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Abstract
Gaussian processes (GP) are one of the most suc-
cessful frameworks to model uncertainty. How-
ever, GP optimization (e.g., GP-UCB) suffers
from major scalability issues. Experimental time
grows linearly with the number of evaluations,
unless candidates are selected in batches (e.g.,
using GP-BUCB) and evaluated in parallel. Fur-
thermore, computational cost is often prohibitive
since algorithms such as GP-BUCB require a time
at least quadratic in the number of dimensions and
iterations to select each batch. In this paper, we in-
troduce BBKB (Batch Budgeted Kernel Bandits),
the first no-regret GP optimization algorithm that
provably runs in near-linear time and selects can-
didates in batches. This is obtained with a new
guarantee for the tracking of the posterior vari-
ances that allows BBKB to choose increasingly
larger batches, improving over GP-BUCB. More-
over, we show that the same bound can be used
to adaptively delay costly updates to the sparse
GP approximation used by BBKB, achieving a
near-constant per-step amortized cost. These find-
ings are then confirmed in several experiments,
where BBKB is much faster than state-of-the-art
methods.

1. Introduction
Gaussian process (GP) optimization is a principled way
to optimize a black-box function from noisy evaluations
(i.e., sometimes referred to as bandit feedback). Due to the
presence of noise, the optimization process is modeled as a
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versità degli Studi di Genova, Italy 3Facebook AI Research, Paris,
France 4DeepMind, Paris, France 5MIT, Cambridge, MA, USA
6Istituto Italiano di Tecnologia, Genova, Italy. Correspondence
to: Daniele Calandriello <daniele.calandriello@iit.it>, Luigi Car-
ratino <luigi.carratino@dibris.unige.it>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

sequential learning problem, where at each step t:
1) the learner chooses candidate xt out of a decision set A;
2) the environment evaluates f(xt) and returns a noisy feed-
back yt to the learner;
3) the learner uses yt to guide its subsequent choices.

The goal of the learner is to converge over time to a global
optimal candidate. This goal is often formalized as a re-
gret minimization problem, where the performance of the
learner is evaluated by the cumulative value of the candi-
dates chosen over time (i.e.,

∑
t f(xt)) compared to the

optimum of the function f? = maxx f(x). While many
GP optimization algorithms come with strong theoretical
guarantees and are empirically effective, most of them suffer
from experimental and/or computational scalability issues.

Experimental scalability. GP optimization algorithms usu-
ally follow a sequential interaction protocol, where at each
step t, they wait for the feedback yt before proposing a
new candidate xt+1. As such, the experimentation time
grows linearly with t, which may be impractical in applica-
tions where each evaluation may take long time to complete
(e.g., in lab experiments). This problem can be mitigated by
switching to batched algorithms, which at step t propose a
batch of candidates that are evaluated in parallel. After the
batch is evaluated, the algorithm integrates the feedbacks
and move on to select the next batch. This strategy reduces
the experimentation time, but it may degrade the optimiza-
tion performance: the candidates in the batch are picked
by a strategy based on less feedback than the one used by
a sequentially strategy that selects candidates based on the
feedback of each previous choice. Many approaches have
been proposed for batched GP optimization. Among those
with theoretical guarantees, some are based on sequential
greedy selection (Desautels et al., 2014), entropy search
(Hennig & Schuler, 2012), determinantal point process sam-
pling (Kathuria et al., 2016), or multi-agent cooperation
(Daxberger & Low, 2017), as well as many heuristics for
which no regret guarantees (Chevalier & Ginsbourger, 2013;
Shah & Ghahramani, 2015). However, they all suffer from
the same computational limitations of classical GP methods.

Computational scalability. The computational complex-
ity of choosing a single candidate in classical GP methods
grows quadratically with the number of evaluations. This
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makes it impractical to optimize complex functions, which
require many steps before converging. Many approaches
exist to improve scalability. Some have been proposed in
the context of sequential GP optimization, such as those
based on inducing points and sparse GP approximation
(Quinonero-Candela et al., 2007; Calandriello et al., 2019),
variational inference (Huggins et al., 2019), random fourier
features (Mutny & Krause, 2018), and grid based methods
(Wilson & Nickisch, 2015). While some of these methods
come with regret and computational guarantees, they rely on
a strict sequential protocol, and therefore they are subject to
the experimental bottleneck. Other scalable approximations
are specific to batched methods, such as Markov approxima-
tion (Daxberger & Low, 2017) and Gaussian approximation
(Shah & Ghahramani, 2015). However, these methods fail
to guarantee either low regret or scalability.

State of the art. Existing GP optimization approaches can
be split into Bandit/frequentist approaches (Lattimore &
Szepesvári, 2020) and Bayesian approaches (Rasmussen &
Williams, 2006), depending on the underlying assumptions
on f , or can be considered as heuristics if they do not come
with a principled regret analysis. Most methods that come
with frequentist regret guarantees, which are the focus of our
work, choose candidates using either an upper confidence
bound (UCB) or Thompson sampling (TS) approach. We
give here an overview of these baselines, and will discuss
later how our approach compares with Bayesian approaches,
such as those based on expected improvement (Jones et al.,
1998) and knowledge gradient (Ryzhov et al., 2012), or
heuristic, such as those based on genetic algorithms (Real
et al., 2019) and local searches (Choromanski et al., 2019).

GP-UCB (Srinivas et al., 2010) is one of the most pop-
ular algorithm for GP optimization and it suffers a regret
O(
√
TγT ), where γT is the maximal mutual information

gain of a GP after T evaluations (Srinivas et al., 2010;
Chowdhury & Gopalan, 2017).1 Among approximate GP
optimization methods, Budgeted Kernelized Bandits (BKB)
(Calandriello et al., 2019) and Thompson sampling with
quadrature random features (TS-QFF) (Mutny & Krause,
2018) are currently the only provably scalable methods that
achieve the O(

√
TγT ) rate with sub-cubic computational

complexity. However they both fail to achieve a fully satis-
factory runtime. TS-QFF’s complexity2 Õ(T2dd2eff) scales
exponentially in d, and therefore can only be applied to
low-dimensional input spaces, while BKB’s complexity is
still quadratic Õ(T 2d2eff). Furthermore, both TS-QFF and
BKB are constrained to a sequential protocol and therefore
suffer from poor experimental scalability.

In batch GP optimization, Desautels et al. (2014) introduced

1Recently, Calandriello et al. (2019) connected this quantity to
the so-called effective dimension deff of the GP.

2The Õ(·) notation ignores logarithmic dependencies.

a batched version of GP-UCB (GP-BUCB) that can ef-
fectively deal with delayed feedback, essentially matching
the rate of GP-UCB. Successive methods improved on this
approach (Daxberger & Low, 2017, App. G) but are too
expensive to scale and/or require strong assumptions on
the function f (Contal et al., 2013). Kathuria et al. (2016)
uses determinantal point process (DPP) sampling to globally
select the batch of points, but DPP sampling is an expen-
sive process in itself, requiring cubic time in the number
of alternatives. Although some MCMC-based approximate
DPP sampler are scalable, they do not provide sufficiently
strong guarantees to prove low regret. Similarly Daxberger
& Low (2017) use a Markov-based approximation to select
queries, but lose all regret guarantees in the process. In
general, the time and space complexity of selecting each
candidate xt in the batch remains at leastO(t2), resulting in
an overall O(T 3) time and O(T 2) space complexity, which
is prohibitive beyond a few thousands evaluations.

Contributions. In this paper we introduce a novel sparse
approximation for batched GP-UCB, Batch Budgeted Ker-
nelized Bandits (BBKB) with a constant O(d2eff) amortized
per-step complexity that can easily scale to tens of thou-
sands of iterations. If A is finite with A candidates, we
prove that BBKB runs in near-linear Õ(TAd2eff + Td3eff)

time and Õ(Ad2eff) space and it achieves a regret of order
O(
√
TγT ), thus matching both GP-UCB and GP-BUCB

at a fraction of the computational costs (i.e., their complex-
ity scales as O(T 3)). This is achieved with two new results
of independent interest. First we introduce a new adaptive
schedule to select the sizes of the batches of candidates,
where the batches selected are larger than the ones used
by GP-BUCB (Desautels et al., 2014) while providing the
same regret guarantees. Second we prove that the same
adaptive schedule can be used to delay updates to BKB’s
sparse GP approximation (Calandriello et al., 2019), also
without compromising regret. This results in large com-
putational savings (i.e., from Õ(td2eff) to Õ(d2eff) per-step
complexity) even in the sequential setting, since updates
to the sparse GP approximation, i.e., resparsifications, are
the most expensive operation performed by BKB. Delayed
resparsifications also allow us to exploit important imple-
mentation optimizations in BBKB, such as rank-one up-
dates and lazy updates of GP posterior. We also show that
our approach can be combined with existing initialization
procedures, both to guarantee a desired minimum level of
experimental parallelism and to include pre-existing feed-
back to bootstrap the optimization problem. We validate our
approach on several datasets, showing that BBKB matches
or outperforms existing methods in both regret and runtime.
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2. Preliminaries
Setting. A learner is provided with a decision set A (e.g.,
a compact set in Rd) and it sequentially selects candidates
x1, . . . ,xT from A. At each step t, the learner receives a
feedback yt

def
= f(xt)+ηt, where f is an unknown function,

and ηt is an additive noise drawn i.i.d. from N (0, ξ2).3

We denote by Xt
def
= [x1, . . . ,xt]

T ∈ Rt×d the matrix of
the candidates selected so far, and with yt

def
= [y1, . . . , yt]

T

the corresponding feedback. We evaluate the performance
of the learner by its regret, i.e., RT

def
=
∑T
t=1 f

? − f(xt),
where f? = maxx∈A f(x) is the maximum of f . In many
applications (e.g., optimization of chemical products) it is
possible to execute multiple experiments in parallel. In
this case, at step t = 1 the learner can select a batch of
candidates and wait for all feedback y1, .., yt′ before moving
to the next batch, starting at t′ > t. To relate steps with
their batch, we denote by fb(t) the index of the last step
of the previous batch, i.e., at step t we have access only to
feedback yfb(t) up to step fb(t). Finally, [t] = {1, . . . , t}
denotes the set of integers up to t.

Sparse Gaussian processes and Nyström embeddings.
GPs (Rasmussen & Williams, 2006) are traditionally de-
fined in terms of a mean function µ, which we assume to
be zero, and a covariance defined by the (bounded) kernel
function k : A×A → [0, κ2]. Given µ, k, and some data,
the learner can compute the posterior of the GP.

In the following we introduce the GP posterior using a
formulation based on inducing points (Quinonero-Candela
et al., 2007; Huggins et al., 2019), also known as sparse
GP approximations, which is later convenient to illustrate
our algorithm. Given a so-called dictionary of inducing
points S def

= {xi}mi=1, let KS ∈ Rm×m be the kernel matrix
constructed by evaluating k(xi,xj) for all the points in S,
and similarly let kS(x) = [k(x1,x), . . . , k(xm,x)]

T. Then
we define a Nyström embedding as z(·,S) def= K

+/2
S kS(·) :

Rd → Rm, where (·)+/2 indicates the square root of
the pseudo-inverse. We can now introduce the matrix
Z(Xt,S) = [z(x1,S), . . . , z(xt,S)]T ∈ Rt×m containing
all candidates selected so far after embedding, and define
Vt = Z(Xt,S)TZ(Xt,S) + λI ∈ Rm×m. Following
Calandriello et al. (2019), the BKB approximation of the
posterior mean, covariance, and variance is

µ̃t(xi,S) = z(xi,S)TV−1t Z(xi,S)Tyt, (1)

k̃t(xi,xj ,S) = 1
λ

(
k(xi,xj)− z(xi,S)Tz(xj ,S)

)
+ z(xi,S)TV−1t z(xj ,S),

(2)

σ̃2
t (xi,S) = k̃t(xi,xi,S), (3)

3Candidates are sometime referred to as actions, arms, or
queries, and feedback is sometimes called reward or observation.

where λ is a parameter to be tuned. The subscript t in
µ̃t and σ̃t indicates what we already observed (i.e., Xt

and yt), and S indicates the dictionary used for the em-
bedding. Moreover, if Sexact is a perfect dictionary we
recover a formulation almost equivalent4 to the standard
posterior mean and covariance of a GP, which we denote
with µt(x)

def
= µ̃t(x,Sexact) and σ2

t (x)
def
= σ̃2

t (x,Sexact). Ex-
amples of possible Sexact are the whole set A if finite, or the
set of all candidates {x1, . . . ,xT } selected so far.

