Seminár z teoretickej informatiky

Fokulta matematihy, fyziliky a informatihy UK, Bratissava

September 22, 2016

WHERE IS JUSTIN BIEBER?

Alexandra Carpentier, Institut für Mathematik an der Universität Potsdam
n Michal Valko, SequeL, Inria Lille - Nord Europe

HOW TO RULE THE WORLD?

Influence the influentia!!

Religion

Politics

Culture

MAXIMIZING INFLUENCE

Product placement

- dispatch few to sell more
- target influential people

Gathering the information?

- likes on FB
- promotional codes

Unknown graphs

- all prior work needed to know the graph
- here: provably learning faster without it

REVEALING BANDITS FOR LOCAL INFLUENCE

Unknown $\left(p_{i j}\right)_{i j}$ - (symmetric) probability of influences In each time step $t=1, \ldots$, n
learner picks a node k_{t}
environment reveals the set of influenced node $S_{k t}$
Select influential people $=$ Find the strategy maximising

$$
L_{n}=\sum_{t=1}^{n}\left|S_{k_{t}, t}\right|
$$

What this is a bandit problem?

Casen $<$ d

What are bandits anyway?

PERFORMANCE CRITERION

The number of expected influences of node \boldsymbol{k} is by definition

$$
r_{k}=\mathbb{E}\left[\left|S_{k, t}\right|\right]=\sum_{j \leq d} p_{k, j}
$$

Oracle strategy always selects the best

$$
k^{\star}=\underset{k}{\arg \max } \mathbb{E}\left[\sum_{t=1}^{n}\left|S_{k, t}\right|\right]=\underset{k}{\arg \max } n r_{k}
$$

Expected regret of the oracle strategy
$\mathbb{E}\left[L_{n}^{\star}\right]=n r_{\star}$

Expected regret of any adaptive strategy unaware of $\left(\mathrm{p}_{\mathrm{ij}}\right)_{\mathrm{ij}}$
$\mathbb{E}\left[R_{n}\right]=\mathbb{E}\left[L_{n}^{\star}\right]-\mathbb{E}\left[L_{n}\right]$

- We only receive $|S|$ instead of S
- Can be mapped to multi-arm bandits

- rewards are $0, . ., \mathrm{d}$
- variance bounded with $\mathrm{rkt}_{\mathrm{kt}}$
- We adapt MOSS to GraphMOSS
- Regret upper bound of GraphMOSS
$\mathbb{E}\left[R_{n}\right] \leq U \min \left(r_{\star} n, r_{\star} d+\sqrt{r_{\star} n d}\right)$
- matching lower bound

UPPER CONFIDENCE BOUND BASED ALGOS

UPPER CONFIDENCE BOUND BASED ALGOS

UPPER CONFIDENCE BOUND BASED ALGOS

GraphMOSS

Input

d : the number of nodes
n : time horizon

Initialization

Sample each arm twice
Update $\widehat{r}_{k, 2 d}, \widehat{\sigma}_{k, 2 d}$, and $T_{k, 2 d} \leftarrow 2$, for $\forall k \leq d$

$$
\text { for } t=2 d+1, \ldots, n \text { do }
$$

$$
C_{k, t} \leftarrow 2 \widehat{\sigma}_{k, t} \sqrt{\frac{\max \left(\log \left(n /\left(d T_{k, t}\right)\right), 0\right)}{T_{k, t}}}
$$

$$
+\frac{2 \max \left(\log \left(n /\left(d T_{k, t}\right)\right), 0\right)}{T_{k, t}}, \text { for } \forall k \leq d
$$

$k_{t} \leftarrow \arg \max _{k} \widehat{r}_{k, t}+C_{k, t}$
Sample node k_{t} and receive $\left|S_{k_{t}, t}\right|$
Update $\widehat{r}_{k, t+1}, \widehat{\sigma}_{k, t+1}$, and $T_{k, t+1}$, for $\forall k \leq d$
end for

$$
\mathbb{E}\left[R_{n}\right] \leq U \min \left(r_{\star} n, r_{\star} d+\sqrt{r_{\star} n d}\right)
$$

