
Density-Based Bonuses on Learned Representations for
Reward-Free Exploration in Deep Reinforcement Learning

Omar D. Domingues 1 Corentin Tallec 1 Rémi Munos 1 Michal Valko 1

Abstract
In this paper, we study the problem of represen-
tation learning and exploration in reinforcement
learning. We propose a framework to compute
exploration bonuses based on density estimation,
that can be used with any representation learning
method, and that allows the agent to explore with-
out extrinsic rewards. In the special case of tab-
ular Markov decision processes (MDPs), this ap-
proach mimics the behavior of theoretically sound
algorithms. In continuous and partially observ-
able MDPs, the same approach can be applied
by learning a latent representation, on which a
probability density is estimated.

1. Introduction
Exploration is a major challenge in reinforcement learning
(RL), where an agent must continually gather information
about its environment in order to learn how to act optimally.
In an online setting and when rewards are available, the
performance of an RL algorithm is usually defined in terms
of its regret, which is the difference between the rewards
gathered by an optimal policy and the rewards gathered by
the algorithm. In a reward-free setting, the performance can
be evaluated by the number of trajectories (i.e., the sample
complexity) required for the algorithm to build a dataset
that can be used by a planning algorithm to compute a near-
optimal policy for any possible reward function (Jin et al.,
2020a).

In finite MDPs, the regret, the sample complexity, and the
computational complexity of near-optimal algorithms1 scale
with the number of states and actions (Jaksch et al., 2010;

1DeepMind. Correspondence to: Omar D. Domingues
<omar.darwiche-domingues@inria.fr>.
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1An algorithm is near-optimal if its performance bound is equal
to the lower bound, up to constants and logarithmic terms with
respect to the learning horizon.

Jin et al., 2020a; Domingues et al., 2021). Hence, beyond
small finite environments, we are faced with the challenge of
designing provably efficient algorithms that are, at the same
time computationally efficient and able to handle arbitrarily
large state spaces.

Under structural assumptions on the MDP that allow gen-
eralization, it is possible to derive algorithms whose perfor-
mance bounds depend on the dimension of the state-action
space with respect to some representation, instead of its car-
dinality. The representation is often in the form of a metric,
kernel, or linear function approximation (Ortner & Ryabko,
2012; Chowdhury & Gopalan, 2019; Jin et al., 2020b; Song
& Sun, 2019; Sinclair et al., 2019; Yang & Wang, 2020;
Yang et al., 2020; Domingues et al., 2020; Chowdhury &
Oliveira, 2020; Wang et al., 2020). Although such algo-
rithms present theoretical guarantees, they may suffer from
two main drawbacks: a high computational complexity, pre-
venting them from being applicable to large-scale MDPs;
and the requirement that a good representation should be
provided, e.g. in the form of a feature map or a kernel
function.

Deep reinforcement learning algorithms have shown suc-
cess in tackling large-scale reinforcement learning problems,
and allow combining representation learning methods and
RL in an end-to-end fashion. However, deep RL methods
may have an excessively large sample complexity in hard
exploration problems, and we have a limited theoretical un-
derstanding of such methods, especially in terms of how
to perform exploration optimally. In this paper, we focus
on the problem of reward-free exploration in deep RL, and
study an exploration method that draws inspiration from the-
oretically grounded algorithms for finite or low-dimensional
MDPs.

Theoretically-inspired exploration bonuses In finite
MDPs where a reward function is available, algorithms rely-
ing on exploration bonuses scaling with

√
1/n(s, a), where

n(s, a) is the number of visits to a state-action pair (s, a),
have been shown to achieve near-optimal performance
(Strehl & Littman, 2008; Azar et al., 2017). Such bonuses
depending on n(s, a) have inspired many algorithms that
improve exploration in deep RL. For instance, Bellemare



Density-Based Bonuses for Reward-Free Exploration in Deep RL

et al. (2016) propose a method to compute pseudo-counts
approximating n(s, a) using density estimation on images,
and Tang et al. (2017) use locality-sensitive hashing to map
continuous states to discrete embeddings, where explicit
counts are computed. A common property among all these
approaches is that the more a state-action pair (s, a) is vis-
ited, the smaller the bonus at (s, a). This property is also
satisfied for algorithms such as Random Network Distilla-
tion (RND) (Burda et al., 2019) and Never Give Up (NGU)
(Badia et al., 2020), that manage to tackle many hard explo-
ration problems.