Finally, we define the effective dimension after t steps as

deff(Xt) =
∑t
s=1 σ

2
t (xs) = Tr(Kt(Kt + λI)−1).

Intuitively, deff(Xt) captures the effective number of pa-
rameters in f , i.e., the posterior f can be represented us-
ing roughly deff(Xt) coefficients. We use deff to denote
deff(XT ) at the end of the process. Note that deff is equiva-
lent to the maximal conditional mutual information γT of
the GP (Srinivas et al., 2010), up to logarithmic terms (Ca-
landriello et al., 2017a, Lem. 1).

The GP-UCB family. GP-UCB-based algorithms aim
to construct an acquisition function ut(·) : A → R to
act as an upper confidence bound (UCB) for the unknown
function f . Whenever ut(x) is a valid UCB (i.e., f(x) ≤
ut(x)) and it converges to f(x) ”sufficiently” fast, selecting
candidates that are optimal w.r.t. to ut leads to low regret,
i.e., the value f(xt+1) of xt+1 = argmaxx∈A ut(x) tends
to maxx∈A f(x) as t increases.

In particular, GP-UCB (Srinivas et al., 2010) defines
ut(x) = µt(x) + βtσt(x), for a properly chosen βt ∈ R+.
Unfortunately, GP-UCB is computationally and experi-
mentally inefficient, as evaluating ut(x) requires O(t2)
per-step and no parallel experiments are possible. To im-
prove computations, BKB (Calandriello et al., 2019), for
a specific β̃t ∈ R+, replaces ut with an approximate
ũBKB
t (x) = µ̃t(x,St) + β̃tσ̃t(x,St), which is proven to

be sufficiently close to ut to achieve low regret. However,
maintaining accuracy requires O(t) per step to update the
dictionary St at each iteration, and the queries are still se-
lected sequentially. GP-BUCB (Desautels et al., 2014) tries
to increase GP-UCB’s experimental efficiency by select-
ing a batch of queries that are all evaluated in parallel. In
particular, for a certain αt ∈ R+, GP-BUCB approximate
the UCB as ũGP-BUCB

t (x) = µfb(t)(x) + αtσt(x), where
the mean is not updated until new feedback arrives, while
due to its definition the variance only depends on Xt and
can be updated in an unsupervised manner. Nonetheless,

4We refer to µ̃t and σ̃2
t as posteriors with a slight abuse of

terminology. In particular, up to a 1/λ rescaling, they correspond
to the Bayesian DTC approximation (Quinonero-Candela et al.,
2007), which is not a GP posterior in a strictly Bayesian sense. Our
rescaling 1/λ is also not present when deriving the exact µt and
σ2
t as Bayesian posteriors, but is necessary to simplify the notation

of our frequentist analysis. For more details, see Appendix A.
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GP-BUCB is as computationally slow as GP-UCB. More
details about these methods are reported in Appendix A.

Controlling regret in batched Bayesian optimization.
For all steps within a batch, GP-BUCB can be seen as
fantasizing or hallucinating a constant feedback µfb(t)(xt)
so that the mean does not change, while the variances keep
shrinking, thus promoting diversity in the batch. How-
ever, incorporating fantasized feedback causes uGP-BUCB

t

to drift away from ut to the extent that it may not be a
valid UCB anymore. Desautels et al. (2014) show that
this issue can be managed by adjusting GP-UCB’s pa-
rameter βt. In fact, it is possible to take the uGP-BUCB

t

at the beginning of the batch (which is a valid UCB by
definition), and correct it to hold for each hallucinated
step as f(x) ≤ µfb(t)(x) + ρfb(t),t(x)βfb(t)σt(x), where

ρfb(t),t(x)
def
=

σfb(t)(x)

σt(x)
is the posterior standard deviation

ratio. By using any αt ≥ ρfb(t),t(x)βfb(t), we have that
uGP-BUCB
t is a valid UCB. As the length of the batch in-

creases, the ratio ρfb(t),t may become larger, and the UCB
becomes less and less tight. Crucially, the drift of the ratio
can be estimated.
Proposition 1 (Desautels et al. (2014), Prop. 1). At any step
t, for any x ∈ A the posterior ratio is bounded as

ρfb(t),t(x)
def
=

σfb(t)(x)

σt(x)
≤
∏t
s=fb(t)+1

(
1 + σ2

s−1(xs)
)
.

Based on this result, GP-BUCB continues the construction
of the batch while

∏t
s=fb(t)+1

(
1 + σ2

s−1(xs)
)
≤ C for

some designer-defined threshold of drift C. Therefore, ap-
plying Proposition 1, we have that the ratio ρfb(t),t(x) ≤ C
for any x, and setting αt

def
= Cβfb(t) guarantees the validity

of the UCB, just as in GP-UCB. As a consequence, GP-
UCB’s analysis can be leveraged to provide guarantees on
the regret of GP-BUCB.

3. Efficient Batch GP Optimization
In this section, we introduce BBKB which both generalizes
and improves over GP-BUCB and BKB.

3.1. The algorithm
The pseudocode of BBKB is presented in Algorithm 1.
The dictionary is initially empty, and we have µ̃0(x) =
0 and σ̃0(x, {}) = k(x,x)/λ = σ0(x). At each step t
BBKB chooses the next candidate xt+1 as the maximizer
of the UCB ũt(x) = µ̃fb(t)(x,Sfb(t))+α̃fb(t)σ̃t(x,Sfb(t)),
which combines BKB and GP-BUCB’s approaches with
a new element. In ũt, not only we delay feedback updates
as we use the posterior mean computed at the end of the
last batch µ̃fb(t) but, unlike BKB, we keep using the same
dictionary Sfb(t) for all steps in a batch. While freezing the
dictionary leads to significantly reducing the computational
complexity, delaying feedback and dictionary updates may

Algorithm 1 BBKB

Require: Set of candidates A, {α̃t}Tt=1, T , C̃, {qt}Tt=1

1: Sample x1 uniformly, receive y1

2: Initialize S0 = {}, fb(0) = 0
3: for t = {0, . . . , T − 1} do
4: Select xt+1 = argmaxx∈A ũt(x,Sfb(t))
5: if 1 +

∑t+1
s=fb(t)+1 σ̃

2
fb(t)(xs,Sfb(t)) ≤ C̃ then

6: // fb(t+ 1) = fb(t), batch construction step
7: Update ũt+1(xt+1,Sfb(t+1)) with the new σ̃t+1

8: Update ũt+1(xi,Sfb(t+1)) for all
{x : ũt(x,Sfb(t)) ≥ ũt+1(xt+1,Sfb(t))}

9: else
10: // fb(t+ 1) = t+ 1, resparsification step
11: Initialize Sfb(t+1) = ∅
12: for xs ∈ Xfb(t+1) do
13: Set p̃fb(t+1),s = qt · σ̃2

fb(t)(xs)
14: Draw zfb(t+1),s ∼ Bernoulli(p̃fb(t+1),s)
15: If zfb(t+1),s = 1, add xs in Sfb(t+1)

16: end for
17: Get feedback {ys}fb(t+1)

s=fb(t)+1

18: Update µ̃fb(t+1) and σ̃fb(t+1) for all x ∈ A
19: end if
20: end for

result in poor UCB approximation. Similar to GP-BUCB,
after selecting xt+1 we test the condition in (L5) to decide
whether to continue the batch, a batch construction step, or
not, a resparsification step. The specific formulation of our
condition is crucial to guarantee near-linear runtime, and
improves over the condition used in GP-BUCB. Notice that
if we update dictionary and feedback at each step, BBKB
reduces to BKB (up to an improved α̃t as discussed in the
next section), while if St = Xt we recover GP-BUCB, but
with an improved terminating rule for batches.

In a batch construction step, we keep using the same dic-
tionary in computing the UCBs used to select the next can-
didate. On the other hand, if condition (L5) determines
that UCBs may become too loose, we interrupt the batch
and update the sparse GP approximation, i.e., we respar-
sify the dictionary. To do this we employ BKB’s poste-
rior sampling procedure in L11-16. For each candidate
xs selected so far, we compute an inclusion probability
p̃fb(t+1),s = qt · σ̃fb(t)(xs), where qt ≥ 1 is a parameter
trading-off the size of S and the accuracy of the approxima-
tions, and we add xs to the new dictionary with probability
p̃fb(t+1),s. A crucial difference w.r.t. BKB is that in comput-
ing the inclusion probability we use the posterior variances
computed at the beginning of the batch (instead of σ̃fb(t+1)).
While this introduces a further source of approximation, in
the next section we show that this error can be controlled.
The resulting dictionary is then used to compute the embed-
ding zfb(t+1) and the UCB values whenever needed.

Maximizing the UCB. Since in general ut is a highly non-
linear, non-convex function, it may be NP-hard to compute
xt+1 as its argmax over A. To simplify the exposition, in
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the rest of the paper we assume that A is finite with car-
dinality A such that simple enumeration of all candidates
in A is sufficient to exactly optimize the UCB. Both this
assumption and the runtime dependency on A can be easily
removed if an efficient way to optimize ut over A is pro-
vided (e.g., see Mutny & Krause (2018) for the special case
of d = 1 or when k is an additive kernel).

Moreover, when A is finite BBKB can be implemented
much more efficiently. In particular, many of the quantities
used by BBKB can be precomputed once at the beginning
of the batch, such as pre-embedding all arms. In addition
keeping the embeddings fixed during the batch allows us
to update the posterior variances using efficient rank-one
updates, combining the efficiency of a parametric method
with the flexibility of non-parametric GPs. Finally, when
both dictionary and feedback are fixed we can leverage lazy
covariance evaluations, which allows us to exactly compute
the xt+1 while only updating a small fraction of the UCBs
(see Appendix A for more details).

3.2. Computational analysis

The global runtime of BBKB is O
(
TAm2 + BTm +

B(Am2 + m3)
)
, where m = maxt |Sfb(t)| is the maxi-

mum size of the dictionary/embedding across batches, and
B the number of batches/resparsifications (see Appendix C
for details). In order to obtain a near-linear runtime, we
need to show that both |St| and B are nearly-constant.

Theorem 1. Given δ ∈ (0, 1), 1 ≤ C̃, and 1 ≤ λ, run
BBKB with qt ≥ 8 log(4t/δ). Then, w.p. 1− δ

1) For all t ∈ [T ] we have |St| ≤ 9C̃(1+κ2/λ)qtdeff(Xt).

2) Moreover, the total number of resparsification B per-
formed by BBKB is at most O(deff(Xt)).

3) As a consequence, BBKB runs in near-linear time
Õ(TAdeff(Xt)

2) .

Theorem 1 guarantees that whenever deff, or equivalently
γT , is near-constant (i.e., Õ(1)), BBKB runs in Õ(TA).
Srinivas et al. (2010) shows that this is the case for common
kernels, e.g., γT ≤ O(d log(T )) for the linear kernel and
γT ≤ O(log(T )d) for the Gaussian kernel.

Among sequential GP-Opt algorithms, BBKB is not only
much faster than the original GP-UCB Õ(T 3A) runtime,
but also much faster when compared to BKB’s quadratic
Õ(T max{A, T}d2eff). BBKB’s runtime also improves over
GP-optimization algorithms that are specialized for station-
ary kernels (e.g. Gaussian), such as QFF-TS’s (Mutny &
Krause, 2018) Õ(TA2dd2eff) runtime, without making any
assumption on the kernel and without an exponential depen-
dencies on the input dimension d. When compared to batch
algorithms, such as GP-BUCB, the improvement is even

sharper as all existing batch algorithms that are provably
no-regret (Desautels et al., 2014; Contal et al., 2013; Shah
& Ghahramani, 2015) share GP-UCB’s Õ(AT 3) runtime.