BACK TO THE REAL SETTING

- Can we actually do better?
- Well, not really.....
- Minimax optimal rate is still the same
- But the bad cases are somehow pathological
- isolated nodes
- uncorrelated being influenced and being influential
- Barabási-Albert etc tell us that the real-world graphs are not like that
- Let's think of some measure of difficulty
- to define some non-degenerate cases
- ideas?
- number of nodes we can efficiently extract in less than n rounds
- function D controls number of nodes given a gap
$D(\Delta) \xlongequal{\text { def }}\left|\left\{i \leq d: r_{\star}^{\circ}-r_{i}^{\circ} \leq \Delta\right\}\right|$
- $D(r)=d$ for $r \geq r *$ and $D(0)=$ number of most influenced nodes
- Detectable dimension $\mathrm{D} *=\mathrm{D}\left(\Delta_{*}\right)$
- Detectable gap $\Delta *$ constants coming from the analysis and the Bernstein inequality
$\Delta_{\star} \xlongequal{\text { def }} 16 \sqrt{\frac{r_{\star}^{\circ} d \log (n d)}{T_{\star}}}+\frac{80 d \log (n d)}{T_{\star}}$
- Detectable horizon T_{*}, smallest integer s.t. $T_{\star} r_{\star}^{\circ} \geq \sqrt{D_{\star} n r_{\star}^{\circ}}$
- Equivalently: D* corresponding to smallest $\mathrm{T} *$ such that
$T_{\star} r_{\star}^{\circ} \geq \sqrt{D\left(16 \sqrt{\frac{r_{\star}^{\circ} d \log (n d)}{T_{\star}}}+\frac{80 d \log (n d)}{T_{\star}}\right) n r_{\star}^{\circ}}$
- For (easy, structured) star graphs $D *=1$ even for small n (big gain)
- For (difficult) empty graphs $D \approx=$ d even for large n (no gain)
- In general: D * roughly decreases with n and it is small when D decreases quickly
- For n large enough $\mathrm{D} *$ is the number of the most influences nodes
- Example: D* for Barabási-Albert model \& Enron graph as a function of n

BAndit REvelator: 2-phase algorithm

- global exploration phase
- super-efficient exploration *)
- linear regret - needs to be short!

- extracts D*nodes
- bandit phase
- uses a minimax-optimal bandit algorithm
- GraphMOSS is a little brother of MOSS
- has a "square root" regret on D* nodes
- D $\#$ realizes the optimal trade-off!
- different from exploration/exploitation tradeoff

BARE - BAndit REvelator

Input

d : the number of nodes
n : time horizon

Initialization

$$
\begin{aligned}
& \frac{T_{k, t}}{r_{k, t}^{\circ}} \leftarrow 0, \text { for } \forall k \leq d \\
& t \leftarrow 1, \text { for } \forall k \leq d \\
& \widehat{T}_{\star} \leftarrow 0, \widehat{D}_{\star, t} \leftarrow d, \widehat{\sigma}_{\star, 1} \leftarrow d
\end{aligned}
$$

Global exploration phase

while $t\left(\widehat{\sigma}_{\star, t}-4 \sqrt{d \log (d n) / t}\right) \leq \sqrt{\widehat{D}_{\star, t} n}$ do
Influence a node at random (choose k_{t} uniformly at random) and get $S_{k_{t}, t}$ from this node
$\widehat{r_{k, t+1}^{\circ}} \leftarrow \frac{t}{t+1} \widehat{r_{k, t}^{\circ}}+\frac{d}{t+1} S_{k_{t}, t}(k)$
$\widehat{\sigma}_{\star, t+1} \leftarrow \max _{k^{\prime}} \sqrt{r_{k^{\prime}, t+1}^{\circ}}+8 d \log (n d) /(t+1)$
$w_{\star, t+1} \leftarrow 8 \widehat{\sigma}_{\star, t+1} \sqrt{\frac{d \log (n d)}{t+1}}+\frac{24 d \log (n d)}{t+1}$
$\widehat{D}_{\star, t+1} \leftarrow\left|\left\{k: \max _{k^{\prime}} \widehat{r_{k^{\prime}, t+1}}-\widehat{r_{k, t+1}^{\circ}} \leq w_{\star, t+1}\right\}\right|$
$t \leftarrow t+1$
end while
$\widehat{T}_{\star} \leftarrow t$.

