
Scaling Gaussian Process Optimization by
Evaluating a Few Unique Candidates Multiple Times

Daniele Calandriello 1 Luigi Carratino 2 Alessandro Lazaric 3 Michal Valko 1 Lorenzo Rosasco 2 4 5

Abstract

Computing a Gaussian process (GP) posterior has
a computational cost cubical in the number of his-
torical points. A reformulation of the same GP
posterior highlights that this complexity mainly
depends on how many unique historical points
are considered. This can have important impli-
cation in active learning settings, where the set
of historical points is constructed sequentially by
the learner. We show that sequential black-box
optimization based on GPs (GP-Opt) can be made
efficient by sticking to a candidate solution for
multiple evaluation steps and switch only when
necessary. Limiting the number of switches also
limits the number of unique points in the his-
tory of the GP. Thus, the efficient GP reformu-
lation can be used to exactly and cheaply com-
pute the posteriors required to run the GP-Opt
algorithms. This approach is especially useful
in real-world applications of GP-Opt with high
switch costs (e.g. switching chemicals in wet labs,
data/model loading in hyperparameter optimiza-
tion). As examples of this meta-approach, we
modify two well-established GP-Opt algorithms,
GP-UCB and GP-EI, to switch candidates as infre-
quently as possible adapting rules from batched
GP-Opt. These versions preserve all the theoret-
ical no-regret guarantees while improving prac-
tical aspects of the algorithms such as runtime,
memory complexity, and the ability of batching
candidates and evaluating them in parallel.

1DeepMind 2MaLGa, DIBRIS, University of Genova, Italy
3Meta AI 4Massachusetts Institute of Technology 5Istituto Italiano
di Tecnologia. Correspondence to: Daniele Calandriello <dcalan-
driello@google.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
Bayesian and bandit optimization (Mockus, 1989; Lattimore
& Szepesvári, 2020) are two well established frameworks
for black-box function optimization under uncertainty. They
model the optimization process as a sequential learning
problem. For an unknown function f and a decision set A
(e.g., A ⊆ Rd) at each step t the learner:
(1) selects candidate xt ∈ A by maximizing an acquisition
function ut as a surrogate of f ;
(2) receives a noisy feedback 1 yt

def
= f(xt) + ηt from the

environment, where ηt
i.i.d.∼ N (0, ξ2);

(3) uses yt to improve ut’s approximation of f .

A common approach to measure the learner’s convergence
is to study the cumulative regret RT

def
=
∑T
t=1 f

? − f(xt)
of the learner’s choice of candidates compared to the
optimum of the function f? = maxx f(x). A learner
is deemed no-regret when it converges on average (i.e.,
limT→∞RT /T → 0). Thanks to their flexibility and ca-
pability of modeling uncertainty, Gaussian processes (GP)
(Rasmussen & Williams, 2006) have emerged as an effective
choice for regret minimization, jump-starting the field of GP
optimization (GP-Opt). Decision rules that leverage GPs to
estimate upper confidence bounds (GP-UCB (Srinivas et al.,
2010; Chowdhury & Gopalan, 2017)) or expected improve-
ment (GP-EI (Wang & de Freitas, 2014)) provably achieve
a regret2 Õ(γT

√
T) over T steps. Here, γT is the so-called

maximum information gain associated with A and the GP.
It captures in a data-adaptive way the implicit number of
parameters of the non-parametric GP model, quantifying
the effective complexity of the optimization problem. Un-
der appropriate assumptions γT grows slowly in T making
GP based methods no-regret (Srinivas et al., 2010; Scarlett
et al., 2017). However, as most non-parametric approaches,
GP-Opt algorithms face scalability issues when T grows
large, severely limiting their applicability to large scale set-
tings. For example, in some hyper-parameter optimization
problems the solutions can still improve even after tens of
thousands of candidate evaluations (e.g. the NAS-bench
search (Ying et al., 2019) evaluated 5 million candidates).

1Actions or arms are also used for xt; and rewards for yt.
2The notation Õ ignores polylog terms.

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

Even more, for recommender systems that continuously
adapt to the users’ behaviour, the horizon T is unbounded
and the optimization process never ends (e.g. (Saito et al.,
2021; Li et al., 2010) record tens of millions of interactions
with users). Many approaches have been proposed to extend
GP-Opt algorithms to these settings.

1.1. Approaches to scalable no-regret GP optimization

GP’s most commonly considered limitation is the compu-
tational bottleneck, which stems from the high cost of
quantifying uncertainty using exact inference on the GP
model. In particular, in the traditional i.i.d. learning setting
the complexity of computing a GP posterior over n training
points is usually quantified as Õ(n3) time and Õ(n2) space
(Rasmussen & Williams, 2006), which makes training GPs
on large dataset unfeasible in general. A similar complex-
ity analysis in the GP-Opt settings replaces n with the T
candidates chosen by the algorithm, giving us a baseline
complexity of Õ(T 3) time and Õ(T 2) space complexity.
Two main approaches have emerged to reduce this com-
plexity. The most common can provably preserve no-regret
guarantees, and is based on approximating the GP model, us-
ing either inducing points (Quinonero-Candela et al., 2007;
Calandriello et al., 2019) or quadrature Fourier features
(Mutny & Krause, 2018). Another approach is to use ap-
proximate posterior inference, e.g., using iterative solvers
(Gardner et al., 2018), but without no-regret guarantees.

Beyond computations, vanilla GP-Opt algorithms suffer
from a sequential experimentation bottleneck, which
stems from having to wait for feedback at every step of
the sequential interaction protocol. Whenever each function
evaluation is time consuming this bottleneck can actually
dominate the computational one, and even computation-
ally efficient GP-Opt algorithms cannot scale as they spend
most of their time waiting for feedback. However, even in
this slow evaluation setting scalability can be achieved by
selecting batches of candidates at the same time and eval-
uating them in parallel. Experimental parallelism greatly
reduces total evaluation time, and millions of evaluations are
possible resulting in much better final performance (Ying
et al., 2019). The key trade-off is between batch sizes and
regret, with larger batches increasing the potential for paral-
lelism but also increase feedback delay and regret. Several
approaches have been proposed over the year to manage
this trade-off (Desautels et al., 2014; Kathuria et al., 2016;
Daxberger & Low, 2017).

Overall, to match existing state of the art GP-Opt algorithms
in guarantees for regret, computational cost and batching
capability, an algorithm should achieve Õ(γT

√
T) regret

with a Õ(Tγ3T) time and Õ(TγT + γ2T) space complexity,
and only Õ(γT) rounds of interactions (i.e., batches).

1.2. Contributions

In this paper we propose a meta-algorithm, MINI-META,
that we use to generate scalable versions of many popular
GP-Opt algorithm. Applying MINI-META to GP-UCB and
GP-EI we obtain two new MINI-variants, MINI-GP-UCB
and MINI-GP-EI, that achieve performance comparable to
existing state-of-the-art scalable GP-Opt algorithms, but rely
on very different underlying principles to achieve scalability.

There are two main building blocks in MINI-META. The
first is a reformulation of the posterior of a GP that highlights
that scalability in a GP does not depend on the number of
points in the GP, but rather on the number of unique (i.e.,
different from all others) points. Indicating with qt the
number of unique points up to time t, the time complexity of
computing a GP can then be reduced from Õ(T 3) to Õ(q3T).
This is an elementary property of GPs, but its applicability
greatly depends on the underlying task. It has little impact
and is not used in i.i.d. learning settings where duplicates
in the training data are exceedingly rare. It can bring more
benefits in settings were multiple evaluations of the same
candidate are naturally part of the solution, and it has been
leveraged when possible in stochastic optimization (Picheny
et al., 2013) and active learning (Binois et al., 2019). In
this paper we show that this approach can be taken a step
further in GP-Opt tasks. In particular, the second building
block of MINI-META is a meta-strategy that given a GP-
Opt algorithm as input, modifies the candidate selection
strategy of the input learner to explicitly minimize qt to
improve performance while preserving the same regret rate
guarantees as the original candidate selection strategy.

Out of the many meta-strategies that one can consider, a
simple yet effective approach that we advocate is to limit the
number of times the candidate selection strategy is allowed
to switch candidates, since the number of candidate switches
clearly bounds qt. This can be done transparently for many
input learners by using the selection strategy, and then stick-
ing to the same candidate for multiple steps before invoking
the selection strategy again. Furthermore, the rule we derive
to decide when to switch candidate does not depend on the
function feedback. Therefore the algorithm can first select a
candidate, then choose how many steps it should stick to it,
and finally evaluate the candidate multiple times in parallel.
In other words, our meta-approach can not only retro-fit
existing GP-Opt algorithms to be computationally scalable,
but also experimentally scalable thanks to batching.

