
Scaling Gaussian Process Optimization
by Evaluating a Few Unique Candidates Multiple Times

D. Calandriello1, L. Carratino2, A. Lazaric3, M. Valko1, L. Rosasco2,4

1DeepMind, 2MalGa University of Genova, 3Meta AI, 4MIT/IIT

Our contribution in a nutshell
Traditional GP-Opt approaches achieve good explore/exploit balance, but
suffer from high computational costs and poor use of parallel evaluations.
We propose a new GP-Opt approach that repeatedly evaluates the same
candidate before switching. By carefully choosing the switching time con-
vergence rate is provably preserved, and we can also guarantee
• computational savings, through non-trivial and exact GP compression,
• high evaluation parallellism, through very rare switchings.

As long as repeated evaluations are allowed by the task, our approach can be
directly applied to most GP-Opt algorithms (e.g., GP-UCB, GP-EI) andmaybe
can help scale your favourite GP-Opt approach!

Gaussian Process Optimization (GP-Opt)
Given unknown noisy function f and a de-
cision set A (e.g., A ⊆ Rd) at each step t
the learner:
1. optimizes acquisition function ut as a
surrogate of f to selects candidate
xt = argmaxx∈A ut(x);

2. evaluates xt and receives feedback
yt ! f(xt) + ηt;

3. improves ut’s approximation of f .

We measure convergence using cumula-
tive regret Rt =

∑t
s=1maxA f(x)− f(xs).

The posterior of the GP conditioned on evaluations Xt,yt is formulated as

µt(xi) =k(xi,Xt)(Kt + λI)−1Ktyt,

σ2
t (xi) =k(xi,xi)− k(xi,Xt)(Kt + λI)−1k(Xt,xi),

with Kt = k(Xt,Xt). Using µt and σt we construct acquistion functions

uGP-UCBt (x) = µt(x) + βGP-UCB
t σt(x),

uGP-EIt (x) =
(
βGP-EI
t σt(x) ·

[(
z

βGP-EI
t

)
CDFN

(
z

βGP-EI
t

)
+ PDFN

(
z

βGP-EI
t

)])
,

with z = µt(x)−maxx′ µt(x′)
σt(x)

and βt is proportional to the GP information gain

γ(X,y) = 1
2 logdet(I+ λ−2k(X,X)).

The maximum information gain at step t is γt = maxX:|X|=t γ(X,y).

One easy trick to scale GP-Optimization
Keep choosing and evaluating the same candidate but not for too long!

Too early

“Just right”

Too late

Mini-META rule to minimize switches
Keep choosing xt+1, and switch after Bh = #(C2 − 1)/σ2

t (xt+1)$ evaluations.

Strengths:
• Preserves convergence rate up to a C factor (“not too late” lemma)
• Switches at most H ≤ O

(
(1 + 1/(C2 − 1))γt

)
(“not too early” lemma)

– Calls to ut optimizer reduced from O(T) to O(H)
– GP posterior inference time reduced from O(T 2) to O(H3)
– Overall computational complexity of O

(
T +H · (|A|H2 +H3)

)

– Unlocks experimental parallelism
• Easily applicable to popular GP-Opt algorithms (Mini-fied variants)
– Mini-GP-UCB from GP-UCB [6], Mini-GP-EI from GP-EI [7]

Weaknesses:
• Not applicable when repeated choices are not possible
• Not very useful for noiseless scenarios

GP compression with few unique candidates
Low number of switches + selecting same candidate

⇓
few unique candidates in the GP

⇓
identical candidates can be aggregated for a lossless GP compression!

Mini-META Existing scalable GP-Opt [5,3,1,4]

__ vs ~~
Reformulation, not approximation! Randomized approximation

Simple to implement using diagonal WH ∈ RH×H = Diag({Bh})

µtH (x) = k(x,XH)(KH + λW−1
H)−1yH ,

σ2
tH (x) = k(x,x)− k(x,XH)(KH + λW−1

H)−1k(XH ,x)

where KH = k(XH ,XH) ∈ RH×H , and yH ∈ RH is such that [yH]h =
∑th+Bh

s=th
ys.

Special case of stratified sampling [2], inapplicable to GPs with i.i.d. samples

Reduced switching costs

vs

Experiments
We compare Mini-GP-UCB and Mini-GP-EI on the NAS-Bench search task from [3] (|A| = 12416, d = 19)

Rt/t against step t # unique candidates against step t RT against wall-clock time (s)

[1] Maximilian Balandat et al. “Botorch: Programmable bayesian optimization in pytorch”. arXiv:1910.06403 (2019) [2] Mickaël Binois et al. “Replication or exploration? Sequential design for stochastic simulation experiments”. Technometrics 61.1 (2019) [3] Daniele Calandriello et al. “Near-linear Time Gaussian Process Optimization with Adaptive Batching and Resparsification”. ICML (2020)
[4] Jacob R Gardner et al. “Gpytorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration”. NeurIPS (2018) [5] Mojmir Mutny et al. “Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features”. NeurIPS (2018) [6] Niranjan Srinivas et al. “Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design”. ICML (2010) [7] Ziyu Wang et al. “Bayesian multi-scale optimistic optimization”. Artificial Intelligence and Statistics (2014)