One of the central elements of this result is BBKB’s adap-
tive batch terminating condition. As a comparison, GP-
BUCB uses

∏t+1
s=fb(t)+1(1 + σ2

fb(t)(xs)) as a batch termi-
nation condition, but due to Weierstrass product inequality

1 +
∑t+1
s=fb(t)+1 σ

2
fb(t)(xs) ≤

∏t+1
s=fb(t)+1(1 + σ2

fb(t)(xs)),

and the product is always larger than the sum which BBKB
uses. Thanks to the tighter bound, we obtain larger batches
and can guarantee that at most Õ(deff) batches are necessary
over T steps. This implies that, unless deff →∞ in which
case the optimization would not converge in the first place,
the size of the batches must on average grow linearly with T
to compensate. In addition to this guarantee on the average
batch size, in the next section we show how smarter initial-
ization schemes can guarantee a minimum batch size, which
is useful to fully utilize any desired level of parallelism.
Finally, note that the A factor reported in the runtime is
pessimistic, since BBKB recomputes only a small fraction
of UCB’s at each step thanks to lazy evaluations, and should
be considered simply as a proxy of the time required to find
the UCB maximizer.

3.3. Regret analysis

We report regret guarantees for BBKB in the so-called fre-
quentist setting. While the algorithm uses GP tools to define
and manage the uncertainty in estimating the unknown func-
tion f , the analysis of BBKB does not rely on any Bayesian
assumption about f being actually drawn from the prior
GP(0, k), and it only requires f to be bounded in the norm
associated to the RKHS induced by the kernel function k.
Theorem 2. Assume ‖f‖H ≤ F < ∞, and let ξ2 be the
variance of the noise ηt. For any desired, 0 < δ < 1,
1 ≤ λ, 1 ≤ C̃, if we run BBKB with qt ≥ 72C̃ log(4t/δ),
α̃fb(t) = C̃β̃fb(t), and

β̃fb(t) = 2ξ

√∑fb(t)

s=1
log
(
1 + 3σ̃2

fb(s−1)(xs)
)
+ log

(
1
δ

)
+ (1 +

√
2)
√
λF,

then, with prob. 1− δ, BBKB’s regret is bounded as

RBBKB
T ≤ 55C̃2RGP-BUCB

T ≤ 55C̃3RGP-UCB
T

with RGP-UCB
T bounded by

√
T

(
ξ

( T∑
t=1

σ2
t−1(xt) + log

(
1
δ

))
+

√√√√λF 2

T∑
t=1

σ2
t−1(xt)

)
.

Theorem 2 shows that BBKB achieves essentially the
same regret as GP-BUCB and GP-UCB, but at a frac-
tion of the computational cost. Note that

∑T
t=1 σ

2
t−1(xt) ≈
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log det(KT /λ+ I) ≈ γT (Srinivas et al., 2010, Lem. 5.4).
Such a tight bound is achieved thanks in part to a new
confidence interval radius β̃t. In particular Calandriello
et al. (2019) contains an extra log det(KT /λ + I) ≤
deff(λ,XT ) log(T ) bounding step that we do not have to
make. While in the worst case this is only a log(T ) im-
provement, empirically the data adaptive bound seems to
lead to much better regret.

Discussion. BBKB directly generalizes and improves both
BKB and GP-BUCB. If C̃ = 1, BBKB is equivalent to
BKB, with a improved β̃t and a slightly better regret by a
factor log(T ), and if St = Sexact we recover GP-BUCB,
with an improved batch termination rule. BBKB’s algo-
rithmic derivation and analysis require several new tools.
A direct extension of BKB to the batched setting would
achieve low regret but be computationally expensive. In
particular, it is easy to extend BKB’s analysis to delayed
feedback, but only if BKB adapts the embedding space
(i.e., resparsifies the GP) after every batch construction step
to maintain guarantees at all times, i.e., Theorem 1 must
hold at all steps and not only at fb(t). However this causes
large computation issues, as embedding the points is BKB’s
most expensive operation, and prevents any kind of lazy
evaluation of the UCBs. BBKB solves these two issues
with a simple algorithmic fix by freezing the dictionary dur-
ing the batch. However, this bring additional challenges
for the analysis. The reason is that while the dictionary is
frozen, we may encounter a point xt that cannot be well
represented with the current St, but we cannot add xt to it
since the dictionary is frozen. This requires studying how
posterior mean and variance drift away from their values
at the beginning of the batch. We tackle this problem by
simultaneously freezing the dictionary and batching candi-
dates. As we will see in the next section, and prove in the
appendix, freezing the dictionary allows us to control the ra-
tio σ̃fb(t)(xi,Sfb(t))/σ̃t(xi,Sfb(t)), obtaining a generaliza-
tion of Proposition 5. However, changing the posterior mean
µ̃t(·,Sfb(t)) without changing the dictionary could still in-
validate the UCBs. Batching candidates allows BBKB to
continue using the posterior mean µ̃fb(t)(·,Sfb(t)), which
is known to be accurate, and resolve this issue. By terminat-
ing the batches when exceeding a prescribed potential error
threshold (i.e., C̃) we can ignore the intermediate estimate
and reconnect all UCBs with the accurate UCBs at the begin-
ning of the batch. This requires a deterministic, worst-case
analysis of both the evolution of σ̃t(xi) and σt(xi), which
we provide in the appendix.

Proof sketch. One of the central elements in BBKB’s
computational and regret analysis is the new adaptive batch
terminating condition. In particular, remember that GP-
BUCB’s regret analysis was centered around the fact that
the posterior ratio ρfb(t),t(x) from Proposition 1 could be
controlled using Desautels et al. (2014)’s batch termination

rule. However, this result cannot be transferred directly
to BBKB for several reasons. First, we must not only
control the ratio ρfb(t),t(x), but also the approximate ratio

ρ̃fb(t),t(x,S)
def
=

σ̃fb(t)(x,S)
σ̃t(x,S) for some dictionary S , since we

are basing most of our choices on σ̃t but will be judged
based on σt (i.e., the real function is based on k and σt, not
on some k̃ and σ̃t). Therefore our termination rule must
provide guarantees for both. Second, GP-BUCB’s rule is
not only expensive to compute, but also hard to approximate.
In particular, if we approximated σfb(t)(xs) with σ̃fb(t)(xs)
in Proposition 1, any approximation error incurred would be
compounded multiplicatively by the product resulting in an
overall error exponential in the length of the batch. Instead,
the following novel ratio bound involves only summations.

Lemma 1. For any kernel k, dictionary S , set of points Xt,
x ∈ A, and fb(t) < t, we have

ρ̃fb(t),t(x,S) ≤ 1 +
∑t

s=fb(t)
σ̃2
fb(t)(x,S).

The proof, reported in the appendix, is based only on linear
algebra and does not involve any GP-specific derivation,
making it applicable to the DTC approximation used by
BBKB. Most importantly, it holds regardless of the dictio-
nary S used (as long as it stays constant) and regardless of
which candidates an algorithm might include in the batch.
If we replace σ̃fb(t) with σfb(t) the bound can also be ap-
plied to ρfb(t),t(x,S), giving us an improved version of
Proposition 1 as a corollary. Finally, replacing the product
in Proposition 1 with the summation in Lemma 1 makes
it much easier to analyse it, leveraging this result adapted
from (Calandriello et al., 2019).

Lemma 2. Under the same conditions as Theorem 1,
w.p. 1− δ, ∀ fb(t) ∈ [T ] and ∀ x ∈ A we have

σ2
fb(t)(x)/3 ≤ σ̃

2
fb(t)(x,Sfb(t)) ≤ 3σ2

fb(t)(x).

Lemma 2 shows that at the beginning of each batch BBKB,
similarly to BKB, does not underestimate uncertainty, i.e.,
unlike existing approximate batched methods it does not
suffer from variance starvation (Wang et al., 2018), Apply-
ing Lemma 2 to Lemma 1 we show that our batch terminat-
ing condition can provide guarantees on both the approx-
imate ratio σ̃fb(t)/σ̃t ≤ C̃, as well as the exact posterior
ratio σfb(t)/σt ≤ 3C̃ paying only an extra constant approx-
imation factor. Both of these conditions are necessary to
obtain the final regret bound.

4. Extensions
In this section we discuss two important extensions of
BBKB: 1) how to leverage initialization to improve experi-
mental parallelism and accuracy, 2) how to further trade-off
a small amount of extra computation to improve parallelism.
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Initialization to guarantee minimum batch size. In many
cases it is desirable to achieve at least a certain prescribed
level of parallelism P , e.g., to be able to fully utilize a server
farm with P machines or a lab with P analysis machines5.
However, BBKB’s batch termination rule is designed only
to control the ratio error, and might generate batches smaller
than P , especially in the beginning when posterior variances
are large and their sum can quickly reach the threshold C̃.
However, it is easy to see that if at step fb(t) we have
maxx∈A σ̃

2
fb(t)(x) ≤ 1/P for all x, then the batch will be

at least as large as P .

The same problem of controlling the maximum posterior
variance of a GP was studied by Desautels et al. (2014),
who showed that a specific initialization scheme (see Ap-
pendix A for details) called uncertainty sampling (US) can
guarantee that after Tinit initialization samples, we have
that maxx∈A σ

2
Tinit

(x) ≤ γTinit/Tinit. Since it is known that
for many covariances k the maximum information gain γt
grows sub-linearly in t, we have that γTinit/Tinit eventually
reaches the desired 1/P . For example, for the linear kernel
Tinit ≤ Pd log(P ) suffices, and Tinit ≤ log(P )d+1 for the
Gaussian kernel. All of these guarantees can be transferred
to our approximate setting thanks to Lemma 2 and to the
monotonicity of σt. In particular, after a sufficient number
Tinit of steps of US, and for any fb(t) > Tinit we have that

σ̃2
fb(t)(x,Sfb(t)) ≤ 3σ2

fb(t)(x) ≤ 3σ2
Tinit

(x) ≤ 3/P,

and US can be used to control BBKB’s batch size as well.

Initialization to leverage existing data. In many domains
GP-optimization is applied to existing problems in hope
to improve performance over an existing decision system
(e.g., replace uniform exploration or A/B testing with a more
sophisticated alternative). In this case, existing historical
data can be used to initialize the GP model and improve
regret, as it is essentially “free” exploration. However this
still present a computational challenge, since computing the
GP posterior scales with the number of total evaluations,
which includes the initialization. In this aspect, BBKB
can be seamlessly integrated with initialization using pre-
existing data. All that is necessary is to pre-compute a
provably accurate dictionary STinit using any batch sampling
technique that provides guarantees equivalent to those of
Lemma 2, see e.g.,Calandriello et al. (2017a); Rudi et al.
(2018). The algorithm then continues as normal from step
Tinit + 1 using the embeddings based on STinit , maintaining
all computational and regret guarantees.

Local control of posterior ratios. Finally, we want to high-
light that the termination rule of BBKB is just one of many
possible rules to guarantee that the posterior ratio is con-

5For simplicity here we assume that all evaluations require the
same time and that batch sizes are a multiple of P . This can be
easily relaxed at the only expense of a more complex notation.

trolled. In particular, while BBKB’s rule improves over
GP-BUCB’s, it is still not optimal. For example, one could
imagine recomputing all posterior variances at each step and
check that maxx∈A σ̃

2
fb(t)(x,Sfb(t))/σ̃

2
t (x,Sfb(t)) ≤ C̃.

However this kind of local (i.e., specific to a x) test is com-
putationally expensive, as it requires a sweep over A and
at least O(|Sfb(t)|2) time to compute each variance, which
is why BBKB and GP-BUCB’s termination rule use only
global information. To try to combine the best of both
worlds, we propose a novel efficient local termination rule.

Lemma 3. For any kernel k, dictionary S , set of points Xt,
x ∈ A, and fb(t) < t,

ρ̃fb(t),t(x,S) ≤ 1 +

∑t
s=fb(t) k̃

2
fb(t)(x,xs,Sfb(t))

σ̃2
fb(t)(x,Sfb(t))

Note that k̃2fb(t)(x,xs) ≤ σ̃2
fb(t)(x)σ̃

2
fb(t)(xs), due to

Cauchy-Bunyakovsky-Schwarz, and therefore this termi-
nation rule is tighter than the one in Lemma 1. Moreover,
with an argument similar to the one in Lemma 1 we can
again show that the termination provably controls both the
ratio of exact and approximate posteriors.