Theoretically, we study the impact of this generic modifi-
cation both under the lenses of model freezing in the linear
bandits (Abbasi-Yadkori et al., 2011) and delayed feedback
in batch GP-Opt (Desautels et al., 2014; Calandriello et al.,
2020). Using these tools we derive strong guarantees for
two new variants of GP-UCB and GP-EI that balance be-
tween minimizing unique actions and achieving low regret,

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

hence dubbed minimize-unique-GP-UCB (MINI-GP-UCB)
and minimize-unique-GP-EI (MINI-GP-EI). Thanks to a
careful balancing of the trade-off, both algorithms match
the Õ(γT

√
T) regret of their traditional counterparts, while

evaluating a number of unique candidates qt ≤ Õ(γt) that
scales only with the maximum information gain. More-
over, these algorithms are extremely scalable, requiring only
Õ(T + Aq3T) ≤ Õ(T + Aγ3T) time, where A is the time
required to optimize qt, Õ(TγT + γ2T) space, and Õ(γT)
rounds of interaction.

Our approach also highlights an even less studied family
of scalability bottlenecks for GPs, the candidate switch
bottlenecks. Similar to the sequential experimentation bot-
tleneck, this is an experimental bottleneck that stems from
the fact that in some cases, changing the candidate being
evaluated can be time or cost expensive (e.g., even if test-
ing a chemical might be fast, re-calibrating instruments for
different chemicals might be expensive).

Finally, our approach is unique in the scalable GP litera-
ture in the sense that it completely side-steps the necessity
of approximating inference or the GP model; avoiding the
need of inducing points, randomized sketching, or iterative
solvers. Instead, algorithms based on MINI-META can use
exact inference on an exact GP model thanks to the effi-
cient posterior reformulation and the different optimization
path chosen to minimize unique candidates. This greatly
simplifies the algorithm, making it more broadly applicable.

2. Preliminaries
Notation. We denote with [t] = {1, . . . , t} the set of inte-
gers up to t. At step t, the matrix Xt

def
= [x1, . . . ,xt]

T ∈
Rt×d contains all the candidates selected so far, and
yt

def
= [y1, . . . , yt]

T their corresponding feedbacks. We de-
fine a batch as a sequence of steps between t ≤ t′ such that
the learner must select all candidates xt, . . .xt′ before ob-
serving the corresponding feedback yt, . . . , yt′ . To connect
steps and batches we adopt a standard notation (Desautels
et al., 2014; Calandriello et al., 2020) where fb(t) indicates
the last step of the previous batch, i.e., at step t the learner
has access only to feedback yfb(t) up to step fb(t).

Gaussian processes. GPs (Rasmussen & Williams, 2006)
are usually described using a mean function µ, which we
assume to be zero, and a (bounded) covariance or kernel
function k : A×A → [0, κ2]. Based on the prior µ and k,
the posterior of the GP conditioned on some data Xt,yt is
traditionally formulated as

µt(xi) = k(xi,Xt)(Kt + λI)−1Ktyt,

σ2
t (xi) = k(xi,xi)− k(xi,Xt)(Kt + λI)−1k(Xt,xi),

(1)

Algorithm 1 Optimistic GP optimization
Require: Set of candidates A, acq. func. u0

1: Initialize t = 0

2: for t = {1, . . . , T} do
3: Select xt+1 = arg maxx∈A ut(x)

4: Get feedback yt+1

5: Update µt, σt, βt and ut
6: end for

where we shortened Kt = k(Xt,Xt), and use only the
subscript t to indicate that µt and σt are conditioned on all
data up to time t. Note also that µt and σt are only proper
Bayesian GP posterior when λ = ξ2, but we leave here λ
as a free parameter as it will be useful in frequentist regret
analysis. Given prior and posterior of the GP, we can also
define the information gain between them as

γ(X,y)
def
= 1

2 log det(I + ξ−2k(X,X)).

Based on γ(X,y) we can also define the maximum informa-
tion gain γt

def
= maxX:|X|=t γ(X,y) at step t as a worst-case

bound on the complexity of the optimization process. Large
amounts of research have been dedicated to characterizing
how γT behaves under different assumptions on A and k
(Srinivas et al., 2010; Scarlett et al., 2017). This includes
sufficient conditions for γT to be sublinear, both with poly-
nomial and logarithmic rates in T . We leave the reader to
recent surveys (Vakili et al., 2021) for more results, and treat
here γT as a desirable data-adaptive measure of the intrinsic
complexity of the problem.

Optimistic Gaussian process optimization. Given a GP
posterior, we can construct an acquisition function ut(·) :
A → R to guide us in the candidate selection. We fo-
cus specifically on acquisition functions based on upper
confidence bounds (GP-UCB (Srinivas et al., 2010)) and
expected improvement (GP-EI (Mockus, 1989))

uGP-UCB
t (x) = µt(x) + βGP-UCB

t σt(x), (2)

uGP-EI
t (x) =

(
βGP-EI
t σt(x) (3)

·
[(

z
βGP-EI
t

)
CDFN

(
z

βGP-EI
t

)
+ PDFN

(
z

βGP-EI
t

)])
,

where z = µt(x)−maxx′ µt(x
′)

σt(x)
, CDFN (·) and PDFN (·) are

the cumulative and probability density functions of a stan-
dard Gaussian, and βt ∈ R+ must be appropriately chosen.

Given an acquisition function ut, a standard way to obtain a
GP-Opt algorithm based on it is to apply the meta-algorithm
reported in Algorithm 1. In particular, the acquisition func-
tion is used by the meta-algorithm to choose candidates op-
timistically/greedily w.r.t. ut. Applying Algorithm 1 to the
GP-UCB and GP-EI acquisition function we obtain exactly
the GP-UCB and GP-EI algorithms (Wang & de Freitas,
2014; Chowdhury & Gopalan, 2017), which are guaranteed

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

Algorithm 2 Meta-algorithm to minimize unique candidates
(MINI-META)
Require: Set of candidates A, acq. func. u0, threshold C

1: Initialize t = 0

2: for h = {1, . . . } do
3: Select xt+1 = arg maxx∈A ut(x)

4: Evaluate xt+1 forBh = b(C2−1)/σ2
t (xt+1)c times

(i.e., xs = xt+1 for all s ∈ [t+ 1, t+Bh])
5: Get feedback {ys}t+Bh

s=t+1

6: Set t = t+Bh, update posteriors µt, σt and acquisi-
tion function ut

7: end for

to achieve low regret. Unfortunately, optimizing ut or even
evaluating it is computationally inefficient, as it involves
evaluating σt(x) which requires at least O(t2) time due to
the multiplication (Kt + λI)−1k(Xt,xj). Moreover, the
sequential nature of the optimization protocol precludes the
possibility of running experiments in parallel, which is also
necessary to achieve true scalability. We propose now a new
approach to address both bottlenecks.

3. Efficient GP Optimization With Few
Unique Candidates

Our approach to achieve scalability will be composed by
two main ingredients. The first ingredient is a reformulation
of the GP posterior that can be efficiently computed when
the GP is supported on a small number qt of unique candi-
dates (i.e., the history Xt contains t rows with repetitions,
of which only qt are unique). To leverage this first ingredi-
ent we then need a second ingredient, a generic approach
to guarantee that qt stays small. This takes the form of a
modification of the usual GP-Opt loop of Algorithm 1 to
reduce the number of candidate switches, which acts as an
upper bound on qt. Since our switching rule is agnostic
to ut, our approach remains a flexible meta-algorithm that
can be applied to different acquisition functions to obtain
different efficient GP-Opt algorithms. As an added bonus,
we also show how these choices allow to seamlessly incor-
porate candidate batching in the resulting algorithm, which
improves experimental scalability.

3.1. A meta-algorithm to select few unique candidates

To control the number of candidate switches we general-
ize and improve the rarely switching OFUL (RS-OFUL)
algorithm (Abbasi-Yadkori et al., 2011). In particular, we
extend RS-OFUL from euclidean to Hilbert spaces, mod-
ify it to operate with acquisition functions different than
the GP-UCB one, and replace RS-OFUL’s switching rule
with an improved criteria recently proposed for batched GP

optimization (Calandriello et al., 2020). Our final meta-
algorithm MINI-META is reported in Algorithm 2.