Bandit phase

Run minimax-optimal bandit algorithm on the $\widehat{D}_{\star, \widehat{T}_{\star}}$ chosen nodes (e.g., Algorithm 1)

EMPIRICAL RESULTS

Figure 1: Left: Barabási-Alber
Middle left: Facebook. Middle right: Enren. Right: Gnutella. Enron and Facebook vs. Gnutella (decentralised)

Varying a (constant) probability of influence

- Ignoring the structure again?
$\widetilde{\mathcal{O}}\left(\sqrt{r_{*} T N}\right)$
- BAndit REvelator: 2-phase algorithm
- global exploration phase
- super-efficient exploration
- linear regret - needs to be short!
- extracts $\mathrm{D} *$ nodes
- bandit phase
- uses a minimax-optimal bandit algorithm (GraphMOSS)
- has a "square root" regret on D * nodes
- $\quad \mathbf{D}$; realizes the optimal trade-off!
- different from exploration/exploitation tradeoff

Regret of BARE
 $\widetilde{\mathcal{O}}\left(\sqrt{r_{*} T D_{*}}\right)$

PROOF TIME!

D* - detectable dimension
(depends on T and the structure)

- good case: star-shaped graph can have $\mathrm{D}^{*}=1$
- bad case: a graph with many small cliques.
- the worst case: all nodes are disconnected except 2

PROOF: ESTIMATES IN THE GLOBAL PHASE

Reward estimate

$$
\widehat{r_{k, t}^{\circ}}=\frac{1}{t} \sum_{t^{\prime}=1}^{t} d S_{k_{t}, t^{\prime}}(k)
$$

Bernstein: w.p. 1-1/n ${ }^{2}$

$$
\left|\widehat{r_{k, t}^{\circ}}-r_{k}^{\circ}\right| \leq 4 \sqrt{\frac{d r_{k}^{\circ} \log (n d)}{t}}+\frac{4 d \log (n d)}{t}
$$

On this event (ξ)

$$
\left|\sqrt{r_{k}^{\circ}}-\sqrt{\widehat{r_{k, t}^{\circ}}+\frac{8 d \log (n d)}{t}}\right| \leq 4 \sqrt{\frac{d \log (n d)}{t}}
$$

And in particular

$$
\left|\widehat{\sigma}_{\star, t}-\sqrt{r_{\star}^{\circ}}\right| \leq 4 \sqrt{\frac{d \log (n d)}{t}}
$$

PROOF: ESTIMATES IN THE GLOBAL PHASE

Similarly (from the same Bernstein bound)

$$
\begin{aligned}
&\left|\left(\max _{k^{\prime}} \widehat{r_{k^{\prime}, t}^{\circ}}-\widehat{r_{k, t}^{\circ}}\right)-\left(r_{\star}^{\circ}-r_{k}^{\circ}\right)\right| \\
& \leq 8 \sqrt{\frac{d r_{\star}^{\circ} \log (n d)}{t}}+\frac{8 d \log (n d)}{t}
\end{aligned}
$$

Plugging in the upper bound ("variance") on the best reward

$$
\begin{aligned}
\mid\left(\max _{k^{\prime}} \widehat{r_{k^{\prime}, t}^{\circ}}\right. & \left.-\widehat{r_{k, t}^{\circ}}\right)-\left(r_{\star}^{\circ}-r_{k}^{\circ}\right) \mid \\
& \leq 8 \widehat{\sigma}_{\star, t} \sqrt{\frac{d \log (n d)}{t}}+\frac{40 d \log (n d)}{t}
\end{aligned}
$$

$O_{n} \xi$, BARE will keep the most influenced nodes (and maybe some more)

$$
\begin{aligned}
\widehat{D}_{\star, t} & \leq D\left(16 \widehat{\sigma}_{\star, t} \sqrt{\frac{d \log (n d)}{t}}+\frac{80 d \log (n d)}{t}\right) \\
& \leq D\left(16 \sqrt{\frac{d r_{\star}^{\circ} \log (n d)}{t}}+\frac{144 d \log (n d)}{t}\right) .
\end{aligned}
$$

PROOF: WHEN DOES THE GLOBAL PHASE END?