Computationally, after a Õ(d2eff) cost to update V−1t , com-
puting multiple k̃fb(t)(x,xs,Sfb(t)) for a fixed xs requires
only Õ(deff) time, i.e., it requires only a vector-vector mul-
tiplication in the embedded space. Therefore, the total cost
of updating the posterior ratio estimates using Lemma 3 is
Õ(Adeff + d2eff), while recomputing all variances requires
O(Ad2eff). However, it still requires a full sweep over all
candidates introducing a dependency on A. As commented
in the case of posterior maximization, lazy updates can be
used to empirically alleviate this dependency. Finally, it
is possible to combine both bounds: at first use the global
bound from Lemma 1, and then switch to the more com-
putationally expensive local bound of Lemma 3 only if the
constructed batch is not “large enough”.

5. Experiments
In this section we empirically study the performance in
regret and computational costs of BBKB compared to Eps-
Greedy, GP-UCB, GP-BUCB, BKB, batch Thompson
sampling (ASYNC-TS) (Kandasamy et al., 2018) and ge-
netic algorithms (REG-EVOLUTION) (Real et al., 2019). For
BBKB we use both the batch stopping rules presented in
Lemma 1 and Lemma 3 calling the two versions Global-
BBKB and GlobalLocal-BBKB respectively6. For each
experimental result we report mean and 95% confidence
interval using 10 repetitions. The experiments are imple-
mented in python using the numpy, scikit-learn
and botorch library, and run on a 16 core dual-CPU server

6Code can be found at github.com/luigicarratino/batch-bkb
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Figure 1: Regret-ratio on Abalone (left) and Cadata (right)
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Figure 2: Time on Abalone (left) and Cadata (right)

Figure 3: From left to right time without experimental costs, batch-size and total runtime on NAS-bench-101

Figure 4: From left to right regret-ratio, simple regret and simple regret without initialization on NAS-bench-101

using parallelism when allowed by the libraries. All algo-
rithm use the hyper-parameters suggested by theory. When
not applicable, cross validated parameters that perform the
best for each individual algorithm are used (e.g. the kernel
bandwidth). All the detailed choices and further experi-
ments are reported in the Appendix D.

We first perform experiments on two regression datasets
Abalone (A = 4177, d = 8) and Cadata (A = 20640,
d = 8) datasets. We first rescale the regression target y to
[0, 1], and construct a noisy function to optimize by artifi-
cially adding a gaussian noise with zero mean and standard
deviation ξ = 0.01. For a horizon of T = 104 iterations,
we show in Figure 1 the ratio between the cumulative regret
Rt of the desired algorithm and the cumulative regret Runif

t

achieved by a baseline policy that selects candidates uni-
formly at random. We use this metric because it is invariant
to the scale of the feedback. We also report in Figure 2 the

runtime of the first 2 × 103 iterations. For both datasets,
BBKB achieves the smallest regret, using only a fraction
of the time of the baselines. Moreover, note that the time
reported do not take into account experimentation costs, as
the function is evaluated instantly.

To test how much batching can improve experimental run-
time, we then perform experiments on the NAS-bench-101
dataset (Ying et al., 2019), a neural network architecture
search (NAS) dataset. After preprocessing we are left with
A = 12416 candidates in d = 19 dimensions (details in
Appendix D). For each candidate, the dataset contains 3
evaluations of the trained network, which we transform in a
noisy function by returning one uniformly at random, and
the time required to train the network. To simulate a realistic
NAS scenario, we assume to start with already Tinit = 2000
evaluated network architectures, selected uniformly at ran-
dom. Initializing BBKB using this data is straightforward.
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To generate an initial dictionary we use the BLESS algo-
rithm (Rudi et al., 2018), with a time cost of 2.5s.
In Figure 3 we first report on the left the runtime of each al-
gorithm without considering experimental costs. While both
BBKB variants outperform baselines, due to the more ex-
pensive ratio estimator GlobalLocal-BBKB is slower than
Global-BBKB. However, while both termination rules guar-
antee linearly increasing batch-sizes, we can see that the
local rule outperforms the global rule. When taking into
account training time, this not only shows that the batched
algorithm are faster than sequential REG-EVOLUTION, but
also that GlobalLocal-BBKB with its larger batches be-
comes faster than Global-BBKB.

In Figure 4 we report cumulative and simple regret of
BBKB against REG-EVOLUTION, the best algorithm from
(Ying et al., 2019). To measure the regret, we plot the regret
ratio Rt/Runif

t and the simple regret (the gap between the
best candidate and the best candidate found by the algorithm
up to time t). We consider the simple regret metric because
it is used in the NAS-bench-101 paper to evaluate REG-
EVOLUTION. From the plot of the regret ratio Rt/Runif

t , we
can observe how BBKB is significantly better than REG-
EVOLUTION as this latter algorithm has not been designed
to minimize the cumulative regret. Further, BBKB is able
to match REG-EVOLUTION’s simple regret (the main target
for this latter algorithm).

Finally, in the rightmost plot of Figure 4 we report sim-
ple regret when Tinit = 0 (i.e., without using initialization).
Surprisingly, while the performance of REG-EVOLUTION
decreases the performance of BBKB actually increases,
outperforming REG-EVOLUTION’s. This might hint that
initialization is not always beneficial in Bayesian optimiza-
tion. It remains an open question to verify whether this is
because the uniformly sampled initialization data makes
the GP harder to approximate, or because it promotes an
excessive level of exploration by increasing βt but reducing
variance only in suboptimal parts of A.

6. Conclusions and Open Questions
In this paper we have presented Batched Budgeted Kernel-
ized Bandits (BBKB), a novel efficient GP optimization al-
gorithm with theoretical guarantees. BBKB is currently the
most efficient among provably no-regret GP optimization
algorithms, with a guaranteed near-linear time complexity.

The key to BBKB’s success is based on two new results.
First, we have proposed a novel adaptive strategy to select
the sizes of the batches of candidates. This strategy makes
BBKB more experimentally scalable than existing methods,
all while provably preserving selection performance and
low regret. Larger batches can then be exploited in the
optimization pipeline, and leverage distributed resources to

evaluate candidates in parallel resulting in significant wall-
clock runtime improvements. Second, we have proved that
the same adaptive strategy can be used to delay the updates
of BBKB’s sparse GP approximation. This choice provides
major computational savings without compromising the
regret. In the end, we have shown how well BBKB performs
in practice, providing a reliable tool that can be used to
solve complex and large scale optimization problems such
as neural architecture search.

BBKB also opens interesting new opportunities to design
a new generation of efficient and theoretically sound GP
optimization algorithms. In particular, BBKB was designed
with the objective of controlling cumulative regret under
frequentist assumptions, i.e., that f has a bounded norm.
However, GP-UCB has also been analysed under Bayesian
assumptions, were f is sampled from a GP and the objective
to control is the expected regret under this prior. This gave
rise to Bayesian variants of GP-UCB, which could be also
accelerated using the batching and delayed resparsification
of BBKB but would require a novel regret analysis.

In this work we have considered only the UCB acquisition
function. While it is straightforward to extend our result to
Thompson sampling, it remains an important open question
to see how we can use other popular Bayesian acquisition
functions like expected improvement and knowledge gra-
dient. While these acquisition functions are not known to
achieve no-regret in the frequentist setting, some do under
different Bayesian assumptions, and can potentially be made
scalable using an approach similar to BBKB. Similarly, GP-
UCB has been extensively used as a building block in more
refined GP optimization heuristics, for example by running
multiple local instances of GP-UCB (Wang et al., 2014).
Since BBKB has same regret of GP-UCB but is much
more efficient, it is natural and immediate to combine it
with these heuristics to further improve their scalability.

Finally, note that our theoretical analysis also extends to
continuous GP optimization. However, note that the com-
putational bottleneck for the continuous setting is the maxi-
mization of the UCBs over a continuous set. Most existing
results ignore this aspect and assume that an oracle can
provide the maximum in constant time, while in reality it
can be quite a complex problem (Kawaguchi et al., 2015;
Kirschner et al., 2019). In practice, to maximize the UCBs
many software packages exploits sampling techniques or
iterative methods such as L-BFGS (Balandat et al., 2019).
BBKB’s sparse approximation fits very nicely with such
approaches, since it provides a finite-dimensional represen-
tation of the GP that is amenable to optimization. Moreover,
since BBKB’s dictionary and sparse representation remain
fixed across a large number of iterations, this results in ad-
ditional benefits such as the ability to warm-start the inner
optimization problems.



Near-linear time Gaussian process optimization with adaptive batching and resparsification

Acknowledgements
This material is based upon work supported by the Center for
Brains, Minds and Machines (CBMM), funded by NSF STC award
CCF-1231216, and the Italian Institute of Technology. We grate-
fully acknowledge the support of NVIDIA Corporation for the
donation of the Titan Xp GPUs and the Tesla k40 GPU used for
this research. L. R. acknowledges the financial support of the
European Research Council (grant SLING 819789), the AFOSR
projects FA9550-17-1-0390 and BAA-AFRL-AFOSR-2016-0007
(European Office of Aerospace Research and Development), and
the EU H2020-MSCA-RISE project NoMADS - DLV-777826.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved
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Bayesian optimization with exponential convergence. In
Advances in neural information processing systems, pp.
2809–2817, 2015.

Kirschner, J., Mutny, M., Hiller, N., Ischebeck, R., and
Krause, A. Adaptive and safe bayesian optimization
in high dimensions via one-dimensional subspaces. In
International Conference on Machine Learning, pp. 3429–
3438, 2019.
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A. Expanded discussion
A.1. Relationship of µ̃t and σ̃t with Bayesian GP posteriors.

To clarify the comparison between BBKB and existing GP optimization methods, it is important to clarify the relationship
between BBKB’s approximate posterior (i.e., Equations 1 to 3 introduced in (Calandriello et al., 2019), which we will call
the BKB approximation) and the traditional definition of GP posterior commonly found in the literature (e.g., the one found
in (Rasmussen & Williams, 2006)).

To begin, let us first consider the case of a perfect dictionary Sexact (e.g., Sexact = A or Sexact = Xt). Then Equations 1 to 3
can be simplified to

µt (x | Xt,yt)=kt(x)
T(Kt + λI)−1yt, (4)

kt (x,x
′ | Xt)=

1
λ

(
k(x,x′)− kt(x)

T(Kt + λI)−1kt(x
′)
)
, (5)

σ2
t (x | Xt)=kt (x,x | Xt) , (6)

where Kt ∈ Rt×t is the kernel matrix with [Kt]i,j = k(xi,xj) for xi,xj in Xt, and kt(x) = [k(x1,x), . . . , k(xt,x)]
T.

Comparing this with e.g., Eq. 2.23 and 2.24 from Rasmussen & Williams (2006), which we will call µbay
t and σ2 bay

t , we see
that when λ = ξ2 the definition of the posterior mean µt is identical to µbay

t while the posterior variance σ2 bay
t = λσ2

t = ξ2σ2
t

is rescaled by a λ factor. This rescaling is not justified in a Bayesian prior/posterior sense, and therefore σ2
t is not a posterior

in the Bayesian sense.

However note that in the context of GP optimization with a variant of GP-UCB this distinction becomes less relevant. In
particular, we are mostly interested in comparing βtσt against βbay

t σbay
t rather than simply σt to σbay

t . In this case, looking
at Srinivas et al. (2010) or Chowdhury & Gopalan (2017) shows that when we choose λ = ξ2, then βbay

t = βt/λ, and
therefore βtσt = βbay

t σbay
t . As a consequence, when λ = ξ2 we can modify Calandriello et al. (2019)’s notation to match

the standard Bayesian notation, and the difference becomes only a matter of simplifications. However, frequentist analysis
of Kernelized-UCB algorithms show that sometimes λ 6= ξ2 is the optimal choice (Valko et al., 2013), and in this case the
two views are not so easily reconcilable. In this paper we chose to err on the side of generality, maintaining λ separate from
ξ2, but also on the side of familiarity and continue to refer to σ2

t as a posterior, with a slight abuse of terminology.

A similar argument can be made for µ̃t and σ̃2
t and their Bayesian counterparts µ̃bay

t and σ̃2 bay
t , known as the deterministic

training conditional (DTC) (Quinonero-Candela et al., 2007) or projected process (Seeger et al., 2003). In particular, we have
once again that the approximate posterior means µ̃t = µ̃bay

t coincide, while the approximate posterior variance σ̃2
t = λσ̃2 bay

t

differ by a λ factor. Note however that although Quinonero-Candela et al. (2007) call the DTC approximation an approximate
posterior, they also remark that it does not correspond to a GP posterior because it is not consistent. Therefore, regardless of
the rescaling λ, it is improper to refer to the DTC or the BKB approximation as posteriors.