We refer to it as a meta-algorithm because it can generate
different GP-Opt algorithms using different acquisition func-
tions u0(·) as input. As an example, if we use uGP-UCB

t (·)
(Equation 2) we obtain an algorithm similar to GP-UCB
that we call minimize-unique-GP-UCB or MINI-GP-UCB
for short. Similarly, we can use Algorithm 2 to convert GP-
EI into MINI-GP-EI. Moreover, all of the algorithms gen-
erated by MINI-META can compute posteriors efficiently
using a reformulation of µt and σt introduced later in Equa-
tion 4 rather than the standard formulation of Equation 1.

The meta-algorithm operates in epochs/batches indexed by
h, where each epoch is delimited by a candidate switch.
Inside each epoch, the meta-algorithm selects the next can-
didate xt+1 to be evaluated by maximizing the acquisition
function ut, and we discuss more in detail later how easy
or hard this inner optimization problem can be based on
properties of ut and A. Then, after selecting the epoch’s
candidate the meta-algorithm must choose the length of
the epoch. Since we do not switch candidate until the end
of the epoch, this amounts to selecting how many times
the candidate xt+1 will be repeatedly evaluated. The main
trade-off here is between long epochs that improve scalabil-
ity and short epochs that make it easier to switch often and
explore/exploit efficiently. Specializing an approach used
in the BBKB algorithm (Calandriello et al., 2020) to our
setting, we propose to select Bh = b(C2 − 1)/σt(xt+1)c,
which as we prove achieves both goals. Finally, at the end
of the epoch we collect the feedback, and use it to update
the GP posterior and the chosen acquisition function. The
loop is then repeated forever or until a desired number of
epochs/steps is reached.

We also highlight that not all epoch-based GP-Opt algo-
rithms are also batched GP-Opt algorithms. In particular, in
batched GP algorithms candidates in a batch can be evalu-
ated in parallel before feedback of previous candidates is
available. Since there is no dependency on the feedback nei-
ther in our candidate selection (it is always the same candi-
date) nor in the epoch termination rule, our meta-algorithm
can transform a sequential GP optimization algorithm to a
batch variant, e.g., MINI-GP-EI is a batch algorithm even
though GP-EI is not.

3.2. GPs supported on few unique candidates.

We can now show that if h is small, all the relevant quantities
from Algorithm 2 can be computed efficiently. In particular,
after running Algorithm 2 for h epochs let Xh indicate the
h × d matrix containing the h candidates selected so far.
To simplify exposition, we will assume all h candidates
are distinct, and comment in the appendix how removing
this assumption just involves slightly harder book-keeping

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

to merge feedbacks coming from two identical candidates
selected in different epochs.

Given Xh, let Wh ∈ Rh×h be a diagonal matrix; where
[Wh]i,i = Bi contains the number of times the candidate
of the i-th epoch is contained in Xt (i.e., number of times
it is selected), and let ti denote the starting time-step of the
i-th epoch. Then, we have

µth(x) = k(x,Xh)(Kh + λW−1
h)−1yh,

σ2
th

(x) = k(x,x)− k(x,Xh)(Kh + λW−1
h)−1k(Xh,x)

(4)

where Kh = k(Xh,Xh) ∈ Rh×h, and yh ∈ Rh is such
that [yh]i =

∑ti+Bi

s=ti
ys, Using the feature-space view of

GPs, it is straightforward to prove using basic linear algebra
identities that the posterior Equation 4 is equal to Equation 1,
i.e., that these are not approximations to the posterior but
reformulations of the posterior (see Appendix A). However,
when h � t, Eq. 4 can be computed efficiently in O(h3),
since it only involves the inversion of an h× h matrix Kh.

The reformulations of Equation 4 are not completely new,
e.g., Picheny et al. (2013) presented similar reformulations
based on averaged feedbacks. At a higher level, they can
be seen as a special case of the more generic framework of
reformulating GPs posteriors as distribution conditioned on
a set of inducing points, also known as sparse GP approxi-
mation (Quinonero-Candela et al., 2007). Traditionally, this
framework has been designed to identify a small number
of inducing variables that could act as a bottleneck for the
GP model, reducing its number of parameters and accuracy,
but also the computational cost of inference. However, un-
like previous approaches we propose to utilize the whole
optimization history as inducing variables, removing this
bottleneck. Therefore we are not approximating a full GP
with a factorized GP, or a dense GP with a sparse GP, but
simply exploiting the intrinsic sparseness and low number of
implicit parameters that arise when GPs are defined on few
unique candidates. Note that enforcing a candidate selection
strategy that keeps qt under control is crucial in creating a
gap between Equation 1 and Equation 4. This explains why
historically this reformulation has not seen success in fields
such as the standard supervised GP regression setting, where
the selection process is not under the control of the learner.
In particular, when Xt is sampled i.i.d. from some distribu-
tion the rows are all different w.p. 1, and our method offers
no scalability improvement. Looking instead at the history
of GP optimization methods, this reformulation has been
largely ignored because most approaches try to evaluate a
very diverse sets of candidates to improve initial exploration.
This increases the number of unique historical candidates,
and makes the impact of the reformulation negligible or
even detrimental since it prevents other kinds of efficient
incremental updates.

4. Regret and computational meta-analysis
Rather than designing a specialized analysis for every MINI-
variant, we propose instead a meta-analysis that cover a
generic ut acquisition function, and then will instantiate this
analysis at the end of the section with uGP-UCB

t and uGP-EI
t .

While the computational meta-analysis holds for any ut, the
regret meta-analysis requires ut to satisfy a simple condi-
tion. Given feedback up to step t− 1, candidates selected
optimistically using the acquisition function ut at step t
must satisfy w.h.p. this bound on the instantaneous regret rt

rt
def
= f? − f(xt) ≤ Gtσt−1(xt), (5)

for some non-decreasing sequence Gt. This condition is
satisfied for example by GP-UCB (Srinivas et al., 2010;
Abbasi-Yadkori et al., 2011; Chowdhury & Gopalan, 2017)
and GP-EI (Wang & de Freitas, 2014). Based on this condi-
tion, our paper’s main result is the following meta-theorem.

Theorem 4.1. For any 1 < C, set A and acquisition func-
tion u0, Algorithm 2 runs in Õ(T + γT · (A + γ3T)) time,
Õ(TγT) space, and Õ(γT) epochs/batches, where A in-
dicates the complexity of solving the inner optimization
problem (i.e., arg maxx∈A ut(x)).

Moreover, if ut satisfies w.p. 1 − δ the condition of
Equation 5, then for all steps t the instantaneous regret
rMINI-META
t of the candidates selected by Algorithm 1 satis-

fies rMINI-META
t ≤ CGtσt−1(xt) for the same sequence of

Gt and with the same probability.

Focusing on regret, Theorem 4.1 shows that restricting the
number of candidate switches does not greatly impact re-
gret, just as in (Abbasi-Yadkori et al., 2011). Moreover
MINI-META’s improved switching rule reduces the regret
amplification factor from O(2C) of RS-OFUL to O(C).
Additionally, our result also highlights for the first time that
approximating the GP model is not necessary to achieve
scalability and no-regret, and simply using a different candi-
date selection strategy brings great computational savings.
Moreover, compared to existing methods based on efficient
reformulations of GPs (Picheny et al., 2013; Binois et al.,
2019) we explicitly target minimizing unique candidates as
a goal of our algorithm, and can rigorously quantify the com-
putational improvement that we are guaranteed to achieve
compared to a vanilla GP inference approach.

On the computational side, we bound the number of
switches and therefore of unique candidates using the in-
formation gain Õ(γT). This, allows us to bound both the
number of batches and the cost of evaluating the GP poste-
rior, but unfortunately without knowing how expensive it is
to optimize the acquisition function it is not possible to fully
characterize the runtime. We postpone this to a later discus-
sion. Nonetheless, an important aspect that can be already

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

included in the meta-theorem is that this maximization only
needs to be performed once per batch. Previous approaches
tried to promote diverse batches, and therefore this optimiza-
tion had to be repeatedly performed with a runtime of at
least Õ(TA), while for the first time we achieve a runtime
Õ(T + A) linear in T . However, this crucially relies on
being able to repeatedly evaluate the same candidate, which
is not possible in all optimization settings.

4.1. Regret meta-analysis details

Starting from the condition in Equation 5, the meta-analysis
is based on well-established tools. First we have to deal
with the fact that Algorithm 1 only updates the posterior and
receives feedback at the end of the batches. In particular, this
means that Equation 5 only applies for the first evaluation
of the candidate, and not across the batch. Tools developed
in the original RS-OFUL analysis (Abbasi-Yadkori et al.,
2011) and refined in the context of batch GP optimization
(Calandriello et al., 2020) can be used to control this.