CASE 1: Before 3T*

By BARE

$$
3 T_{\star} \sqrt{r_{\star}^{\circ}} \geq \widehat{T}_{\star} \sqrt{r_{\star}^{\circ}} \geq \sqrt{\widehat{D}_{\star, \widehat{T}_{\star}} n}
$$

By def of D*

$$
\sqrt{D_{\star} n r_{\star}^{\circ}} \geq\left(T_{\star}-1\right) r_{\star}^{\circ} \geq T_{\star} r_{\star}^{\circ} / 2
$$

Together

$$
\widehat{D}_{\star, \widehat{T}_{\star}} \leq 36 D_{\star}
$$

... and the optimal arm is among the kept ones.

CASE 2: After 3T* (we show that this cannot happen, by contradiction)
By BARE (the "if" part) $3 T_{\star}\left(\widehat{\sigma}_{\star, T^{\star}}-4 \sqrt{\frac{d \log (n d)}{T_{\star}}}\right) \leq \sqrt{\widehat{D}_{\star, T_{\star} n}}$
As before, we have $\quad 3 T_{\star}\left(\sqrt{r_{\star}^{\circ}}-8 \sqrt{\frac{d \log (n d)}{T_{\star}}}\right) \leq \sqrt{\widehat{D}_{\star, T_{\star} n}}$

Which implies

$$
\frac{3 T_{\star} \sqrt{r_{\star}^{\circ}}}{3} \leq \sqrt{\widehat{D}_{\star, T_{\star} n}}
$$

$$
\begin{aligned}
T_{\star} \sqrt{r_{\star}^{\circ}} & \leq \sqrt{D\left(16 \sqrt{\frac{d r_{\star}^{\circ} \log (n d)}{T_{\star}}}+\frac{144 d \log (n d)}{T_{\star}}\right)} n \\
& \leq \sqrt{D_{\star} n}, \quad \text { which is false by definition of } \mathrm{D}^{*} \text { and } \mathrm{T}^{*}
\end{aligned}
$$

In both cases:

$$
\widehat{T}_{\star} \leq 3 T_{\star} \quad \text { and } \quad \widehat{D}_{\star, \widehat{T}_{\star}} \leq 36 D_{\star}
$$

We upper bound the regret on the remaining rounds:

$$
C^{\prime} D_{\star} r_{\star}+C^{\prime} \sqrt{r_{\star} \widehat{D}_{\star, \widehat{T}_{\star}}\left(n-\widehat{T}_{\star}\right)} \leq C^{\prime} D_{\star} r_{\star}+C^{\prime} \sqrt{r_{\star} D_{\star} n}
$$

Final regret

$$
\begin{aligned}
\mathbb{E}\left[R_{n}\right] & \leq T_{\star} r_{\star}+C^{\prime} D_{\star} r_{\star}+C^{\prime} \sqrt{r_{\star} D_{\star} n}+n \varepsilon_{\star}+\frac{r_{\star}}{n} \\
& \leq\left(C^{\prime}+2\right) \sqrt{r_{\star} D_{\star} n}+2 C^{\prime} r_{\star} D_{\star}+n \varepsilon_{\star} \\
& \leq C\left(\sqrt{r_{\star} D_{\star} n}+r_{\star} D_{\star}\right)+n \varepsilon_{\star}
\end{aligned}
$$

NEXT: GLOBAL INFLUENCE MODELS

- Kempe, Kleinberg, Tárdos, 2003, 2015: Independence Cascades, Linear Threshold models
- global and multiple-source models
- Different feed-back models
- Full bandit (only the number of influenced nodes)
- Node-level semi-bandit (identities of influenced nodes)
- Edge-level semi-bandit (identities of influenced edges)
- http://arxiv.org/abs/1605.06593 (Wen, Kveton, MV)
- IMLinUCB with linear parametrization of edge weights
- Regret analysis for subset of graphs (forests, ...)

Michal Valko, Sequel, Inria Lille - Nord Europe, michal.valko@inria.fr http://Iresearchers.ille.incia.ff/ valko/hp/