We choose to maintain Calandriello et al. (2019)’s notation because, as we will see in the rest of the appendix, it makes
σ2
t coincide with the confidence intervals induced by OFUL (Abbasi-Yadkori et al., 2011) and with a quantity known in

randomized linear algebra as ridge leverage score (Alaoui & Mahoney, 2015). Since both of these tools are crucial in our
derivation, using a notation based on σ2 bay

t would require frequent rescalings by a factor λ, which although trivial might
become tedious and make the exposition heavier.

A.2. Historical overview of the GP-UCB family

There are several ways to leverage a GP posterior to choose useful candidates to evaluate. Here we review those based on
the GP-UCB algorithm (Srinivas et al., 2010). All GP-UCB-based algorithms rely on the construction of an acquisition
function ut(·) : A → R that acts as an upper confidence bound (UCB) for the unknown function f . Whenever ut(x) is a
valid UCB (i.e., f(x) ≤ ut(x)) and it converges to f(x) sufficiently fast, then selecting candidates that are optimal w.r.t. to
ut leads to low regret, i.e., the value of the candidate xt+1 = argmaxx∈A ut(x) tends to maxx∈A f(x) as t increases.

GP-UCB. The original GP-UCB formulation defines the UCB as ut(x) = µt(x) + βtσt(x). An important property of
this estimator is that the posterior variance is strictly non-increasing as more data is collected, i.e., σt+1(x) ≤ σt(x), and
therefore ut(x) naturally converges to µt(x), which in turn tends to f(x). Srinivas et al. (2010) found an appropriate
schedule for βt that guarantees that this happens w.h.p., and that therefore ut is a valid UCB at all steps. However GP-UCB
is computationally and experimentally slow, as evaluating ut(x) requires O(t2) per-step and no parallel experiments are
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Algorithm 2 GP-BUCB
Require: Set of candidates A, UCB parameters {αt}Tt=1, threshold C

Initialize fb(0) = 0
for t = {0, . . . , T − 1} do

Compute uGP-BUCB
t (x)← µfb(t)(x) + αtσt(x)

Select xt+1 ← argmaxx∈A uGP-BUCB
t (x)

if
∏t+1
s=fb(t)+1

(
1 + σ2

s−1(xs)
)
≤ C then

fb(t+ 1) = fb(t)
Update ũt+1 with the new σ̃t+1

else
fb(t+ 1) = t+ 1

Get feedback {ys}fb(t+1)
s=fb(t)+1

Update uGP-BUCB
t+1 with the new µfb(t+1) and σfb(t+1)

end if
end for

possible.

BKB. A common approach to improve computational scalability in GPs is to replace the exact posterior with an approximate
sparse GP posterior. The main advantage of this approximation is that if we use a dictionary S with size m = |S|, then
we can embed the GP in Rm using Equations 1 and 3, and keep updating the posterior in O(m2) time rather than O(t2).
However, this can lead to sub-optimal choices and large regret if the dictionary S is not sufficiently accurate. This brings
about a trade-off between larger and more accurate dictionaries, or smaller and more efficient ones. Moreover, we are only
interested in approximating the part of the space that we transverse in our optimization process. Therefore, a dictionary St
should naturally change over time to reflect which part of the space A is being tested. Calandriello et al. (2019) proposed to
solve these problems in the BKB algorithm by replacing ut with an approximate version uBKB

t (x) = µ̃t(x,St)+β̃tσ̃t(x,St),
and using a procedure called posterior variance sampling (see Algorithm 1) and (Calandriello et al., 2019) for more details)
to update the dictionary St at each step. They prove that combining these approaches guarantees that uBKB

t is a UCB, and
that BKB achieves low regret. However, posterior sampling requires O(t) per step to update the dictionary St at each
iteration, reducing BKB’s computational scalability, and the algorithm still has poor experimental scalability since the
candidates are selected sequentially.

Batch GP-UCB. Finally, GP-BUCB (Desautels et al., 2014) tries to increase GP-UCB’s experimental scalability by
selecting a batch7 of candidates that are all evaluated in parallel. The complete structure of GP-BUCB (Desautels et al.,
2014) is illustrated in Algorithm 2. GP-BUCB exploits the fact that σt does not depend on the feedback and within a
batch it defines the UCB uGP-BUCB

t = µfb(t)(x) + αtσt(x), where the mean µfb(t) uses only the feedback up the end of
the last batch, while σt(x) is updated within each batch depending on the candidates until t. The batch is constructed by
selecting candidates as xt+1 = argmaxx∈A u

GP-BUCB
t (x), then they all are evaluated in parallel, their feedback is received,

and µt is updated. Notice that at the beginning of batch the UCB coincides with the one computed by GP-UCB, i.e.,
uGP-BUCB
fb(t) = ufb(t). For all steps within a batch GP-BUCB can be seen as fantasizing or hallucinating a constant feedback
µfb(t)(xt) so that the mean does not change, while the variances keep shrinking, thus promoting diversity in the batch.
However, incorporating fantasized feedback instead of actual feedback causes GP-BUCB’s uGP-BUCB

t criteria to drift away
from ut, which might not make it a valid UCB anymore. Desautels et al. (2014) show that this issue can be managed
simply by adjusting GP-UCB’s parameter βt. In fact, it is possible to take the valid h.p. GP-UCB confidence bound at the
beginning of the batch, and correct it to hold for each hallucinated step as

f(x) ≤ µfb(t)(x) + βfb(t)σfb(t)(x) ≤ µfb(t)(x) + ρfb(t),t(x)βfb(t)σt(x), (7)

where ρfb(t),t(x)
def
=

σfb(t)(x)

σt(x)
is the posterior standard deviation ratio. By using any αt ≥ ρfb(t),t(x)βfb(t), we have that

7Since we present only one of the batched GP-UCB variants from Desautels et al. (2014), we refer for simplicity to it as GP-BUCB.
Note that the particular variant with adaptive batching we compare with is called GP-AUCB in (Desautels et al., 2014), as an adaptive
variant of what they refer to as GP-BUCB.
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uGP-BUCB
t is a valid UCB. As the length of the batch increases, the ratio ρfb(t),t may become larger, and the UCB becomes

less and less tight. As a result, Desautels et al. (2014) introduce an adaptive batch termination condition that ends the batch
at a designer-defined level of drift C. Note that when selecting C = 1 (i.e., enforcing batches of size 1) GP-BUCB reduces
to the original GP-UCB. Instead of checking the ratio ρfb(t),t for any possible candidate x, Desautels et al. (2014) rely on
the following result to derive a global condition that can be checked at any step t depending only on the posterior variance
computed on the candidates selected within the batch so far.

Proposition 2 ((Desautels et al., 2014), Prop. 1). At any step t, let σfb(t) and σt be the posterior standard deviation at the
end of the previous batch and at the current step. Then for any x ∈ A their ratio is bounded as

ρfb(t),t(x)
def
=
σfb(t)(x)

σt(x)
≤

t∏
s=fb(t)+1

(
1 + σ2

s−1(xs)
)
. (8)

This shows that while the standard deviation may shrink within each batch, the ratio w.r.t. the posterior at the beginning of
the batch is bounded. Note that GP-BUCB continues the construction of the batch while

∏t
s=fb(t)+1

(
1 + σ2

s−1(xs)
)
≤ C

for some threshold C. Therefore, applying Proposition 1, we have that the ratio ρfb(t),t(x) ≤ C for any x, and setting

αt
def
= Cβfb(t) guarantees the validity of the UCB. Finally, the choice of C directly translates into an equivalent constant

increase in the regret of GP-BUCB w.r.t. GP-UCB.

Proposition 3 ((Desautels et al., 2014), Thm 2). The regret of GP-BUCB is bounded as RGP-BUCB
T ≤ CRGP-UCB

T , where
RGP-UCB
T is the original regret of GP-UCB (see Thm. 2 for its explicit formulation).

Despite the gain in experimental parallelism and the low regret, GP-BUCB still inherits the same computational bottlenecks
as GP-UCB (i.e., O(T 3) in time and O(T 2) in memory).

A.3. Lazy UCB evaluation.

Once a new dictionary is generated at the end of a batch, we compute zfb(t+1)(x), the posterior mean and variance,
and the UCB for all candidates in A. This is an expensive operation but worth the effort, since it is done only once
per batch and all subsequent computations within the batch can be done efficiently. As z(·,Sfb(t)) is frozen, posterior
variances can be updated using efficient rank-one updates to compute posterior variances. Furthermore, for a fixed
Sfb(t), σ̃t+1(x,Sfb(t)) ≤ σ̃t(x,Sfb(t)), and since µ̃fb(t)(x,Sfb(t)) and α̃fb(t) remain fixed within the batch, the UCBs
ũt(x,Sfb(t)) are strictly non-increasing. Therefore, after selecting xt+1 we only need to recompute ũt+1(xt+1,Sfb(t))
and the UCBs for arms that had ũt(xi,Sfb(t)) ≥ ũt+1(xt+1,Sfb(t)) to guarantee that we are still selecting the argmax
correctly. While this lazy update of UCBs does not improve the worst-case complexity, in practice it may provide important
practical speedups.

Crucially, lazy updates require that both dictionary updates and feedback are delayed during the batch. In particular, even if
we do not receive new feedback simply updating the dictionary changes the embedding, and in the new representation the
mean µ̃fb(t) and variance σ̃fb(t) can both be larger or smaller, while still remaining valid. Therefore after each dictionary
updates all of our UCB might be potentially the new maximizer, and we need to trigger a complete recomputation. Similarly,
even if our embedding remains fixed receiving feedback can increase the mean µ̃fb(t) of potentially all candidates, which
need to be updated. While updating all means is a slightly cheaper operation than updating the embeddings, requiring only
vector-vector multiplications rather than matrix-vector multiplications, it is still an expensive operation that would prevent
BBKB from achieving near-linear runtime.

A.4. Why freezing both dictionary and feedback

We remark that Lemma 1 can be immediately applied to GP-BUCB to improve it, while the application to BKB must
be handled more carefully. In particular, if S = Sexact then the ratios ρ̃fb(t),t(x,Sexact) = ρfb(t),t(x) coincide and as we
discussed due to Weierstrass’s product inequality Lemma 1 improves on Proposition 1, resulting in an improved GP-BUCB.
We can also apply Lemma 1 in two different ways to BKB. The first naive approach is to try to improve BKB’s experimental
scalability through batching, i.e., use a batched UCB xt+1 = argmaxx∈A µ̃fb(t)(x,St) + α̃tσ̃t(x,St). However, Lemma 1
cannot be used to guarantee that this is still a valid UCB, as the dictionary changes over time. The second naive approach
is to try to improve BKB’s computational scalability through dictionary freezing and adaptive resparsification, i.e., use a
UCB with fixed dictionary as xt+1 = argmaxx∈A µ̃t(x,Sfb(t)) + α̃fb(t)σ̃t(x,Sfb(t))). However Lemma 1 only applies
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Algorithm 3 Uncertainty sampling
Require: Arm set A, P
Ensure: Init. set XTinit

Select x1 ← argmaxxi∈A σ0(xi)
Tinit ← 1
while σTinit−1(xTinit) ≥ 1/P do
Tinit ← Tinit + 1
Select xTinit ← argmaxxi∈A σTinit−1(xi)
Update all σTinit(x) with xTinit

end while

to the posterior variance σ̃2
t and not the posterior mean µ̃t, which is much harder to control. Already Calandriello et al.

(2019) remark that updating the dictionary at every step is vital to guarantee that we can correctly approximate the posterior
mean. Already after the first step fb(t) + 1 of dictionary freezing we might be losing crucial information, e.g., xfb(t)+1

might be the optimal arm but if the frozen dictionary Sfb(t) is orthogonal to xfb(t)+1 we are going to ignore it until the next
resparsification. Therefore, if we suspend the dictionary update for an amount of time sufficient to improve computational
complexity, we might incur an equally large regret. Crucially, introducing both batching and dictionary freezing results in
BBKB’s valid UCB, solving both of these problems.