Lemma 4.2. Let ut be an acquisition function that satisfies
Equation 5 at the beginning of each batch. Then running
Algorithm 2 with parameter C and the same ut guarantees
that rt ≤ CGtσt−1(xt) w.p. 1 − δ for all steps t (i.e., not
only at the beginning of each batch).

Sketch of proof. Let t be the first step of epoch/batch h (i.e.,
we received feedback up to t− 1). Then

rt′ ≤ Gt−1σt−1(xt′) = Gt−1
σt−1(xt′)
σt′−1(xt′)

· σt′−1(xt′)

≤ Gt−1C · σt′−1(xt′),

where the first inequality comes from applying Equation 5
to step t′ since xt = xt′ (all candidates in the batch are
the same), and the second inequality comes from the fact
that the length of each batch Bh is designed to guarantee
that for any t′ > t inside the batch we can bound the ra-
tio σt−1(x)/σt′−1(x) ≤ O(C) (details in the appendix).
Therefore, simply by losing a constant factor C we can re-
cover the regret rt′ as if we applied Equation 5 with all the
feedback up to step t′ − 1.

Established the GtCσt−1(xt) bound, the rest of each regret
proofs slightly diverge depending on the acquisition func-
tion, differing mostly on the specific sequence of Gt, and
we discuss in Section 4.3 where we also discuss how the
final regret of each of the alternatives scales. For now, we
would like to highlight that the 1 − δ success probability
of Lemma 4.2, and therefore the probability of low regret,
depends only on the randomness of the candidate selection,
i.e., the same randomness present in the original variants.
This is in stark contrast with existing results for scalable
GP optimization where to provide guarantees on the regret
the GP was approximated using technique relying on some

form of additional randomness (e.g., random projections).
In other words, our µ-variants are much more deterministic
compared to other scalable methods.

4.2. Computational meta-analysis.

Similarly to regret, we provide here a meta-analysis for a
generic ut, parametrizing the analysis in terms of a generic
A computational cost of optimizing ut (i.e., computing
arg maxx∈A ut(x))). With this notation, the computational
complexity of MINI-META is O(T + h ·A+ h · h3)). The
O(T) term covers the time necessary to store/load the T
feedbacks. The hA term comes from the h optimizations
of ut, once for each loop. Finally the O(h · h3) term is due
to the computation of the length Bh of each batch, which
requires at each loop to computing the posterior σt using the
O(h3) efficient reformulation. We can refine this analysis
along two axes: bounding h, and bounding A.

Bounding the number of switches h is fully part of the meta-
analysis, since our bound on the number of epochs does not
directly depend on the specific acquisition function ut.

Lemma 4.3. After T steps, MINI-META performs at most
h ≤ O

(
C2

C2−1γT

)
switches.

Notice that once again this is a deterministic statement, since
unlike existing methods our approach does not depend on
randomized methods to increase scalability. Combining this
result in the meta-analysis we obtain an overall runtime of
O(T + γT · (A+ γ3T)).

Bounding the optimization cost A can only be done by mak-
ing assumptions on ut and A, since in general maximizing
the acquisition function is a non-convex optimization prob-
lem, often NP-hard. In the simpler case where A is finite
with cardinality |A|, and ut is based only on µt and σt of
each candidate, then the runtime becomesO(T+h·(|A|h2+
h3). Further combining this with Lemma 4.3 we obtain an
overall runtime of O(T + |A|γ3T + γ4T). We can compare
this result with the Õ(T |A|γ2T) runtime complexity of the
currently fastest no-regret algorithm, BBKB (Calandriello
et al., 2020) to see that the potential runtime improvement is
large (i.e., from O(T |A|) to O(T + |A|h). This is because
MINI-META only needs to maximize ut once per batch,
while existing batched algorithms need multiple maximiza-
tion per batch to promote in-batch diversity, using different
strategies such as feedback hallucination (Desautels et al.,
2014). Even if we ignored the cost of optimizing ut, our
result would still be the first to decouple the the O(T) com-
ponent from γT . This is because for existing batching rule,
even computing the batch length required to evaluate at least
one σt at each step, with each evaluation costing at least
O(γ2T). Instead, our batching rule is based only on σt once
at the beginning of the batch.

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

4.3. Instantiating the meta-analysis

Instantiating the results from the previous section we can
now provide bounds for two popular acquisition functions.
For simplicity and to guarantee that all steps of the algorithm
can be implementable in accord with the regret analysis, we
restrict ourselves to the assumption of finite A where the
acquisition functions can be exactly maximized. For all of
these variants, the run-time is bounded as O(T + |A|γ3T +
γ4T), so we will mainly discuss regret in this section.

MINI-GP-UCB We consider frequentist (‖f‖ ≤ F) and
Bayesian (f ∼ GP) settings.

Theorem 4.4. Assume ‖f‖ ≤ F . For any 1 < C, δ ∈ [0, 1],
run Algorithm 1 with ut = uGP-UCB

t , λ = ξ2, and

βh = Θ

(√
log det

(
W

1/2
h KhW

1/2
h

λ + I

)
+ log(1

δ) + F

)
.

Then w.p. 1− δ, RT ≤ Õ
(
(
√
γT + F)C

√
γTT

)
.

This result is a combination of Theorem 4.1 with (Chowd-
hury & Gopalan, 2017, Thm. 1). The proof of this result is
straightforward using Theorem 4.1. In particular, the orig-
inal GP-UCB provides a bound on the regret of the form
RT ≤ Õ(βT

∑T
t=1 σt−1(xt)), which using Lemma 4.2 eas-

ily becomes RT ≤ Õ(βTC
∑T
t=1 σt−1(xt)), only a C fac-

tor worse but with a much lower computational complexity.
Compared to other approximations of GP-UCB, MINI-GP-
UCB achieve logarithmic improvements due to a tighter βh.
In particular, all previous approximate GP-UCB variants
had to approximate log det(Kt/λ+ I) with a more or less
loose upper bound, which resulted in excessive exploration
and worse regret. Instead, MINI-GP-UCB uses the exact
log-determinant of the GP, since it only needs to be defined
on the unique candidates.

Theorem 4.5. Assume f ∼ GP . For any 1 < C, δ ∈ [0, 1],
run Algorithm 1 with ut = uGP-UCB

t , setting λ = ξ2 and
βt =

√
2 log(|A|t2π2/(6δ)). Then w.p. 1− δ,

RT ≤ Õ(C
√
TγT)).

This result is a combination of Theorem 4.1 and (Srinivas
et al., 2010, Thm. 1). The main advantage of the Bayesian
tuning of MINI-GP-UCB is that computing βt does not
require to know a bound on the norm of the function F
(which is often infinite under the GP prior). However MINI-
GP-UCB still needs access to the noise level ξ to tune λ.

MINI-GP-EI We can combine Theorem 4.1 with (Wang
& de Freitas, 2014, Thm. 1) under frequentist assumptions.

Theorem 4.6. Assume ‖f‖ ≤ F . For any 1 < C
and δ ∈ [0, 1], run Algorithm 1 with ut = uGP-EI

t ,

λ = ξ2, and βh =
(

log det(W
1/2
h KhW

1/2
h /λ +

I)+

√
log det(W

1/2
h KhW

1/2
h /λ+ I) log(tδ)+log(tδ)

)1/2
.

Then w.p. 1− δ, RT ≤ Õ
(
(
√
γT + F)C

√
γTT

)
.

Again we can easily integrate Theorem 4.1 in the
original proof. In particular, the original GP-EI
analysis provides a bound on the regret of the
form RT ≤ Õ

((√
λF + βT

)∑T
t=1 σt−1(xt)

)
, which

again using Lemma 4.2 easily becomes RT ≤
Õ
((√

λF + βT

)
C
∑T
t=1 σt−1(xt)

)
recovering the orig-

inal regret up to constants. Although the regret of MINI-
GP-UCB and MINI-GP-EI are comparable, the underlying
algorithms have important differences. In particular, tuning
βh in MINI-GP-EI does not require knowing a bound F on
the norm of the function, which is hard to obtain in many
cases. However the analysis of MINI-GP-EI requires to set
λ = ξ2, which might be as hard to estimate.