Reward-free exploration In the absence of rewards from
the environment, a major question is to decide what the
agent should maximize. Hazan et al. (2019) and (Guo et al.,
2021) propose algorithms that search a policy maximizing
the entropy of its induced state-space distribution. One dis-
advantage of this approach is that the learned policy may
avoid regions of the state-space that do not increase the en-
tropy, but may be important for downstream tasks.2 Another
approach is to evaluate the agent by its ability to explore
and build a dataset of transitions, which can then be used
to build a model and compute a near-optimal policy for any
possible reward function (Jin et al., 2020a). Kaufmann et al.
(2021) and Ménard et al. (2020) show that under this crite-
rion, near-optimal algorithms can be obtained using bonuses
of the form

√
1/n(s, a) or 1/n(s, a). This motivates the

use of such exploration bonuses both in the presence and in
the absence of extrinsic rewards. A key difference between
the dataset approach and entropy maximization, is that the
former will recompute a policy in every episode, aiming to
visit different regions of the state space, whereas the latter
aims to find a single maximum-entropy policy that may fail
to cover some regions of the state-space.

Representation Learning When dealing with environ-
ments with infinitely many states and partial observability,
learning a good state representation is crucial. In general,
this representation must satisfy at least two properties: (i) it
should allow generalization across similar states; and (ii) it
should be a sufficient statistic for the past transitions and
discard irrelevant information. However, whether a rep-
resentation is good or not will depend on the purpose for
which we design the learning agent. For instance, we might
look for representations that ignore uncontrollable features
of the environment, that are useful to build world models, or
that allow generalization across tasks (Pathak et al., 2017;
Azar et al., 2019; Guo et al., 2020). Given the vast amount
of representation learning methods, we believe that it is im-

2For instance, assume that our goal is to learn the transitions of
an MDP. A maximum-entropy policy does not take into account
which states are visited, as long as the entropy is maximized. This
may result in an agent that does not visit certain states, where
learning a good model would become impossible.

portant to look for a unified exploration strategy that allows
the agent to integrate different methods to learn represen-
tations and that do not rely on extrinsic rewards from the
environment, which is the problem that we investigate in
this paper.

Our contribution We study a framework in which explo-
ration is encouraged by intrinsic rewards (or exploration
bonuses) computed as a function of a density estimation on
top of learned representations, which are inspired by the
1/n(s, a) bonuses used in reward-free finite MDPs. We
argue that the advantages of this approach are:

(i) It mimics the behavior of near-optimal algorithms in
finite or low-dimensional MDPs and it generalizes nat-
urally to large-scale problems.

(ii) It allows us to integrate and combine different repre-
sentation learning methods, while keeping the same
strategy for computing exploration bonuses.

(iii) It enables exploration in the absence of extrinsic re-
wards.

2. Method
We consider an agent interacting with an environment in
episodes of length H , such that, at every time t, the agent
chooses an action at ∈ A and it receives an observation
ot+1 ∈ O. Let ht = (oi, ai−1)i≤t ∈ H be the history
of observations and actions up to time t, which are stored
in a replay buffer. We propose the following method for
reward-free exploration with learned representations:

• Given a history ht, we use a representation function
f to compute an embedding xt = f(ht), where f is
optimized according to any representation learning
algorithm trained with data from the replay buffer;

• We compute p(xt, at) representing the probability of
observing the embedding xt and the action at in the
replay buffer, where p is learned using any density
estimation method and we define the intrinsic reward
at (ht, at) as r(xt, at) = 1/p(xt, at);

• A reinforcement learning agent is trained to maximize
the sum of intrinsic rewards.

