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Our contribution in a nutshell
Traditional GP-Opt approaches achieve good explore/exploit balance, but
suffer from high computational costs and poor use of parallel evaluations.
We propose a new GP-Opt approach that repeatedly evaluates the same
candidate before switching. By carefully choosing the switching time con-
vergence rate is provably preserved, and we can also guarantee
• computational savings, through non-trivial and exact GP compression,
• high evaluation parallellism, through very rare switchings.

As long as repeated evaluations are allowed by the task, our approach can be
directly applied to most GP-Opt algorithms (e.g., GP-UCB, GP-EI) andmaybe
can help scale your favourite GP-Opt approach!

Gaussian Process Optimization (GP-Opt)
Given unknown noisy function f and a de-
cision set A (e.g., A ⊆ Rd) at each step t
the learner:
1. optimizes acquisition function ut as a
surrogate of f to selects candidate
xt = argmaxx∈A ut(x);

2. evaluates xt and receives feedback
yt ! f(xt) + ηt;

3. improves ut’s approximation of f .

We measure convergence using cumula-
tive regret Rt =

∑t
s=1maxA f(x)− f(xs).

The posterior of the GP conditioned on evaluations Xt,yt is formulated as

µt(xi) =k(xi,Xt)(Kt + λI)−1Ktyt,

σ2
t (xi) =k(xi,xi)− k(xi,Xt)(Kt + λI)−1k(Xt,xi),

with Kt = k(Xt,Xt). Using µt and σt we construct acquistion functions

uGP-UCBt (x) = µt(x) + βGP-UCB
t σt(x),

uGP-EIt (x) =
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with z = µt(x)−maxx′ µt(x′)
σt(x)

and βt is proportional to the GP information gain

γ(X,y) = 1
2 logdet(I+ λ−2k(X,X)).

The maximum information gain at step t is γt = maxX:|X|=t γ(X,y).

One easy trick to scale GP-Optimization
Keep choosing and evaluating the same candidate but not for too long!

Too early

“Just right”

Too late

Mini-META rule to minimize switches
Keep choosing xt+1, and switch after Bh = #(C2 − 1)/σ2

t (xt+1)$ evaluations.

Strengths:
• Preserves convergence rate up to a C factor (“not too late” lemma)
• Switches at most H ≤ O

(
(1 + 1/(C2 − 1))γt

)
(“not too early” lemma)

– Calls to ut optimizer reduced from O(T ) to O(H)
– GP posterior inference time reduced from O(T 2) to O(H3)
– Overall computational complexity of O

(
T +H · (|A|H2 +H3)

)

– Unlocks experimental parallelism
• Easily applicable to popular GP-Opt algorithms (Mini-fied variants)
– Mini-GP-UCB from GP-UCB [6], Mini-GP-EI from GP-EI [7]

Weaknesses:
• Not applicable when repeated choices are not possible
• Not very useful for noiseless scenarios

GP compression with few unique candidates
Low number of switches + selecting same candidate

⇓
few unique candidates in the GP

⇓
identical candidates can be aggregated for a lossless GP compression!

Mini-META Existing scalable GP-Opt [5,3,1,4]

__ vs ~~
Reformulation, not approximation! Randomized approximation

Simple to implement using diagonal WH ∈ RH×H = Diag({Bh})

µtH (x) = k(x,XH)(KH + λW−1
H )−1yH ,

σ2
tH (x) = k(x,x)− k(x,XH)(KH + λW−1

H )−1k(XH ,x)

where KH = k(XH ,XH) ∈ RH×H , and yH ∈ RH is such that [yH ]h =
∑th+Bh

s=th
ys.

Special case of stratified sampling [2], inapplicable to GPs with i.i.d. samples

Reduced switching costs

vs

Experiments
We compare Mini-GP-UCB and Mini-GP-EI on the NAS-Bench search task from [3] (|A| = 12416, d = 19)
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