4.4. Extension to continuous spaces

The computational and regret analysis in this section rely
on the ability of the algorithm to optimize the acqui-
sition function exactly (i.e., find the true minimizer of
arg maxx∈A ut(x)), to avoid selecting sub-optimal actions,
and efficiently (i.e., the A term in Section 4.2 should not
be too large), to avoid dominating the runtime. Both of
these requirements are easy to satisfy on discrete A (where
ut can be optimized by enumeration), which is why we
focus on these decision sets. However, when optimizing
continous ut we can easily extend the MINI-META frame-
work to replace enumeration with methods based on contin-
uous solvers (Mutny & Krause, 2018; Jones et al., 1998) or
sampling (Balandat et al., 2019). This does not come with
theoretical guarantees (i.e., without exact and efficient acqui-
sition optimization both regret and runtime can potentially
be large), but the minimizing the number of unique candi-
dates by infrequent switches preserves important practical
advantages also when the number of candidates is large or
infinite. In particular MINI-META optimizes the continuous
acquisition function only h times, once per batch, and much
less frequently than other methods that to promote diversity
need to re-optimize ut at each step. When h � T this
saves a large number of expensive invocations of the opti-
mizer. Moreover, most optimizers/samplers look for a good
candidate by repeated evaluation of the posterior. Even in
continuous settings MINI-META’s posterior remains sparse,
and efficient to evaluate further compounding the computa-
tional gains.

5. Experiments
We now evaluate our proposed approach empirically, fo-
cusing here on real-world data and on synthetic data in the

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

0 5000 10000 15000
t

0

0.05

0.10

0.15

0.20

0.25

av
g.

 re
gr

et

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(a) Rt/t against step t

0 5000 10000 15000
t

0

100

200

300

un

iq
ue

 a
rm

s

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(b) qt against step t

0 50 100 150 200 250
runtime (s)

0

0.05

0.10

0.15

0.20

0.25

av
g.

 re
gr

et

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(c) RT against wall-clock time (s)

appendix. In particular, following the approach taken in
(Calandriello et al., 2020) we evaluate MINI-GP-UCB and
MINI-GP-EI on NAS-bench (Ying et al., 2019). We com-
pare MINI-GP-UCB and MINI-GP-EI with BBKB (Ca-
landriello et al., 2020), GP-UCB (Srinivas et al., 2010),
GP-BUCB (Desautels et al., 2014), GP-BTS (Kandasamy
et al., 2018), and an epsilon greedy strategy. For MINI-GP-
UCB, MINI-GP-EI, and BBKB hyperparameters that need
to be tuned are C, the bandwidth of the Gaussian kernel
σ, while λ is set to the 90-th percentile of the standard de-
viation of the target as an oracle for the noise level. For
epsilon greedy epsilon is set as a/tb and a ∈ {0.1, 1, 10}
and b ∈ {1/3, 1/2, 1, 2} is tuned via grid search. For each
experiment we repeat the run 40 times with different seeds,
and report mean and confidence intervals for the hyperpa-
rameter configuration (searched in a grid) that achieves low-
est average regret (specific values reported in the appendix).
All experiments are ran using a single, recent generation
CPU core to avoid inconsistencies between some implemen-
tations using paralallel BLAS and some not. The neural
architecture search setting is the same as (Calandriello et al.,
2020). In particular, the search space is the discrete combi-
natorial space of possible 1-hidden layer 4 node networks
using either convolutions or max-pooling, that is then used
as a module in an inception-like architecture. The final
space A has |A| = 12416 candidates in d = 19 dimensions.

In Fig. (a) we report average regret vs steps (i.e., t). To
compensate scale effect in the rewards, the average regret is
normalized by the average regret achieved by a completely
exploratory policy that selects candidates uniformly at ran-
dom. Both MINI-variants are comparable to the current state
of the art BBKB, and better than a tuned epsilon greedy. In
Fig. (b) we report the number of unique candidates (note,
not of switches) selected by each algorithm. We note that
despite not explicitly being designed for this, BBKB does
not select a very large number of unique arms. However,
MINI-GP-UCB and MINI-GP-EI still select an even smaller
number of unique candidates. In Fig. (c) we report average
regret vs wallclock runtime rather than steps. Therefore a
more efficient algorithm will terminate faster and achieve
a lower average regret in the same span of time. We see
that both MINI-GP-UCB and MINI-GP-EI are faster than
BBKB, terminating earlier. However the empirical runtime
gap does not seem to match the large theoretical runtime
gap (i.e., O(T + A) vs O(TA)). In particular, the actual
empirical diversity in BBKB’s batches seem to be limited,
and allows for a large degree of lazy updates, which are not
accounted for in the worst-case complexity.

Another interesting figure to empirically measure is the
difference between the number h of batches/switches at step
T and the number of unique candidates qT selected. As we
know, h is an upper bound for qT , but looking at Fig. (d)
and Fig. (e) we see that especially in the later stages of

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

(d) Batch/epoch number h against step t

(e) qt against step t

the optimization these two quantities have a significant gap
between them. This can be explained by noticing that as
the optimization progresses the algorithm tend to focus on
a few good candidates, switching back and forth between
them which increases h but not qT .

6. Conclusions, limitations and open questions
Our paper highlighted how existing tools can be combined
in a new effective approach, capable of positively impacting
the GP optimization setting both theoretically and empiri-
cally. Theoretically, as to the best of our knowledge, our
proposed MINI-variants achieve the tightest guarantees both
in regret and runtime among scalable GP optimization meth-
ods, using a very different approach that does not require
approximating the GP or other randomized approximations.
Empirically, because our method comes with a number of

practical properties, including scalability, adaptability to dif-
ferent acquisition functions, and being suitable to batched
settings as well as settings where switching costs are be sig-
nificant. However, there remain several limitations, which
brings with them open questions.

Our MINI-variants inherit the limitations of the original
methods and while some (e.g., scalability) are removed, oth-
ers remain. In particular, MINI-GP-UCB and MINI-GP-EI
still rely on quantities that are hard to estimate, such as the
function norm, noise level, kernel choice, or kernel band-
width. It is unclear how an on-line tuning of these quantities
might be done without losing the no-regret guarantees. It
would be interesting to see if recent approaches to tune these
quantities for traditional GP optimization (Berkenkamp
et al., 2019; Durand et al., 2018) can be transferred to MINI-
variants, leveraging their unique property of being based on
exact GP inference. Furthermore, while MINI-META could
be applied to other acquisition functions, not all would result
in a scalable algorithm. For example GP-TS (Chowdhury
& Gopalan, 2017) also satisfies Equation 5. However, sam-
pling a TS posterior is not scalable (i.e., O(|A|2) for finite
A) even for sparse posteriors, and therefore a hypotetical
MINI-GP-TS would remain not scalable.

From a complexity perspective, optimizing the acquisition
function exactly remains one of the hardest obstacles in
GP optimization, and it is still not clear how the no-regret
guarantees can be extended to approximate maximization.
Generic non-convex optimizers such as DiRECT (Mutny &
Krause, 2018; Jones, 2001) have an exponential complexity,
and even considering the effective dimensionality reduction
induced by Equation 4, which reduces the parameter space
from O(t) to O(qt), they might remain infeasible.

Despite not being explicitly optimized for this task, we em-
pirically observe that other approximate GP-Opt methods,
such as BBKB, also tend to achieve a small qt. Indeed,
any algorithm that quickly converges to a small set of good
candidates would evaluate a small number of unique candi-
dates. Therefore, it is an important open question to try and
bound the number of candidates evaluated by a generic GP
optimization algorithm without low-switching enforcement,
as it might show that the reformulations of Equation 4 might
be more broadly applicable than expected.

Finally, looking at the applicability of our method, our
whole approach is based on the possibility of evaluating
multiple times the same candidate without affecting the
outcome. While this is a strength in settings with high
switching costs, it also makes it unsuitable in settings where
this is impossible (e.g., repeated medical testing of a single
patient), or limited (e.g., news change over time and cannot
be recommended over and over). More subtly, it also makes
it poorly suited to low or noiseless settings, where multiple
evaluations of the same candidate would not be very useful.

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. In Advances in
Neural Information Processing Systems, pp. 2312–2320,
2011.

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham,
B., Wilson, A. G., and Bakshy, E. Botorch: Pro-
grammable bayesian optimization in pytorch. arXiv
preprint arXiv:1910.06403, 2019.

Berkenkamp, F., Schoellig, A. P., and Krause, A. No-
regret bayesian optimization with unknown hyperparam-
eters. Journal of Machine Learning Research, 20(50):1–
24, 2019. URL http://jmlr.org/papers/v20/
18-213.html.

Binois, M., Huang, J., Gramacy, R. B., and Ludkovski,
M. Replication or exploration? sequential design for
stochastic simulation experiments. Technometrics, 61(1):
7–23, 2019.

Calandriello, D., Carratino, L., Lazaric, A., Valko, M., and
Rosasco, L. Gaussian process optimization with adaptive
sketching: Scalable and no regret. In Conference on
Learning Theory, 2019.