Below, we argue that in the special case of finite environ-
ments, this algorithm becomes similar to the RF-Express
algorithm of Ménard et al. (2020) that has sample com-
plexity guarantees for reward-free exploration. Then, we
propose a simple method to estimate the inverse density
1/p(xt, at) that is applicable to general environments and
evaluate it experimentally combining different representa-
tion learning methods.
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Fully observable finite MDPs In this case, the observa-
tion ot completely describes the state of the environment,
and we can take xt = f(ht) = ot ∈ O. Then, for any
(x, a) = (o, a) ∈ O × A we can compute the probability
density after T transitions as:

p(x, a) = p(o, a) = nT (o, a)/T,

where nT (o, a) =
∑T

i=1 I{(oi, ai) = (o, a)} is the num-
ber of times that the observation-action pair (o, a) appears
in the history of T transitions. Consequently, the intrinsic
reward at (x, a) = (o, a) becomes r(x, a) = 1/p(x, a) =
T/nT (o, a). An optimal policy πT is invariant to the scal-
ing of the rewards: we can multiply the intrinsic reward
by any constant and πT will remain optimal. This im-
plies that πT also maximizes the sum of rewards r(x, a)/T
, which is equivalent to using 1/nT (o, a) as intrinsic re-
ward. Hence, an algorithm using intrinsic rewards defined
as 1/p(x, a) is expected to have a behavior similar to that
of RF-Express (Ménard et al., 2020) that uses bonuses
proportional to 1/nT (o, a) and has a near-optimal sample
complexity. Notice that, however, the scaling 1/T is time-
dependent, which is not an issue for RF-Express that
recomputes a policy in every episode, but in deep RL we
need to be careful when optimizing non-stationary rewards.

Kernel density estimation (KDE) When a kernel func-
tion k is available, such that k((x, a), (x′, a′)) represents the
similarity between the state-action pairs (x, a) and (x′, a′),
Domingues et al. (2020) show that exploration bonuses of
the form

r(x, a) =

(
β +

T∑
i=1

k((xi, ai), (x, a))

)−1/2
(1)

allows us to obtain a sample efficient exploration algorithm
for continuous MDPs, where β > 0 is a regularization factor.
We can define a regularized kernel density estimator as

p(x, a) =
1

T

(
β +

T∑
i=1

k((xi, ai), (x, a))

)
(2)

and notice that the bonus (1) is proportional to
√
1/p(x, a).

By analogy with finite MDPs, we propose the use of
1/p(x, a) bonuses also for continuous MDPs.

Fitted KDE using learned representations As a simple
method for density estimation, we propose the use of a
learned version of (2). We define a kernel function based on
the learned representation f as follows:

k((x, a), (x′, a′)) =
1

1 + ||f(x)− f(x′)||2
· (3)

For simplicity, we ignore the actions a and a′ in the defini-
tion of the kernel3, and we consider β = 0. Now, due to
computational issues, we need to avoid the sum over all T
past transitions in (2). To do so, let J be a random variable
uniformly distributed on {1, . . . , T}, and notice that, for
β = 0, we have

1

p(x, a)
=

1

EJ [k((xJ , aJ), (x, a)]
≤ EJ

[
1

k((xJ , aJ), (x, a)

]
by Jensen’s inequality. Consequently, we can learn a func-
tion g(x, a) to estimate an upper bound on 1/p(x, a)4 by
minimizing the following loss:

min
g

E(x,a)


g(x, a)− EB

 1
1
|B|

∑
(xj ,aj∈B)

k((xj , aj), (x, a)




2
where B is a batch of histories and actions (hj , aj) sampled
uniformly from the replay buffer and xj = f(hj). Similarly,
to compute the expectation over (x, a), we take samples
(h, a) uniformly from the replay, and set x = f(h).

Finally, we propose to use the following exploration bonus
at any state-action pair (x, a):

r(x, a) = g(x, a) +

∣∣∣∣g(x, a)− 1

EJ [k((xJ , aJ), (x, a)]

∣∣∣∣
where the term added to g(x, a) increases the bonus to com-
pensate the approximation error that is made when learning
the kernel density estimator (2), and is computed by sam-
pling (xJ , aJ) uniformly from the replay buffer.

