̃szs ≤ c+
2σ2

c

= 2σ
√

log(Cg1 t/β + e) +
σ√

log(Cg1 t/β + e)
≤ 2σ

(
1 +

√
log(Cg1 t/β + e)

)

Lemma 8. Let {ys}ts=1 be a sequence of real numbers and let σ > 0.For z ∈ Rt+, let

f1(z)
def
=

∑t
s=1 g(zs/σ)ys

β +
∑t
s=1 g(zs/σ)

, f2(z)
def
=

√
1

β +
∑t
s=1 g(zs/σ)

and f3(z)
def
=

1

β +
∑t
s=1 g(zs/σ)

.

Then, f1, f2 and f3 are Lipschitz continuous with respect to the norm ‖·‖∞:

Lip (f1) ≤ 2Cg2 t(maxs |ys|)
βσ

, Lip (f2) ≤ Cg2 t

2σβ3/2
, Lip (f3) ≤ Cg2 t

σβ2

where Lip (fi) denotes the Lipschitz constant of fi, for i ∈ {1, 2, 3}.

Proof. Using Assumption 3, the partial derivatives of f1 and f2 are bounded as follows

∣∣∣∣∂f1(z)

∂zs

∣∣∣∣ ≤ 1

σ

|g′(zs/σ)| |ys|
β +

∑t
s=1 g(zs/σ)

+
1

σ

∑t
s=1 g(zs/σ) |ys|(

β +
∑t
s=1 g(zs/σ)

)2 |g′(zs/σ)| ≤ 2Cg2
βσ

max
s
|ys|

∣∣∣∣∂f2(z)

∂zs

∣∣∣∣ ≤ 1

2σ

|g′(zs/σ)|(
β +

∑t
s=1 g(zs/σ)

)3/2 ≤ Cg2
2σβ3/2

∣∣∣∣∂f3(z)

∂zs

∣∣∣∣ ≤ 1

σ

|g′(zs/σ)|(
β +

∑t
s=1 g(zs/σ)

)2 ≤ Cg2
σβ2

.

Therefore,

‖∇f1(z)‖1 ≤
2Cg2 t(maxs |ys|)

βσ
, ‖∇f2(z)‖1 ≤

Cg2 t

2σβ3/2
, ‖∇f3(z)‖1 ≤

Cg2 t

σβ2

and the result follows from the fact that |fi(z1)− fi(z2)| ≤ supz ‖∇fi(z)‖1 ‖z1 − z2‖∞ for i ∈ {1, 2, 3}.

Lemma 9. Consider a sequence {an}n≥1 of non-negative numbers such that am ≤ c for some constant c > 0. Let
At =

∑t−1
n=1 an. Then, for any b > 0 and any p > 0,

T∑
t=1

at
(1 + bAt)p

≤ c+

∫ AT+1−c

0

1

(1 + bz)p
dz
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Proof. Let n def
= max {t : a1 + . . .+ at−1 ≤ c}. We have

∑n−1
t=1

at
(1+bAt)p

≤∑n−1
t=1 at ≤ c and, consequently,

T∑
t=1

at
(1 + bAt)p

≤ c+

T∑
t=n

at
(1 + bAt)p

= c+

T∑
t=n

At+1 −At
(1 + bAt)p

= c+

T∑
t=n

At+1 −At
(1 + bAt+1 − bat)p

≤ c+

T∑
t=n

At+1 −At
(1 + b(At+1 − c))p

= c+

T∑
t=n

∫ At+1

At

1

(1 + b(At+1 − c))p
dz ≤ c+

T∑
t=n

∫ At+1

At

1

(1 + b(z − c))p dz

= c+

∫ AT+1

An

1

(1 + b(z − c))p dz ≤ c+

∫ AT+1

c

1

(1 + b(z − c))p dz .

I. Experimental setup
For Kernel-UCBVI, we used the following simplified exploration bonuses:

Bkh(x, a) =
1√

Ck
h(x, a)

+
H − h+ 1

Ck
h(x, a)

.

The same bonus was used for the baselines, except that Ck
h(x, a) was replaced by Nk

h(I(x), a) =

max
(

1,
∑k−1
s=1 I {I(xsh) = I(x), ash = a}

)
where I(x) is the index of the discrete state corresponding to the continu-

ous state x.

We used the Euclidean distance on the states and the Gaussian kernel function g(z) = exp(−z2/2). The regularization was
taken as β = 0.01.

Additionally, in Kernel-UCBVI, we used representative states (Kveton & Theocharous, 2012; Barreto et al., 2016) to merge
states that are at a distance smaller than 0.05 from each other, which provides a great improvement in the runtime of the
algorithm.