Calandriello, D., Carratino, L., Valko, M., Lazaric, A.,
and Rosasco, L. Near-linear time gaussian process opti-
mization with adaptive batching and resparsification. In
International Conference on Machine Learning, 2020.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-
armed bandits. In International Conference on Machine
Learning, pp. 844–853, 2017.

Daxberger, E. A. and Low, B. K. H. Distributed batch Gaus-
sian process optimization. In Precup, D. and Teh, Y. W.
(eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pp. 951–960, International
Convention Centre, Sydney, Australia, 06–11 Aug 2017.
PMLR.

Desautels, T., Krause, A., and Burdick, J. W. Parallelizing
exploration-exploitation tradeoffs in Gaussian process
bandit optimization. The Journal of Machine Learning
Research, 15(1):3873–3923, 2014.

Durand, A., Maillard, O.-A., and Pineau, J. Streaming
kernel regression with provably adaptive mean, variance,
and regularization. The Journal of Machine Learning
Research, 19(1):650–683, 2018.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and
Wilson, A. G. Gpytorch: Blackbox matrix-matrix gaus-
sian process inference with gpu acceleration. Advances

in Neural Information Processing Systems, 2018:7576–
7586, 2018.

Jones, D. R. Direct global optimization algorithmDirect
Global Optimization Algorithm, pp. 431–440. Springer
US, Boston, MA, 2001. ISBN 978-0-306-48332-5.
doi: 10.1007/0-306-48332-7_93. URL https://doi.
org/10.1007/0-306-48332-7_93.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global optimization, 13(4):455–492, 1998.

Kandasamy, K., Krishnamurthy, A., Schneider, J., and Póc-
zos, B. Parallelised bayesian optimisation via thomp-
son sampling. In International Conference on Artificial
Intelligence and Statistics, pp. 133–142, 2018.

Kathuria, T., Deshpande, A., and Kohli, P. Batched gaussian
process bandit optimization via determinantal point pro-
cesses. In Advances in Neural Information Processing
Systems, pp. 4206–4214, 2016.

Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A
contextual-bandit approach to personalized news arti-
cle recommendation. International World Wide Web
Conference, 2010. URL http://rob.schapire.
net/papers/www10.pdf.

Mockus, J. Bayesian approach to global optimization: the-
ory and applications. 1989.

Mutny, M. and Krause, A. Efficient High Dimensional
Bayesian Optimization with Additivity and Quadrature
Fourier Features. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31,
pp. 9019–9030. Curran Associates, Inc., 2018.

Picheny, V., Ginsbourger, D., Richet, Y., and Caplin, G.
Quantile-based optimization of noisy computer experi-
ments with tunable precision. Technometrics, 55(1):2–13,
2013.

Quinonero-Candela, J., Rasmussen, C. E., and Williams,
C. K. Approximation methods for gaussian process
regression. Large-scale kernel machines, pp. 203–224,
2007.

Rasmussen, C. E. and Williams, C. K. I. Gaussian processes
for machine learning. Adaptive computation and machine
learning. MIT Press, Cambridge, Mass, 2006. ISBN 978-
0-262-18253-9. OCLC: ocm61285753.

http://jmlr.org/papers/v20/18-213.html
http://jmlr.org/papers/v20/18-213.html
https://doi.org/10.1007/0-306-48332-7_93
https://doi.org/10.1007/0-306-48332-7_93
http://rob.schapire.net/papers/www10.pdf
http://rob.schapire.net/papers/www10.pdf

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

Saito, Y., Shunsuke, A., Megumi, M., and Yusuke, N. Open
bandit dataset and pipeline: Towards realistic and repro-
ducible off-policy evaluation. NeurIPS2021 Datasets and
Benchmarks Track, 2021.

Scarlett, J., Bogunovic, I., and Cevher, V. Lower bounds on
regret for noisy gaussian process bandit optimization. In
Conference on Learning Theory, pp. 1723–1742, 2017.

Srinivas, N., Krause, A., Seeger, M., and Kakade, S. M.
Gaussian process optimization in the bandit setting:
No regret and experimental design. In International
Conference on Machine Learning, pp. 1015–1022, 2010.

Vakili, S., Khezeli, K., and Picheny, V. On information gain
and regret bounds in gaussian process bandits. In Baner-
jee, A. and Fukumizu, K. (eds.), Proceedings of The
24th International Conference on Artificial Intelligence
and Statistics, volume 130 of Proceedings of Machine
Learning Research, pp. 82–90. PMLR, 13–15 Apr 2021.

Wang, Z. and de Freitas, N. Theoretical analysis of bayesian
optimisation with unknown gaussian process hyper-
parameters. arXiv preprint arXiv:1406.7758, 2014.

Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K.,
and Hutter, F. Nas-bench-101: Towards reproducible neu-
ral architecture search. arXiv preprint arXiv:1902.09635,
2019.

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

A. Proofs of Section 3
For several of the proofs in this section it will be useful to introduce the so-called feature space formulation of a GP posterior
(Rasmussen & Williams, 2006). In particular, to every kernel function k we can associate a feature map ϕ(·) : A → H where
H is the reproducing kernel Hilbert space associated with k and the GP. The main property of ϕ(·) is that for any x and x′

we have k(x,x′) = ϕ(x)Tϕ(x′). With a slight abuse of notation, we will also indicate with ϕ(X) = [ϕ(x1), . . . , ϕ(xt)]
T

the linear operator obtained by stacking together the various ϕ(·), such that Kt = ϕ(Xt)ϕ(Xt)
T. Note that this also allows

us to define the equivalent of Kt in H as ϕ(Xt)
Tϕ(Xt) : H → H. Finally, to connect Kt and ϕ(Xt)

Tϕ(Xt) we will
heavily use this fundamental linear algebra equality

BT(BBT + λI)−1B = BTB(BTB + λI)−1 (6)

which can be easily shown to be valid for any linear operator B using its singular value decomposition.

A.1. Proof of equivalence between Equation 1 and Equation 4

Assume for now that t is the step at the end (i.e., fb(t) = t) of batch h. We will relax this assumption at the end of the
section to discuss how this can be extended to intermediate steps. Using the feature-space representation of a GP (see e.g.,
(Rasmussen & Williams, 2006, Eq. (2.11))), and defining Vt

def
= ϕ(Xt)

Tϕ(Xt) + λI, we can rewrite the posterior variance
as

σ2
t (xi) = k(xi,xi)− k(xi,Xt)(Kt + λI)−1k(Xt,xi)

a
= ϕ(xi)

Tϕ(xi)− ϕ(xi)
Tϕ(Xt)

T(ϕ(Xt)ϕ(Xt)
T + λI)−1ϕ(Xt)ϕ(xi)

b
= ϕ(xi)

Tϕ(xi)− ϕ(xi)
Tϕ(Xt)

Tϕ(Xt)(ϕ(Xt)
Tϕ(Xt) + λI)−1ϕ(xi)

c
= ϕ(xi)

Tϕ(xi)− ϕ(xi)
T(ϕ(Xt)

Tϕ(Xt) + λI

Vt

−λI) (ϕ(Xt)
Tϕ(Xt) + λI)−1

V−1
t

ϕ(xi)

d
= ϕ(xi)

Tϕ(xi)− ϕ(xi)
T(I− λV−1t)ϕ(xi) = λϕ(xi)

TV−1t ϕ(xi) = ϕ(xi)
TA−1t ϕ(xi),

where in each passage

a) we simply apply the definition of k and ϕ;

b) we apply Equation 6 with ϕ(X) as B;

c) we add and subtract λI to highlight the presence of Vt in the reformulation;

d) we collect λ to replace Vt with At
def
= ϕ(X)Tϕ(X)/λ+ I as in (Rasmussen & Williams, 2006, Eq. (2.11)).