A.5. Initialization and uncertainty sampling

We provide here a simplified proof of the result thanks again to our stopping rule. Let us first consider the exact case. Then
if fb(t) is the beginning of a batch and fb(t′) the beginning of the successive batch, then the termination rule guarantees
that the sum of the candidates in the batch exceeds the threshold

∑fb(t′)
s=fb(t) σ

2
fb(t)(xs) ≥ C̃ − 1. Therefore, if at time fb(t)

(i.e., at the beginning of a batch) we can guarantee that maxx σ
2
fb(t)(x) ≤ 1/P , then it is easy to see that this implies

C̃ − 1 ≤
fb(t′)∑
s=fb(t)

σ2
fb(t)(xs) ≤

fb(t′)∑
s=fb(t)

1/P ≤ (fb(t′)− fb(t))/P,

which implies that fb(t′)−fb(t) ≥ P (C̃−1) and the batch has size at least P (C̃−1). Similarly, for the actual termination
rule used by BBKB we have that

∑fb(t′)
s=fb(t) σ̃

2
fb(t)(xs,Sfb(t)) ≥ C̃ − 1. Since each different dictionary might result in

slightly different lower bounds for the batch size, we can use Lemma 2 to bring ourselves back to the exact case

C̃ − 1 ≤
fb(t′)∑
s=fb(t)

σ̃2
fb(t)(xs,Sfb(t)) ≤ 3

fb(t′)∑
s=fb(t)

σ2
fb(t)(xs) ≤ 3(fb(t′)− fb(t))/P,

and therefore fb(t′)− fb(t) ≥ P (C̃ − 1)/3. All that is left is to guarantee that maxx σ
2
fb(t)(x) ≤ 1/P .

First we remark that since σ2
t is non-increasing, the batch sizes (up to small fluctuations due to GP approximation), will also

be non-decreasing over time. We can then use this intuition to see that selecting beforehand an initial set of Tinit candidates
to force maxx σ

2
Tinit

(x) ≤ 1/P is sufficient to guarantee the minimum batch size for the whole optimization process. For
this purpose, we can use (Desautels et al., 2014, Lem. 4).

Proposition 4 ((Desautels et al., 2014, Lem. 4)). Given the uncertainty sampling procedure reported in Algorithm 3, we
have maxx∈A σ

2
Tinit

(x) ≤ γTinit/Tinit.

Combining this with the bounds on γTinit reported in Desautels et al. (2014) we can guarantee a minimum degree of
experimental parallelism for BBKB.

B. Controlling posterior ratios
In this section we collect most results related to providing guarantees that exact and approximate posteriors remain close
during the whole optimization process.



Near-linear time Gaussian process optimization with adaptive batching and resparsification

B.1. Preliminary results

Several results presented in this appendix are easier to express and prove using the so-called feature-space view of a GP
(Rasmussen & Williams, 2006). In particular, to every covariance k(·, ·) and reproducing kernel Hilbert spaceH we can
associate a feature map φ(·) such that k(xi,xj) = φ(xi)

Tφ(xj), and that k(xi,xi) = φ(xi)
Tφ(xi) = ‖φ(xi)‖2. Let

Φ(Xt) = [φ(x1), . . . ,φ(xt)]
T be the map where each row corresponds to a row of the matrix Xt after the application of

φ(·). Finally, given operator A, we use ‖A‖ to indicate its `2 operator norm, also known as sup norm. For symmetric
positive semi-definite matrices, this corresponds simply to its largest eigenvalue.

Using the feature-space view of a GP we can introduce an important reformulation8 of the posterior variance σ2
t (xi)

σ2
t (xi) = φ(xi)

T(Φ(Xt)
TΦ(Xt) + λI)−1φ(xi).

In particular, this quadratic form is well known in randomized numerical linear algebra as ridge leverage scores (RLS)
(Alaoui & Mahoney, 2015), and used extensively in linear sketching algorithms (Woodruff et al., 2014). Therefore, some of
the results we will present now are inspired from this parallel literature. For example the proof of Lemma 2, restated here
for convenience, is based on concentration results for RLS sampling.

Lemma 2. Under the same conditions as Theorem 1, w.p. 1− δ, ∀ fb(t) ∈ [T ] and ∀ x ∈ A we have

σ2
fb(t)(x)/3 ≤ σ̃

2
fb(t)(x,Sfb(t)) ≤ 3σ2

fb(t)(x).

Proof. We briefly show here that we can apply Calandriello et al. (2019, Thm. 1)’s result from sequential RLS sampling to
our batch setting. In particular, (Calandriello et al., 2019, Thm. 1) gives identical guarantees as Lemma 2, but only when the
dictionary is resparsified at each step, and we must compensate for the delays.

At a high level, their result shows that given a so-called (ε, λ)-accurate dictionary St it is possible to sample a (ε, λ)-accurate
dictionary St+1 using the posterior variance estimator σ̃t(x,St) from Equation 3. Since all other guarantees directly follow
from (ε, λ)-accuracy, we only need to show that the same inductive argument holds if we apply it on a batch-by-batch basis
instead of a step-by-step basis. To simplify, we will also only consider the case ε = 1/2. For more details, we refer the
reader to the whole proof in (Calandriello et al., 2019, App. C).

In particular, consider the state of the algorithm at the beginning of the first batch, i.e., just after initialization ended. Since
the subset S1 = X1 includes all arms pulled so far (i.e., x1) it clearly perfectly preserves X1, and is therefore infinitely
accurate and also (1/2, λ)-accurate. Note that Calandriello et al. (2019) make the same reasoning for their base case.

Thereafter, assume that Sfb(t) is (1/2, λ)-accurate, and let t′ > fb(t) be the time step where we resparsify the dictionary
(i.e., the beginning of the following batch) such that fb(t′ − 1) = fb(t) and fb(t′) = t′. To guarantee that Sfb(t′) is also
(1/2, λ)-accurate we must guarantee that the probabilities p̃fb(t′) used to sample are at least as large as the true posterior
σ2
fb(t′) scaled by a factor 24 log(4T/δ), i.e., p̃fb(t′) ≥ (24 log(4T/δ)) · σfb(t′). From the inductive assumption we know

that Sfb(t) is (1/2, λ)-accurate, and therefore Lemma 2 holds and σ̃fb(t) ≥ σfb(t)/3 ≥ σ2
fb(t′)/3, since it is a well known

property of RLS and σt that they are non-increasing in t (Calandriello et al., 2017b). Adjusting q to match this condition, we
guarantee that we are sampling at least as much as required by Calandriello et al. (2019), and therefore achieve the same
accuracy guarantees.

B.2. Global ratio bound

Before moving on to Lemma 1 and Lemma 6, we will first consider exact posterior variances σ2
t (xi), which represent a

simpler case since we do not have to worry about the presence of a dictionary. The following Lemma will form a blueprint
for the derivation of Lemma 1.

Lemma 4. For any kernel k, set of points Xt, xi ∈ A, and fb(t) < t,

σ2
t (xi) ≤ σ2

fb(t)(xi) ≤
(
1 +

∑t
s=fb(t)+1 σ

2
fb(t)(xs)

)
σ2
t (xi)

Proof. Denote with A = Φ(Xfb(t))
TΦ(Xfb(t)) + λI, and with B = Φ(X[fb(t)+1,t]) the concatenation of only the arms

between rows fb(t) + 1 and t, i.e., in the context of BBKB Φ(X[fb(t)+1,t]) contains the arms in the current batch whose

8See Appendix A for a detailed discussion on the difference between the standard GP feature-space view and our definition of σt.
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feedback has not been received yet. Then we have σ2
fb(t)(xi) = φ(xi)

TA−1φ(xi) and

σ2
t (xi) = φ(xi)

T (Φ(Xt)
TΦ(Xt) + λI)

−1
φ(xi) = φ(xi)

T (A + BTB)
−1

φ(xi),

We can now collect A to obtain

σ2
t (xi) = φ(xi)

T(A + BTB)−1φ(xi) = φ(xi)
TA−1/2(I + A−1/2BTBA−1/2)−1A−1/2φ(xi)

≥ λmin

(
(I + A−1/2BTBA−1/2)−1

)
φ(xi)

TA−1φ(xi)

= λmin

(
(I + A−1/2BTBA−1/2)−1

)
σfb(t)(xi).

Focusing on the first part

λmin

(
(I + A−1/2BTBA−1/2)−1

)
=

1

λmax

(
I + A−1/2BTBA−1/2

)
=

1

1 + λmax(A−1/2BTBA−1/2)
=

1

1 + λmax(BA−1BT)
.

Expanding the definition of B, and using λmax(BA−1BT) ≤ Tr(BA−1BT) due to the fact that BA−1BT is PSD we have

λmax(BA−1BT) ≤ Tr(BA−1BT) =

t∑
j=fb(t)+1

φ(xj)A
−1φ(xj) =

t∑
j=fb(t)+1

σ2
fb(t)(xj).

Putting it all together, and inverting the ratio

σ2
fb(t)(xi) ≤

(
1 +

∑t
s=fb(t)+1 σ

2
fb(t)(xs)

)
σ2
t (xi),

while to obtain the other side we simply observe that A + BTB � A since BTB � 0 and therefore (A + BTB)−1 � A−1

and σ2
t (xi) ≤ σ2

fb(t)(xi).

Approximate posterior. We are now ready to prove Lemma 1, which we restate here for clarity.

Lemma 1. For any kernel k, dictionary S, set of points Xt, x ∈ A, and fb(t) < t, we have

ρ̃fb(t),t(x,S) ≤ 1 +
∑t

s=fb(t)
σ̃2
fb(t)(x,S).

Proof. Note that our approximate posterior can be similarly formulated in a feature-space view. Let us denote with
P = Φ(XS)

T(Φ(XS)Φ(XS)
T)+Φ(XS) the projection on the arms in the arbitrary dictionary S. Then, referring to

Sec. 4.1 from Calandriello et al. (2019) for more details, we have

σ̃2
t (xi,S) = φ(xi)

T(PΦ(Xt)
TΦ(Xt)P + λI)−1φ(xi) = φ(xi)

T(Ã + B̃TB̃)−1φ(xi),

where we denote with Ã = PΦ(Xfb(t))
TΦ(Xfb(t))P + λI our approximation of A and with B̃ = Φ(X[fb(t)+1,t])P our

approximation of B. Denote φ̃(x)
def
= Pφ(x). With the exact same reasoning as in the proof of Lemma 4 we can derive

σ̃2
t (xi,S) = φ(xi)

T(Ã + B̃TB̃)−1φ(xi) ≥ σ̃2
fb(t)(xi,S)λmin

(
(I + Ã−1/2B̃TB̃Ã−1/2)−1

)
≥ σ̃2

fb(t)(xi,S)/
(
1 + Tr(B̃Ã−1B̃T)

)
≥ σ̃2

fb(t)(xi,S)/
(
1 +

∑t
s=fb(t)+1 φ̃(xs)Ã

−1φ̃(xs)
)
.

This is still not exactly what we wanted, as φ̃(xs)Ã−1φ̃(xs) 6= φ(xs)Ã
−1φ(xs) = σ̃2

fb(t)(xs,S), but we can apply the
following Lemma, which we will prove later, to connect the two quantities.

Lemma 5. Denote with P⊥ = I−P the orthogonal projection on the complement of P. We have

φ(xs)
TÃ−1φ(xs) = φ̃(xs)

TÃ−1φ̃(xs) + λ−1φ(xs)
TP⊥φ(xs) ≥ φ̃(xs)

TÃ−1φ̃(xs)
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Putting it together and inverting the bound we have

σ̃2
t (xi,S) ≥ σ̃2

fb(t)(xi,S)/
(
1 +

∑t
s=fb(t)+1 φ̃(xs)Ã

−1φ̃(xs)
)

≥ σ̃2
fb(t)(xi,S)/

(
1 +

∑t
s=fb(t)+1 φ(xs)Ã

−1φ(xs)
)

≥ σ̃2
fb(t)(xi,S)/

(
1 +

∑t
s=fb(t)+1 σ̃

2
fb(t)(xs,S)

)
.

Finally, combining Lemmas 1 and 2, we can prove Lemma 6, which we now restate.

Lemma 6. Under the same conditions as Lemmas 1 and 2,

ρfb(t),t(x) ≤ 3

(
1 +

∑t

s=fb(t)
σ̃2
fb(t)(x,Sfb(t))

)
.

