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Our contribution in a nutshell

Traditional GP-Opt approaches achieve good explore/exploit balance, but
suffer from high computational costs and poor use of parallel evaluations.

We propose a new GP-Opt approach that repeatedly evaluates the same
candidate before switching. By carefully choosing the switching time con-
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One easy trick to scale GP-Optimization

Keep choosing and evaluating the same candidate but not for too long!

GP compression with few unique candidates

Low number of switches + selecting same candidate

¢

few unique candidates in the GP
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vergence rate is provably preserved, and we can also guarantee
« computational savings, through non-trivial and exact GP compression,
* high evaluation parallellism, through very rare switchings.

As long as repeated evaluations are allowed by the task, our approach can be
directly applied to most GP-Opt algorithms (e.g.,, GP-UCB, GP-El) and maybe

can help scale your favourite GP-Opt approach!

Gaussian Process Optimization (GP-Opt)

Given unknown noisy function f and a de-

cision set A (e.g, A C RY) at each step ¢

the learner:

1. optimizes acquisition function u; as a
surrogate of f to selects candidate
X; = arg maxxe.4 ui(X);

2. evaluates x; and receives feedback
Yo = f(Xe) + 10

3. improves u;'s approximation of f.

We measure convergence using cumula-
tive regret R, = >.'_, max f(X) — f(Xs).

The posterior of the GP conditioned on evaluations X, y; is formulated as

p (%) =k (i, Xe) (Kz + A1)~ Ky,
Uf(Xi) :k(XZ‘,XZ') — k(Xi,Xt)(Kt + )\l)_lk(xt,xi)7

with K; = k(X¢, X;). Using u: and o we construct acquistion functions

f(x)

utGP-UCB(X) _ ,ut(x) + BSP—UCBUt(X)’

U?P—EI<X) _ ( fP‘E'at(X) . [(ﬁ)CDF/\/(ﬁ) +PDFN(ﬁ)] )’

with z = ‘“(")LW and 3, is proportional to the GP information gain

ot (x)
¥(X,y) = Llogdet(l + A2k(X, X)).

The maximum information gain at step ¢ is v; = maxx.x|— (X, y).

Mini-META rule to minimize switches

Keep choosing x;1, and switch after B, = |(C? — 1)/0?(x;+1)| evaluations.

Strengths:
« Preserves convergence rate up to a C factor (“not too late” lemma)
» Switches at most H < O((1+1/(C? —1))7;) (“not too early” lemma)
Calls to u; optimizer reduced from O(T') to O(H)
GP posterior inference time reduced from O(T?) to O(H?)
— Overall computational complexity of O(T + H - (|A|H? + H?))
— Unlocks experimental parallelism
+ Easily applicable to popular GP-Opt algorithms (Mini-fied variants)
— Mini-GP-UCB from GP-UCB [6], Mini-GP-E| from GP-El [7]

Weaknesses:
» Not applicable when repeated choices are not possible

» Not very useful for noiseless scenarios
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identical candidates can be aggregated for a lossless GP compression!

Existing scalable GP-Opt [5,3,1,4]
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Randomized approximation
Simple to implement using diagonal Wy € R”*H = Diag({B}})

(%, X)) (Kir + AW "ty g,
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ot g (X) =

k
JfH (x) =k

where KH = k(XHa XH) € RHXH! and YH € RH is such that [YH]h = Zth+Bh Ys.
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Special case of stratified sampling [2], inapplicable to GPs with i.i.d. samples

Reduced switching costs
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Experiments
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