Exploiting the fact that all candidate in a batch are identical (i.e., xfb(s)+1 = xs), and denoting with {xj}hj=1 the candidate
in each batch we can rewrite At as

At = I + λ−1ϕ(X)Tϕ(X) = I + λ−1
t∑

s=1

ϕ(xs)ϕ(xs)
T

= I + λ−1
t∑

s=1

ϕ(xfb(s)+1)ϕ(xfb(s)+1)T = I + λ−1
h∑
j=1

Bjϕ(xj)ϕ(xj)
T

= I + λ−1
h∑
j=1

[Wh]j,jϕ(xj)ϕ(xj)
T = I + λ−1ϕ(Xh)TWhϕ(Xh),

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

where Wh is defined as described in Equation 4. Applying now steps a− d in reverse, with the only difference being the
application of Equation 6 to W

1/2
h ϕ(Xh) rather than ϕ(Xt) in step b, we obtain

σ2
t (xi) = ϕ(xi)

TA−1t ϕ(xi) = ϕ(xi)
T(ϕ(Xh)TWhϕ(Xh)/λ+ I)−1ϕ(xi)

d,c
= ϕ(xi)

Tϕ(xi)− ϕ(xi)
Tϕ(Xt)

TW
1/2
h W

1/2
h ϕ(Xt)(ϕ(Xt)

TW
1/2
h W

1/2
h ϕ(Xt) + λI)−1ϕ(xi)

b
= ϕ(xi)

Tϕ(xi)− ϕ(xi)
Tϕ(Xt)

TW
1/2
h (W

1/2
h ϕ(Xt)ϕ(Xt)

TW
1/2
h + λI)−1W

1/2
h ϕ(Xt)ϕ(xi)

a
= k(xi,xi)− k(xi,Xt)W

1/2
h (W

1/2
h KtW

1/2
h + λI)−1W

1/2
h k(Xt,xi)

= k(xi,xi)− k(xi,Xt)(Kt + λW−1
h)−1k(Xt,xi),

where in the last equality we simply collected Wh to obtain the formulation of Equation 4. The reasoning for the mean is
identical, with one minor difference. After rewriting µt in its feature-space view, and applying the fundamental equality

µt(xi) = k(xi,Xt)(Kt + λI)−1Ktyt

= ϕ(xi)
Tϕ(Xt)

T(ϕ(Xt)ϕ(Xt)
T + λI)−1ϕ(Xt)ϕ(Xt)

Tyt
a
= ϕ(xi)

Tϕ(Xt)
Tϕ(Xt)(ϕ(Xt)

Tϕ(Xt) + λI)−1ϕ(Xt)
Tyt

b
= ϕ(xi)

Tϕ(Xh)TWhϕ(Xh)(ϕ(Xh)TWhϕ(Xh) + λI)−1ϕ(Xt)
Tyt,

where equality a is once again due to Equation 6, and b is due to the already proven equality ϕ(Xt)
Tϕ(Xt) =

ϕ(Xh)TWhϕ(Xh). To handle the last remaining term ϕ(Xt)
Tyt we can rewrite

ϕ(Xt)
Tyt =

t∑
s=1

ϕ(xs)ys =

t∑
s=1

ϕ(xfb(s)+1)ys

=

h∑
j=1

ϕ(xj)

tj+Bh∑
s=tj+1

ys =

h∑
j=1

ϕ(xj)[yh]j = ϕ(Xh)Tyh,

where once again tj is the step before the beginning of the j-th epoch, that is fb(t) = tj for all steps in the j-th epoch and
the candidate xtj+1 is the one evaluated multiple times in the j-th epoch. Putting it all together, and re-applying Equation 6
we obtain

µt(xi) = ϕ(xi)
Tϕ(Xh)TWhϕ(Xh)(ϕ(Xh)TWhϕ(Xh) + λI)−1ϕ(Xh)Tyh

= ϕ(xi)
Tϕ(Xh)TW

1/2
h (W

1/2
h ϕ(Xh)ϕ(Xh)TW

1/2
h + λI)−1W

1/2
h ϕ(Xh)ϕ(Xh)Tyh

= k(xi,Xh)(Kh + λW−1
h)−1Khyh,

which concludes the proof of the equivalence between Equation 1 and Equation 4.

In this analysis we made two simplifications: that the step t was at the end of a batch, and that no two candidates were the
same in different batches. To relax the first we can just consider extending Wh to contain not only all past Bj , but also a
partial count of the current batch. Similarly yh has to be extended to include the partial feedback received during the epoch.
Similarly, if the same candidate was selected in two batches j and j′, we simply have to merge their contributions in the sum∑h
j=1Bjϕ(xj)ϕ(xj)

T e.g., by removing the j-th term and account the j′-th term with Bj +Bj′ multiplicity.

A.2. Proof of Lemma 4.3

We begin with the following result from (Calandriello et al., 2020).

Proposition A.1 ((Calandriello et al., 2020, Lem. 4)). For any kernel k, set of points Xt, x ∈ A and t < t′

1 ≤ σ2
t (x)

σ2
t′(x)

≤ 1 +

t′∑
s=t+1

σ2
t (xs).

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

Using Proposition A.1 it is also very easy to show the following known property of the one-step ratio between posteriors
(i.e., t′ = t+ 1)

1 ≤ σ2
t (x)

σ2
t+1(x)

≤ 1 + σ2
t (xt+1) ≤ 1 + σ2

0(xt+1) = 1 + k(xt+1,xt+1)/λ ≤ 1 + κ/λ, (7)

where the first inequality is due to Proposition A.1, the second due to the monotonicity of the posterior in t, and the third
due to our assumption k(x,x) ≤ κ2.

Applying Proposition A.1 to our setting, where xs does not change for the whole batch, and our epoch termination rule from
Algorithm 2 we obtain the following corollary

Corollary A.2. During epoch h, let th be the step before the beginning of the batch, and let xth+1 be the candidate selected
for the whole batch at step th+1. Then for any kernel k, set of points Xth , x ∈ A, and th+1 = fb(t)+1 ≤ t ≤ fb(t)+Bh
we have

1 ≤
σ2
fb(t)(x)

σ2
t (x)

≤ 1 +Bhσ
2
fb(t)(xfb(t)+1).

Moreover, selecting Bh = b(C2 − 1)/σ2
th

(xth+1)c we have σfb(t)(x)

σt(x)
≤ C.

To bound the number of epochs and prove Lemma 4.3 we follow a blueprint from (Calandriello et al., 2020).

Proof of Lemma 4.3. To bound the number of epoch we start from the fundamental inequality based on the choice of Bh
and the properties of the floor function. Consider an arbitrary Bj ,

Bj ≥
C2 − 1

σ2
tj (xtj+1)

− 1

⇒ σ2
tj (xtj+1)(Bj + 1) ≥ C2 − 1

⇒ 2σ2
tj (xtj+1)Bj ≥ C2 − 1.

Note that due to the construction of the batch σ2
tj (xtj+1) = σ2

tj (xtj+2) = · · · = σ2
tj (xtj+Bj

), and therefore

σ2
tj (xtj+1)Bj =

∑tj+Bj

s=tj+1 σ
2
tj (xs). Summing across batches up to batch h we have

h(C2 − 1) ≤ 2

h∑
j=1

σ2
tj (xtj+1)Bj = 2

h∑
j=1

tj+Bj∑
s=tj+1

σ2
tj (xs)

= 2

h∑
j=1

tj+Bj∑
s=tj+1

σ2
tj (xs)

σ2
s−1(xs)

σ2
s−1(xs)

Corollary A.2
≤ 2

h∑
j=1

tj+Bj∑
s=tj+1

C2σ2
s−1(xs)

= 2C2
T∑
s=1

σ2
s−1(xs).

Now that we obtain the sum of posterior variances we need to connect this quantity to γT . In order to do this we will use a
standard bound (see e.g., (Hazan et al., 2006)) on the summation

T∑
s=1

σ2
s(xs) ≤ log det(I + k(Xt,Xt)/λ) = 2γ(Xt,yt) ≤ 2γT .

All that is left is to use Equation 7 to bound σ2
s−1(xs) in terms of σ2

s(xs) and rearrange appropriately all the derived results
to obtain

h ≤ 2C2

C2 − 1

T∑
s=1

σ2
s−1(xs) ≤

2C2

C2 − 1
(1 + κ2/λ)

T∑
s=1

σ2
s(xs) ≤

4C2

C2 − 1
(1 + κ2/λ)γT ≤ O

(
C2

C2 − 1
γT

)

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

A.3. Proof of Lemma 4.2

The proof of this result follows directly from the sketch of proof in Section 4.1, combined with Corollary A.2 here in the
appendix.

A.4. Proofs of Section 4.3

We indicate here how each original regret proofs can be modified to obtain Theorems 4.4 to 4.6. All proof will depend on
a standard blueprint (Srinivas et al., 2010; Abbasi-Yadkori et al., 2011; Chowdhury & Gopalan, 2017; Calandriello et al.,
2020) that we present first. For simplicity we also assume again that step T is exactly at the end of batch h. This is without
loss of generality as we can always artificially truncate the current batch at step T for the sake of the analysis without
increasing the regret. (i.e., Corollary A.2 and all other results will still hold).

First we leverage results from the original analyses to show that the instantaneous regret rtj+1 at the beginning of batch j is
bounded (i.e., Equation 5) as

rtj+1 ≤ Gtjσtj (xtj+1).