Although we propose the bonuses based on fitted KDE as a
first method to test our approach, other density estimation
methods can be used, such as normalizing flows (Rezende
& Mohamed, 2015).

Also, notice the bonuses computed fitted KDE have a similar
idea as the ones used by Never Give Up (NGU) (Badia et al.,
2020), but NGU uses only data from a single episode for its
kernel-based bonuses, whereas fitted KDE uses all data from
the past stored in the replay buffer. Another similarity is that
NGU includes a multiplicative term in the bonuses using
prediction errors from RND, whereas we use an additive
term representing the error in predicting the KDE.

3This is coherent with similar exploration methods in deep RL,
which encourage visits to novel states, instead of novel state-action
pairs, e.g. (Bellemare et al., 2016; Badia et al., 2020).

4Using an upper bound instead of 1/p(x, a) as exploration
bonus increases the amount of exploration performed by the algo-
rithm. As long as the bonuses preserve the property that frequently
visited states receive smaller bonuses, this should not significantly
impact the algorithm’s performance.
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Figure 1. Number of visited states versus training steps for dif-
ferent algorithms in four different environments: GridWorld and
Acrobot and their partially observable (PO) versions. RND(emb)
and RND(obs) means that the RND predictions are applied to the
embeddings and to the observations, respectively. Results averaged
over 4 runs.

3. Experiments
To evaluate our framework, we consider four environments:
(i) a fully observable GridWorld with 9 rooms, where the

state and the observations are one-hot encodings of the
position of the agent; (ii) a partially observable version
GridWorld, where a velocity is included in the state, but
the observation only shows the position; (iii) Acrobot5; and
(iv) a partially observable version of Acrobot, where only
the positions, and not the velocities, are observed.

For representation learning, we combined three methods:
(i) action prediction (Pathak et al., 2017; Badia et al., 2020);
(ii) adjacency regularization (Guo et al., 2021); and (iii) ob-
servation prediction, where the embedding of the past f(ht)
is used to predict the next observation ot+1. The latter was
only used in the partially observable enviroments. For den-
sity estimation, we used the Fitted KDE method presented in
Section 2, and Real NVP (Dinh et al., 2017). Finally, as rein-
forcement learning algorithm, we used Soft-DQN (Haarnoja
et al., 2018; Vieillard et al., 2020).

Additionally, as a baseline, we consider RND (Burda et al.,
2019) that computes intrinsic rewards based on the error
incurred when predicting the output of a random neural
network. We study the case where the predictions are made
using the observations ot only, and also the case where the
predictions are made on top of the embeddings xt = f(ht).
Notice that the latter case is a way to generalize RND to
environments where a representation needs to be learned.

We evaluate the algorithms with respect to how quickly they
are able to discover new states in the environment.6 Figure 1
shows the number of visited states versus the number of
training steps with our framework, compared to the RND
baselines. We observe that Fitted KDE allows us to discover
at least as many states as the baselines in the GridWorld,
and more states are discovered in the Acrobot environments.

4. Conclusion
We propose a unified framework to compute exploration
bonuses in reward-free exploration for RL using density
estimation. This framework is inspired by provably efficient
algorithms in tabular MDPs and we generalize it to arbi-
trary environments by allowing the algorithm to integrate
any set of representation learning and density estimation
methods. We illustrate its empirical effectiveness in con-
tinuous and partially observable problems, by proposing a
simple method to compute density based bonuses, Fitted
KDE, that can be related to the intrinsic rewards used by
state-of-the-art methods, such as RND (Burda et al., 2019)
and NGU (Badia et al., 2020). Interesting directions for
future work include testing our approach in more complex
environments, such as hard exploration games in Atari, and
investigate the impact of different representation methods.

5From OpenAI Gym.
6When the states are continuous, we compute the number of

visits to discretized states.

https://gym.openai.com/envs/Acrobot-v1/
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