Proof. Note that Lemmas 1 and 4 followed a deterministic derivation based only on linear algebra and therefore held in
any case, including the worst. To prove Lemma 6 we must instead rely on the high probability event and guarantees from
Lemma 2, and therefore this statement holds only for BBKB run with the correct q value and using the reported batch
termination condition. The derivation is straightforward

σ2
t (x)

(a)

≥ σ2
fb(t)(xi)/

(
1 +

∑t
s=fb(t)+1 σ

2
fb(t)(xs)

)
(b)

≥ σ2
fb(t)(xi)/

(
1 + 3

∑t
s=fb(t)+1 σ̃

2
fb(t)(xs,Sfb(t))

)
≥ σ2

fb(t)(xi)/
(
3
(
1 +

∑t
s=fb(t)+1 σ̃

2
fb(t)(xs,Sfb(t))

)) (c)

≥ σ2
fb(t)(xi)/(3C̃),

where (a) is due to Lemma 4, (b) is due to Lemma 2, and (c) is due to the fact that by construction each batch is terminated
at a step t where 1 +

∑t
s=fb(t)+1 σ̃

2
fb(t)(xs,Sfb(t)) ≤ C̃ still holds.

To conclude the section, we report the proof of Lemma 5

Proof of Lemma 5. We have

φ(xs)
TÃ−1fb(t)φ(xs) = φ(xs)

T(Φ̃fb(t)(Xfb(t))Φ̃fb(t)(Xfb(t))
T + λI)−1φ(xs)

= φ(xs)
T(Φ̃fb(t)(Xfb(t))Φ̃fb(t)(Xfb(t))

T + λP + λP⊥)−1φ(xs)

(a)
= φ(xs)

T

(
(Φ̃fb(t)(Xfb(t))Φ̃fb(t)(Xfb(t))

T + λP)−1 + (λP⊥)−1
)
φ(xs)

(b)
= φ(xs)

T(Φ̃fb(t)(Xfb(t))Φ̃fb(t)(Xfb(t))
T + λP)−1φ(xs) + λ−1φ(xs)

TP⊥φ(xs)

where (a) is due to the fact that P⊥ is complementary to both P and Φ̃fb(t)(Xfb(t)) since Im(Φ̃fb(t)(Xfb(t))) ⊆ Im(P),
and (b) is due to the fact that P⊥ is a projection and therefore equal to its inverse. We focus now on the first term

φ(xs)
T(Φ̃fb(t)(Xfb(t))Φ̃fb(t)(Xfb(t))

T + λP)−1φ(xs)

(a)
= φ(xs)

T(PΦ(Xfb(t))Φ(Xfb(t))
TP + λP)−1φ(xs)

(b)
= φ(xs)

TP(PΦ(Xfb(t))Φ(Xfb(t))
TP + λP)−1Pφ(xs)

(c)
= φ̃(xs)

T(Φ̃fb(t)(Xfb(t))Φ̃fb(t)(Xfb(t))
T + λP)−1φ̃(xs)

(d)
= φ̃(xs)

T(Φ̃fb(t)(Xfb(t))Φ̃fb(t)(Xfb(t))
T + λI)−1φ̃(xs)

(e)
= φ̃(xs)

TÃ−1fb(t)φ̃(xs)
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where (a) is the definition of Φ̃fb(t)(Xfb(t)), (b) is because we can collect P and extract it from the inverse, (c) is the
definition of φ̃(xs), (d) is because φ̃(xs) lies in Im(P) and therefore placing P or I in the inverse is indifferent, and (e) is
the definition of Ãfb(t). Putting it together

φ(xs)
TÃ−1fb(t)φ(xs) = φ̃(xs)

TÃ−1fb(t)φ̃(xs) + λ−1φ(xs)
TP⊥φ(xs) ≥ φ̃(xs)

TÃ−1fb(t)φ̃(xs),

since φ(xs)
TP⊥φ(xs) is a norm and therefore non-negative.

B.3. Local-global bound

We focus first on the exact posterior variance σt for simplicity. Given an arbitrary step t > fb(t), we once again denote
with A = Φ(Xfb(t))

TΦ(Xfb(t)) + λI, and with B = Φ(X[fb(t)+1,t]) the concatenation of only the arms between steps
fb(t) + 1 and t. Using the Woodbury matrix identity we can obtain a different expansion of the posterior variance

σ2
t (xi) = φ(xi)

T(A + BTB)−1φ(xi)

= φ(xi)
TA−1φ(xi)− φ(xi)

TA−1BT(I + BA−1BT)−1BA−1φ(xi).

However this quantity is computationally expensive to compute. In particular, updating the inverse (I + BA−1BT)−1 at
each step is time consuming. For this reason, we instead focus on the following lower bound

σ2
t (xi) ≥ φ(xi)

TA−1φ(xi)− φ(xi)
TA−1BTBA−1φ(xi)

= φ(xi)
TA−1φ(xi)−

t∑
j=fb(t)+1

φ(xi)
TA−1φ(xj)φ(xj)

TA−1φ(xi)

= φ(xi)
TA−1φ(xi)−

t∑
j=fb(t)+1

(φ(xi)
TA−1φ(xj))

2 = σ2
fb(t)(xi)−

t∑
j=fb(t)+1

k2fb(t)(xi,xj),

where we used the fact that BA−1BT � 0 and therefore (I + BA−1BT)−1 � I, the fact that BTB =∑t
j=fb(t)+1 φ(xj)φ(xj)

T, and the definition of k2fb(t)(xi,xj). After inversion this bound becomes

σ2
fb(t)(xi)

σ2
fb(t)+B(xi)

≤ 1 +

∑t
j=fb(t)+1 k

2
fb(t)(xi,xj)

σ2
fb(t)(xi)

.

Note also that thanks to Cauchy-Bunyakovsky-Schwarz’s inequality we have

k2fb(t)(xi,xj) = (φ(xi)
TA−1φ(xj))

2 ≤ φ(xi)
TA−1φ(xi)φ(xj)

TA−1φ(xj) = σ2
fb(t)(xi)σ

2
fb(t)(xj).

and therefore the local-global bound is tighter of the global bound,

1 +

∑B
j=1 k

2
fb(t)(xi,xj)

σ2
fb(t)(xi)

≤ 1 +

B∑
j=1

σ2
fb(t)(xj)

and falls back to the global bound in the worst case.

Approximate posterior: with the same derivation, but applied to the approximate posterior σ̃t we obtain

σ̃2
t (xi) = φ(xi)

TÃ−1φ(xi)− φ(xi)
TÃ−1B̃T(I + B̃Ã−1B̃T)−1B̃Ã−1φ(xi)

≥ φ(xi)
TÃ−1φ(xi)− φ(xi)

TÃ−1B̃TB̃Ã−1φ(xi),

where once again we denote with Ã = PΦ(Xfb(t))
TΦ(Xfb(t))P + λI our approximation of A and with B̃ =

Φ(X[fb(t)+1,t])P our approximation of B. Inverting the bound we obtain

σ̃2
fb(t)(xi)

σ̃2
fb(t)+B(xi)

≤ 1 +

∑t
j=fb(t)+1(φ(xi)

TÃ−1φ̃(xj))
2

σ̃2
fb(t)(xi)

.
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Note that this is different from having
∑t
j=fb(t)+1 k̃

2
fb(t)(xi,xj), since

k̃2fb(t)(xi,xj) = φ(xi)
TÃ−1φ(xj) 6= φ(xi)

TÃ−1φ̃(xj).

Computing this upper bound requires only O(d3eff) per step to pre-compute Ã−1φ̃(xi), and O(Adeff) time to finish the
computation of φ(xi)TÃ−1φ̃(xj). However, a new problem arises. With this new stopping criterion we terminate the batch
when

max
i

1 +

∑t
j=fb(t)+1(φ(xi)

TÃ−1φ̃(xj))
2

σ̃2
fb(t)(xi)

= C̃,

which guarantees
σ̃2
fb(t)(xi)

σ̃2
t (xi)

≤ C̃. However this stopping condition cannot give us a similar bound on
σ2
fb(t)(xi)

σ2
t (xi)

. Note that in

the previous global bound we used the fact that A and Ã are close (i.e., Theorem 1) to bound
σ2
fb(t)(xi)

σ2
t (xi)

. In this local-global

bound the approximate posterior is computed using Ã + B̃TB̃ instead of A + BTB, and while Ã and A are close, nothing
can be said on B̃TB̃ and BTB because freezing the projection Pfb(t) results in a loss of guarantees.

To compensate, when moving to the approximate setting we will use a slightly different terminating criterion for the batch.
In particular we will terminate based on a worst case between both possibilities

σ̃2
fb(t)(xi)

min{φ(xi)T(Ã + B̃TB̃)−1φ(xi),φ(xi)T(Ã + BTB)−1φ(xi)}

It is easy to see that this termination rule is more conservative than the normal ratio as

σ̃2
fb(t)(xi)

min{φ(xi)T(Ã + B̃TB̃)−1φ(xi),φ(xi)T(Ã + BTB)−1φ(xi)}
≥

σ̃2
fb(t)(xi)

φ(xi)T(Ã + B̃TB̃)−1φ(xi)
=
σ̃2
fb(t)(xi)

σ̃2
t (xi)

.

Moreover, using the guarantees on σ̃t and σt from Lemma 6, we also have

σ̃2
fb(t)(xi)

min{φ(xi)T(Ã + B̃TB̃)−1φ(xi),φ(xi)T(Ã + BTB)−1φ(xi)}
≥

σ̃2
fb(t)(xi)

φ(xi)T(Ã + BTB)−1φ(xi)

≥
(
1 + ε

1− ε

)−1 σ̃2
fb(t)(xi)

φ(xi)T(A + BTB)−1φ(xi)
≥
(
1 + ε

1− ε

)−1 σ̃2
fb(t)(xi)

σ2
t (xi)

≥
(
1 + ε

1− ε

)−2 σ2
fb(t)(xi)

σ2
t (xi)

.

Therefore, to provide guarantees on both exact and approximate ratios it is sufficient to choose a stopping condition such that

σ̃2
fb(t)(xi)

min{φ(xi)T(Ã + B̃TB̃)−1φ(xi),φ(xi)T(Ã + BTB)−1φ(xi)}

= max

{
σ̃2
fb(t)(xi)

φ(xi)T(Ã + B̃TB̃)−1φ(xi)
,

σ̃2
fb(t)(xi)

φ(xi)T(Ã + BTB)−1φ(xi)

}

≤ max

{
1 +

φ(xi)
TÃ−1B̃TB̃Ã−1φ(xi)

σ̃2
fb(t)(xi)

, 1 +
φ(xi)

TÃ−1BTBÃ−1φ(xi)

σ̃2
fb(t)(xi)

}

= max

{
1 +

∑t
j=fb(t)+1(φ(xi)

TÃ−1φ̃(xj))
2

σ̃2
fb(t)(xi)

, 1 +

∑t
j=fb(t)+1(φ(xi)

TÃ−1φ(xj))
2

σ̃2
fb(t)(xi)

}
.

Finally, note that while both
σ̃2
fb(t)(xi)

φ(xi)T(Ã+B̃TB̃)−1φ(xi)
and

σ̃2
fb(t)(xi)

φ(xi)T(Ã+BTB)−1φ(xi)
could be the larger element in the max

(i.e., one does not dominate the other), after we upper bound
σ̃2
fb(t)(xi)

φ(xi)T(Ã+B̃TB̃)−1φ(xi)
≤ 1 + φ(xi)

TÃ−1B̃TB̃Ã−1φ(xi)
σ̃2
fb(t)

(xi)
and

σ̃2
fb(t)(xi)

φ(xi)T(Ã+BTB)−1φ(xi)
≤ 1 + φ(xi)

TÃ−1BTBÃ−1φ(xi)
σ̃2
fb(t)

(xi)
we do have that one dominates the other. In other words, one of the
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two bounding operations is looser. In particular, let us denote with A the operator such that

A = PΦ(Xfb(t))
TΦ(Xfb(t))P + λP

Ã = PΦ(Xfb(t))
TΦ(Xfb(t))P + λI = PΦ(Xfb(t))

TΦ(Xfb(t))P + λP + λP⊥ = A + λP⊥.

