
2 options 
1) doubling trick 
2)  UCB-AIR method (Wang et at. 2008)  
In both cases: regret only worsened by polylog n.

Anytime algorithm?

Unknown β?   

Solution: β-̅SiRI algorithm 
- Devote n1/2 samples to estimate β.  
- Get n1/4  arms and sample them n1/4 times each. 
- Same guarantees as for SiRI (up to loglog n).

Rewards in [0,1] with  µ*=1 ?

The variance of the near-optimal arms is small. 
Empirical Bernstein-modified SiRI (idea by Wang et al. 2008) 
Improved minimax optimal rates (up to polylog n)  
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At time t ≤ n 
    pull a known arm kt or try a new one 

    get the sample 
Reward only at the end  

rn = µ̄⇤ � µbk

At = {⌫1, . . . , ⌫Kt}

Kt+1 = Kt

At+1 = At

Kt+1 = Kt + 1
At+1 = At [ {⌫Kt+1}

⌫Kt+1 ⇠ L̃

Simple regret for infinitely many armed bandits

time t

Beta(1,2) reservoir ~ 100 simulations
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time t

Beta(1,3) reservoir ~ 100 simulations
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time t

Beta(1,1) reservoir ~ 100 simulations
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arm selection tradeoff 
- take many to get at least one good  
- take few to evaluate them well 
different from exploration/exploitation tradeoff 

Setting

β<2: wp > 1/3 inf
A

sup
L̃2S�

rn � vn�1/2

β≥2: wp > 1/3 inf
A

sup
L̃2S�

rn � vn�1/�

Lower bounds 

Experiments 
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Algorithm

SiRI - Simple Regret for Infinitely Many Armed Bandits 
START: Sample T̄b Arms and pull each once 
Update B-values (estimates + confidence intervals) 

Pick arm kt with the highest B value 
Pull arm kt to double the samples from it 
END:  return the arm most pulled

Upper bounds of SiRI 

β<2: whp 
β>2: whp 
β=2: whp

rn  En�1/2

rn  E(n log n)�1/�
polyloglog n

rn  En�1/2
log n polyloglog n

Proof sketch

Based on 2 events that hold with high probability: 

ξ1 - controls the number arm at a given distance from µ*  
ξ2 - controls the distance between empirical and true means µ  

Given ξ1  and ξ2 we show that: 

- Given the suboptimality gap we can bound the number of suboptimal arms. 

- Among T̄b  arms pulled, there is at least one good enough. 

- Empirical means are close to the true ones. (True means are random!) 

- We can bound the number of suboptimal arms. 

- We can upper bound the number of suboptimal pulls. 

- There is a near-optimal arm pulled more than n/2 times. 

- By definition, this near-optimal arm is selected by SiRI.
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ExtraLearn

β = 1 β = 2 β = 3

Where is it useful?   

- When we are faced with many choices  
- but we can’t try them all even once. 

- Applicable to finite but extremely large cases. 
- Single feature selection (biomarkers).

Other infinite bandits   

- X-armed bandits,  bandits in metric spaces, ... 
- linear bandits, convex bandits, … 
All require contextual information (embedding).  
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minimax rates phase transition

cumulative regret max(nβ/(β+1), n1/2) β = 1

cumulative regret 
bounded

nβ/(β+1) none

simple regret max(n-1/β, n-1/2) β = 2

simple regret 
bounded

max(n-1/β, n-1) β = 1

Comparison 


