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but:

poor experimental scalability (sequential feedback)

high computational complexity (slow model update)
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but not for too long!
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Mini-META: making GP-Opt scalable

Contribution: an automatic “just right” detector to choose when to switch candidates

Strengths:

Provably preserves convergence rate (not too late)

With a provably low number of switches (not too early)

Unlocks experimental parallelism
Improves computational complexity

Easily applicable to popular GP-Opt algorithms (Mini-fied variants)

Mini-GP-UCB from GP-UCB [6], Mini-GP-EI from GP-EI [7]

Weaknesses:

Cannot be applied when repeated choices are not possible (e.g., personalized news)

Not very useful for noiseless scenarios
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Bonus properties: few unique candidates

Low number of switches + selecting same candidate = few unique candidates in the GP

Mini-META

__

GP reformulation, not GP approximation!

vs.

Existing scalable GP-Opt methods [5, 3, 1, 4]

~~
Randomized GP approximation

Special case of stratified sampling [2], inapplicable to GPs with i.i.d. samples
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Bonus property: low setup costs

vs.



Wrapping up

We present a simple and practical modification to existing GP-Opt algorithms that drastically
improves scalability without sacrificing convergence.

See the paper for

experiments

rigorous proofs

more details on continuous domains

See us at the poster/virtual session to check if your GP-Opt algorithm can be Mini-fied!
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