Scaling Gaussian Process Optimization

o

by Evaluating a Few Unique Candidates Multiple Times

D. Calandriello’, L. Carratino?, A. Lazaric3, M. Valko', L. Rosasco?#

Our contribution in a nutshell

Traditional GP-Opt approaches achieve good explore/exploit balance, but
suffer from high computational costs and poor use of parallel evaluations.

We propose a new GP-Opt approach that repeatedly evaluates the same
candidate before switching. By carefully choosing the switching time con-

'DeepMind, 2MalGa University of Genova, Meta Al, *MIT/IIT

DeepMind

One easy trick to scale GP-Optimization

Keep choosing and evaluating the same candidate but not for too long!

GP compression with few unique candidates

Low number of switches + selecting same candidate

¢

few unique candidates in the GP

4

vergence rate is provably preserved, and we can also guarantee
« computational savings, through non-trivial and exact GP compression,
* high evaluation parallellism, through very rare switchings.

As long as repeated evaluations are allowed by the task, our approach can be
directly applied to most GP-Opt algorithms (e.g.,, GP-UCB, GP-El) and maybe

can help scale your favourite GP-Opt approach!

Gaussian Process Optimization (GP-Opt)

Given unknown noisy function f and a de-

cision set A (e.g, A C RY) at each step ¢

the learner:

1. optimizes acquisition function u; as a
surrogate of f to selects candidate
X; = arg maxxe.4 ui(X);

2. evaluates x; and receives feedback
Yo = f(Xe) + 10

3. improves u;'s approximation of f.

We measure convergence using cumula-
tive regret R, = >.'_, max f(X) — f(Xs).

The posterior of the GP conditioned on evaluations X, y; is formulated as

p (%) =k (i, Xe) (Kz + A1)~ Ky,
Uf(Xi) :k(XZ‘,XZ') — k(Xi,Xt)(Kt +)\l)_lk(xt,xi)7

with K; = k(X¢, X;). Using u: and o we construct acquistion functions

f(x)

utGP-UCB(X) _ ,ut(x) + BSP—UCBUt(X)’

U?P—EI<X) _ (fP‘E'at(X) . [(ﬁ)CDF/\/(ﬁ) +PDFN(ﬁ)])’

with z = ‘“(")LW and 3, is proportional to the GP information gain

ot (x)
¥(X,y) = Llogdet(l + A2k(X, X)).

The maximum information gain at step ¢ is v; = maxx.x|— (X, y).

Mini-META rule to minimize switches

Keep choosing x;1, and switch after B, = |(C? — 1)/0?(x;+1)| evaluations.

Strengths:
« Preserves convergence rate up to a C factor (“not too late” lemma)
» Switches at most H < O((1+1/(C? —1))7;) (“not too early” lemma)
Calls to u; optimizer reduced from O(T') to O(H)
GP posterior inference time reduced from O(T?) to O(H?)
— Overall computational complexity of O(T + H - (|A|H? + H?))
— Unlocks experimental parallelism
+ Easily applicable to popular GP-Opt algorithms (Mini-fied variants)
— Mini-GP-UCB from GP-UCB [6], Mini-GP-E| from GP-El [7]

Weaknesses:
» Not applicable when repeated choices are not possible

» Not very useful for noiseless scenarios

T
' Too early
&
Mini-META
-~
' “Just right”
LA I I I = i I vs
~
4, ' & Toolate Reformulation, not approximation!
N

identical candidates can be aggregated for a lossless GP compression!

Existing scalable GP-Opt [5,3,1,4]
~NU §

Randomized approximation
Simple to implement using diagonal Wy € R”*H = Diag({B}})

(%, X)) (Kir + AW "ty g,
(%, %) — k%, Xz) (Kg + AW, " 'k(Xg, x)

ot g (X) =

k
JfH (x) =k

where KH = k(XHa XH) € RHXH! and YH € RH is such that [YH]h = Zth+Bh Ys.

Szth

Special case of stratified sampling [2], inapplicable to GPs with i.i.d. samples

Reduced switching costs

i i i i i)

Experiments

We compare Mini-GP-UCB and Mini-GP-EIl on the NAS-Bench search task from [3] (| A| = 12416, d = 19) F—b-gpuch —— bbkb — bkb | eps-greedy f— gp-ucb [— mu-gp-ei — mu-gp-ucb
0.25- 300- 0.25-
0.20- 0.20-
»n 200-
gois % @ o01s
g g g
2 = oy
© 0.10- =] © 0.10
* 100
0.05- 0.05-
0 0 0-
0 5000 10000 15000 0 5000 10000 15000 0 50 100 150 200 250
t t runtime (s)

R/t against step ¢

unique candidates against step ¢

Rt against wall-clock time (s)

[1] Maximilian Balandat et al. “Botorch: Programmable bayesian optimization in pytorch”. arXiv:1910.06403 (2019) [2] Mickaél Binois et al. “Replication or exploration? Sequential design for stochastic simulation experiments”. Technometrics 61.1(2019) [3] Daniele Calandriello et al. “Near-linear Time Gaussian Process Optimization with Adaptive Batching and Resparsification”. ICML (2020)
[4] Jacob R Gardner et al. “Gpytorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration”. NeurlPS (2018) [5] Mojmir Mutny et al. “Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features”. NeurlPS (2018) [6] Niranjan Srinivas et al. “Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design”. ICML (2010) [7] Ziyu Wang et al. “Bayesian multi-scale optimistic optimization”. Artificial Intelligence and Statistics (2014)