Moreover, the same candidate is selected at all steps in the batch, so it holds as well that for all t′ ∈ [tj + 1, tj +Bj] we have

rt′ = rtj+1 ≤ Gtjσtj (xtj+1) = Gtjσtj (xt′)

Then, leveraging again Corollary A.2 to bound the posterior ratios we obtain

tj+Bj∑
s=tj+1

rs ≤ Gtj
tj+Bj∑
s=tj+1

σtj (xs)
Corollary A.2
≤ GtjC

tj+Bj∑
s=tj+1

σs−1(xs).

Finally, using the fact that Gt is non-decreasing, and summing across batches

RT =

T∑
t=1

rt =

h∑
j=1

tj+Bj∑
s=tj+1

rs

≤
h∑
j=1

Gtj

tj+Bj∑
s=tj+1

σtj (xs) ≤
h∑
j=1

GtjC

tj+Bj∑
s=tj+1

σs−1(xs)

≤ GTC
h∑
j=1

tj+Bj∑
s=tj+1

σs−1(xs) ≤ GTC
T∑
s=1

σs−1(xs).

Putting it all together and expressing everything in terms of γT we derive

RT ≤ GTC
T∑
s=1

σs−1(xs)

a
≤ GTC

√
T

√√√√ T∑
s=1

σ2
s−1(xs)

b
≤ GTC

√
T

√√√√(1 + κ2

λ

) T∑
s=1

σ2
s(xs)

c
≤ GTC

√
T

√(
1 + κ2

λ

)
γT ,

where a is due to Cauchy-Schwarz inequality, b due to Equation 7, and c due to the usual bounding of posterior variances
with the log det and information gain (Hazan et al., 2006). Now that we have this blueprint, all that is left is to look at
results in the literature on how Gt can be bounded under different assumptions and acquisition functions.

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

MINI-GP-UCB σ = 455.56, C = 1.1
MINI-GP-EI σ = 455.56, C = 1.1
BBKB σ = 277.78, C = 1.1
BKB σ = 455.56
GP-UCB σ = 500.00
GP-BUCB σ = 455.56, C = 1.1
ε-GREEDY a = 1, b = 0.5

Table 1: Optimal hyper-parameters found for the NAS-bench experiment.

Proof of Theorem 4.4. For this theorem we leverage the assumptions ‖f‖ ≤ F with uMINI-GP-UCB
t as acquisition func-

tion. Already Theorem 1 from (Chowdhury & Gopalan, 2017) showed that if λ = ξ2 and βt is tuned as βt =
Θ(
√

log det(Kt/ξ2 + I) + log(1/δ) + F) we obtain that Gt ≤ βt suffices to guarantee Equation 5. Note however
that in our case we can efficiently compute log det(Kt/ξ

2 + I) leveraging the few unique candidates. In particular, since
we only need to compute βth at the beginning of a batch, we can rewrite

log det(Kt/ξ
2 + I) = log det(ϕ(Xt)ϕ(Xt)

T/ξ2 + I)
a
= log det(ϕ(Xt)

Tϕ(Xt)/ξ
2 + I)

b
= log det(ϕ(Xh)TWhϕ(Xh)/ξ2 + I)
c
= log det(W

1/2
h ϕ(Xh)Tϕ(Xh)W

1/2
h /ξ2 + I)

= log det(W
1/2
h KhW

1/2
h /ξ2 + I),

where a is due to Sylvester’s determinant identity, b is our usual re-writing, and c is Sylvester’s determinant identity again.
Not that since this a strict equality, we still have that at the last batch h

log det(W
1/2
h KhW

1/2
h /ξ2 + I) = log det(KT /ξ

2 + I) ≤ γT ,

which gives the second half of the theorem.

Proof of Theorem 4.5. This is a direct consequnce of Theorem 1 from (Srinivas et al., 2010). In particular, they once again
show that Gt ≤ βt suffices to guarantee Equation 5.

Proof of Theorem 4.6. For this combination our starting point is Equation (38) in (Wang & de Freitas, 2014), which states
that for

νt =

√
log det(Kt/λ+ I) +

√
log det(Kt/λ+ I) log(t/δ) + log(t/δ), λ = ξ2,

running a standard GP-Opt loop (i.e., Algorithm 1) with ut = uGP-EI
t guarantees

rt ≤ Õ
((√

F 2 + γt + νt

)
σt−1(xt)

)
,

where we greatly simplified their notation by ignoring constant and logarithmic terms. Noticing now that at each batch j the
values of βj and νtj are equal thanks again to the equivalence log det(Kt/λ+ I) = log det(W

1/2
h KhW

1/2
h /λ+ I), we

can obtain a bound on Gt that satisfies Equation 5 as

Gt ≤ Õ
((√

F 2 + γt + βt

))
≤ Õ

((√
F 2 + γt +

√
γt

))
≤ Õ ((F +

√
γt)) .

Putting this together with the usual blueprint to bound the error incurred by batching and the bound on the sum of posterior
variances with γT we obtain our result.

B. Extended experimental results
We report here additional details on the NAS-bench experiments, as well as an evaluation on synthetic functions.

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

0 5000 10000 15000
t

0

0.02

0.04

0.06

av
g.

 re
gr

et

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(a) Ellipsoid

0 5000 10000 15000
t

0

0.05

0.10

0.15

0.20

0.25

av
g.

 re
gr

et

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(b) Rastigrin

0 5000 10000 15000
t

0

0.025

0.050

0.075

0.100

av
g.

 re
gr

et

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(c) Rosenbrock

0 5000 10000 15000
t

0

0.05

0.10

0.15

av
g.

 re
gr

et

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(d) Schaffer

Figure 3: Rt/t against step t

B.1. Additional details on NAS-bench experiments

All the implementations are based on the code released by (Calandriello et al., 2020) for BBKB and BKB, available at
https://github.com/luigicarratino/batch-bkb. For each algorithm we run the experiment 40 times with
different seeds, and select the hyper-parameters that achieves the lowest average regret. Hyper-parameters for all algorithms
based on GPs are searched among

σ2 = {100.00, 144.45, 188.89, 233.33, 277.78, 322.22, 366.67, 411.11, 455.56, 500.00}
C = {1.1, 1.2}

where C is the threshold used for batching, and σ is the bandwidth of the Gaussian kernel. For ε-GREEDY the exploration
rate is is optimized as ε = a/tb over a ∈ {0.1, 1, 10} and b ∈ {1/3, 1/2, 1, 2}. The empirically optimal values are reported
in Table 1.

B.2. Evaluation on synthetic functions

We also evaluate our method on common benchmark functions from the noisy BBOB benchmark suite (Hansen et al., 2010).
In particular we focus on the Rosenbrock (f104), ellipsoid (f116), and Schaffer (f122) functions, all with moderate Gaussian
noise. We also include an extra function, the separable Rastigrin function, to add another more complex separable function
with the ellipsoid.

All functions are defined on R3, with each coordinate split into 21 sections with the same length by 22 evenly spaced points
placed between [−5, 5]. The resulting discrete grid of points represent our candidate set and contains |A| = 223 = 10648

https://github.com/luigicarratino/batch-bkb

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

unique candidates. Similarly to the NAS-bench experiments, σ of the Gaussian kernel, C and the ε-GREEDY parameters
are selected optimally over a grid search.

The results on regret against steps are reported in Figures 3a to 3d and on regret against time in Figures 4a to 4d. As we
can see, our approach achieve comparable runtime and regret to other state of the art GP-Opt methods. However, on more
complex problem like the Rosenbreck function, even the flexibility of a GP is not capable of capturing the underlying shape
of the optimization problem, and all GP-Opt methods, including ours, only perform roughly as well as a tuned ε-GREEDY
exploration.

0 10 20 30
runtime (s)

0

0.02

0.04

0.06

av
g.

 re
gr

et

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(a) Ellipsoid

0 10 20 30
runtime (s)

0

0.05

0.10

0.15

0.20

0.25

av
g.

 re
gr

et

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(b) Rastigrin

0 10 20 30
runtime (s)

0

0.025

0.050

0.075

0.100

av
g.

 re
gr

et

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(c) Rosenbrock

0 10 20 30
runtime (s)

0

0.05

0.10

0.15

av
g.

 re
gr

et

algo_name
b-gp-ucb
bbkb
bkb
eps-greedy
gp-ucb
mu-gp-ei
mu-gp-ucb

(d) Schaffer

Figure 4: Rt/t against time (in seconds)

Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times

References
Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic regret algorithms for online convex optimization.

In Conference on Learning Theory. Springer, 2006.

Hansen, Nikolaus and Auger, Anne and Finck, Steffen and Ros, Raymond. Real-parameter black-box optimization
benchmarking 2010: Experimental setup. INRIA, 2010.