Moreover, note that Ã−1 = A
−1

+ P⊥/λ, and that BA
−1

BT = B̃A
−1

B̃T. Then

φ(xi)
TÃ−1φ̃(xj) = φ(xi)

TA
−1

φ̃(xj) + φ(xi)
TP⊥φ̃(xj)/λ = φ̃(xi)

TA
−1

φ̃(xj) + 0,

while

φ(xi)
TÃ−1φ(xj) = φ(xi)

TA
−1

φ(xj) + φ(xi)
TP⊥φ(xj)/λ

= φ̃(xi)
TA
−1

φ̃(xj) + φ(xi)
TP⊥φ(xj)/λ

= φ̃(xi)
TA
−1

φ̃(xj) + (φ(xi)
Tφ(xj)− φ̃(xi)

Tφ̃(xj))/λ ≥ φ(xi)
TÃ−1φ̃(xj),

and therefore φ(xi)
TÃ−1φ(xj) dominates φ(xi)TÃ−1φ̃(xj). Putting all together we obtain that the local-global bound

terminates a batch when

1 +

∑t
j=fb(t)+1(φ(xi)

TÃ−1φ(xj))
2

σ̃2
fb(t)(xi)

= 1 +

∑t
j=fb(t)+1(k̃fb(t)(xi,xj))

2

σ̃2
fb(t)(xi)

≤ C̃,

which, w.h.p. as in Lemma 6, gives us the guarantee both that
σ̃2
fb(t)(xi)

σ̃2
t (xi)

≤ C̃ and
σ2
fb(t)(xi)

σ2
t (xi)

≤
(

1+ε
1−ε

)2
C̃.

Note that since A is completely contained in Im(P), we can compute φ̃(xi)
TA
−1

φ̃(xj) directly using the embedded arms.
In particular, we only need to store the pre-computed A

−1
at the beginning of the batch, apply it to φ̃(xj) in O(d2eff) time,

and then apply A
−1

φ̃(xj) to each φ̃(xi) in O(Adeff) time. Similarly, computing (φ(xi)
Tφ(xj)− φ̃(xi)

Tφ̃(xj))/λ can be
done in O(Adeff) time.

C. Proofs from Section 3
C.1. Complexity analysis (proof of Theorem 1)

We restate Theorem 1 for completeness.

Theorem 1. Given δ ∈ (0, 1), 1 ≤ C̃, and 1 ≤ λ, run BBKB with qt ≥ 8 log(4t/δ). Then, w.p. 1− δ

1) For all t ∈ [T ] we have |St| ≤ 9C̃(1 + κ2/λ)qtdeff(Xt).

2) Moreover, the total number of resparsification B performed by BBKB is at most O(deff(Xt)).

3) As a consequence, BBKB runs in near-linear time Õ(TAdeff(Xt)
2) .

Proof. The proof will be divided in three parts, one for each of the statements.

Bounding |St|. The first part of the result concerns space guarantees for St. Like in the proof of Lemma 2, we simply
need to show that the conditions outlined in (Calandriello et al., 2019, Thm. 1) are satisfied. Let us consider again a step
t′ > fb(t) where we perform a resparsification (i.e., be the beginning of the following batch) such that fb(t′ − 1) = fb(t)
and fb(t′) = t′. Conversely from Lemma 2, where we had to show that our inclusion probabilities p̃fb(t) were not much
smaller than σ2

fb(t′), here we have to show that they are not much larger than σ2
fb(t′). This is because our goal is to sample

Sfb(t′) according to σ2
fb(t′), and if our sampling probabilities p̃fb(t) ∝ σ̃fb(t) ∝ σfb(t) are much larger than necessary we

are going to wastefully include a number of points larger than necessary. Since BBKB gets computationally heavy if the
dictionary gets too large, we want to prove that this does not happen w.h.p.

We begin by invoking Lemma 2 to bound σ̃2
fb(t) ≤ 3σ2

fb(t). The second step is to split the quantity of interest in two parts:
one from fb(t) until the end of the batch fb(t′)− 1, and the crucial step from fb(t′)− 1 to fb(t)
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σ̃2
fb(t)(x,Sfb(t)) ≤ 3σ2

fb(t)(x) = 3

(a)

σ2
fb(t)(x)

σ2
fb(t′)−1(x)

(b)

σ2
fb(t′)−1(x)

σ2
fb(t′)(x)

σ2
fb(t′)(x).

Since fb(t) and fb(t′)− 1 are both in the same batch, we can use BBKB’s batch termination condition and Lemma 6 to
bound (a) as σ2

fb(t)(x)/σ
2
fb(t′)−1(x) ≤ 3C̃. However, (b) crosses the batch boundaries and does not satisfy the terminating

condition. Instead, we will re-use the worst-case guarantees of Lemma 4 to bound the single step increase as

σ2
fb(t′)−1(x)/σ

2
fb(t′)(x) ≤ (1 + σ2

fb(t′)(x))σ
2
fb(t′)(x) ≤ (1 + κ2/λ)σ2

fb(t′)(x),

where we used the fact that the posterior variance can never exceed κ2/λ, as can be easily derived from the definition.
Putting it all together we have

σ̃2
fb(t)(x,Sfb(t)) ≤ 3σ2

fb(t)(x) ≤ 3 · 3C̃ · (1 + κ2/λ) · σ2
fb(t′)(x) = 9C̃(1 + κ2/λ)σ2

fb(t′)(x), (9)

and our overestimate error constant is 9C̃(1 + κ2/λ), which when plugged into (Calandriello et al., 2019, Thm. 1) gives us

|St| ≤ 9C̃(1 + κ2/λ) · 9(1 + κ2/λ)qdeff(Xt) = 81C̃(1 + κ2/λ)2qdeff(Xt).

Bounding the total number of resparsifications. The most expensive operation that BBKB can perform is the GP
resparsification, and to guarantee low amortized runtime we now prove that we do not do it too frequently. For this, we will
leverage the terminating condition of each batch, since a resparsification is triggered only at the end of each batch.

In particular, we know that if BBKB resparsifies at step t, such that fb(t) = t. Then we have that, to not have triggered
a resparsification, up to step t − 1 we have 1 +

∑t−1
s=fb(t−1)+1 σ̃

2
fb(t−1)(xs,Sfb(t−1)) ≤ C̃, while we have the opposite

inequality C̃ < 1 +
∑fb(t)
s=fb(t−1)+1 σ̃

2
fb(t−1)(xs,Sfb(t−1)) if we include the last term σ̃2

fb(t−1)(xfb(t),Sfb(t−1)). Moreover,
we have one of such inequalities for each batch in the optimization process. Indicating the number of batches with B, and
summing over all the inequalities

BC̃ ≤ B +
∑T
t=1 σ̃

2
fb(t)(xt,Sfb(t))I{t 6= fb(t)}+ σ̃2

fb(t−1)(xt,Sfb(t−1))I{t = fb(t)},

where we have used the indicator function I{·} to differentiate between batch construction steps and resparsification steps
since at the resparsification step we are still using the posterior only w.r.t. the previous choiches fb(t − 1), and more
importantly the old dictionary Sfb(t−1), since the resparsification happens only after the check. However, the only thing that
matters to be able to apply Lemma 2 is that the subscript of the posterior σ̃2

fb(t) and of the dictionary Sfb(t) coincide, so we
can further upper bound

BC̃ ≤ B + 3
∑T
t=1 σ

2
fb(t)(xt)I{t 6= fb(t)}+ σ2

fb(t−1)(xt)I{t = fb(t)}.

Finally, we again exploit the bound σ2
fb(t−1)(xt) ≤ 3C̃(1 + κ2/λ)σ2

t (xt), we derived in Equation 9 for the evolution of
RLS across a whole batch to bound the elements in the summation where t = fb(t), and apply Lemma 6 to the elements
where t 6= fb(t). We obtain

BC̃ ≤ B + 3
∑T
t=1 σ

2
fb(t)(xt)I{t 6= fb(t)}+ σ2

fb(t−1)(xt)I{t = fb(t)}

≤ B + 3
∑T
t=1 3C̃σ

2
t (xt)I{t 6= fb(t)}+ 3C̃(1 + κ2/λ)σ2

t (xt)I{t = fb(t)}

≤ B + 9C̃(1 + κ2/λ)
∑T
t=1 σ

2
t (xt).

Reshuffling terms and normalizing we obtain

B ≤ C̃

C̃ − 1
9(1 + κ2/λ)

T∑
t=1

σ2
t (xt),

and using the fact that
∑T
t=1 σ

2
t (xt) ≤ log det(KT /λ+ I) ≤ O(deff(XT ) polylog(T )) = Õ(deff(XT )) from (Calandriello

et al., 2017a, Lem. 3), we obtain our result.
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Complexity analysis. Now that we have a bound on the size of the dictionary, and on the frequency of the resparsifications,
we only need to quantify how much each operation costs and amortize it over T iterations.

The resparsification steps are more computationally intensive. Resampling the new Sfb(t+1) takes O(min{A, t}), as we
reuse the variances computed at the beginning of the batch. Given the new embedding function zfb(t+1)(·), we must first
recomputing the embeddings for all arms in O(Am2

t + m3
t ), and then update all variances in O(Am2

t + m3
t ). Finally,

updating the means takes O(tmt +m3
t ) time. Overall, a resparsification step requires O(Am2

t +m3
t + tmt), since in all

cases of interest mt ≤ deff � A.

In each non-resparsification step, updating the variances requires O(m2
t ) to update the inverse of Vt and O(m2

t ) for each
σ̃t(xi) updated. While the updated actions can be as large as O(A), lazy evaluations usually require to update just a few
entries of ũt.

Using again B to indicate the number of batches during the optimization, i.e., the number of resparsifications, the overall
complexity of the algorithm is thusO(

∑T
t=1Am

2
t +maxTt=1B(Am2

t +m
3
t + tmt)). Using the dictionary size guarantees of

Theorem 1 we can further upper bound this to Õ(B(Ad2eff +d
3
eff +Tdeff)+TAd

2
eff), and using the bound on resparsifications

that we just derived we obtain the final complexity Õ(TAd2eff + d4eff) where we used the fact that deff ≤ Õ(T ).

C.2. Regret analysis (proof of Theorem 2)

We will leverage the following result from (Calandriello et al., 2019). This is a direct rewriting of their statement with two
small modifications. First we express the statement in terms of confidence intervals on the function f(x) rather than in their
feature-space view of the GPs. Second, we do not upper bound log det(Kt/λ+ I) ≤ O(log(t)

∑t
s=1 σ̃

2
t (xs)). Calandriello

et al. (2019) use this upper bound for computational reasons, but as we will see we can obtain a tighter (i.e., without the
log(t) factor) alternative bound that is still efficient to compute.

Proposition 5 ((Calandriello et al., 2019, App. D, Thm. 9)). Under the same assumptions of Theorem 2, with probability at
least 1− δ and for all xi ∈ A and fb(t) ≥ 1

µ̃fb(t)(xi,Sfb(t))− βfb(t)σ̃fb(t)(xi,Sfb(t)) ≤ f(xi) ≤ µ̃fb(t)(xi,Sfb(t)) + βfb(t)σ̃fb(t)(xi,Sfb(t))

with

βfb(t)
def
= 2ξ

√
log det(Kfb(t)/λ+ I) + log (1/δ) +

(
1 +
√
2
)√

λF

We can bound log det(Kfb(t)/λ+ I) as follows. Consider Ks as a block matrix split between the s-th column and row, i.e.,
the latest arm pulled, and all other s− 1 rows and columns. Then using Schur’s determinant identity, we have that

det(Ks/λ+ I) = det(Ks−1/λ+ I) det
(
1 + k(xs,xs)− ks−1(xs)

T(Ks−1/λ+ I)−1ks−1(xs)
)

= det(Ks−1/λ+ I)
(
1 + σ2

s−1(xs)
)
.

Combining this with the fact that σ2
s−1(xs) ≤ σ2

fb(s−1)(xs), and unrolling the product into a sum using the logarithm we
obtain

log det(Kfb(t)/λ+ I) =

fb(t)∑
s=1

log(1 + σ2
s−1(xs)) ≤

fb(t)∑
s=1

log(1 + σ2
fb(s−1)(xs)).

We can further upper bound σ2
fb(s−1)(xs) ≤ 3σ̃2

fb(s−1)(xs,Sfb(s−1)) using Lemma 2, and obtain

βfb(t) ≤ β̃fb(t)
def
= 2ξ

√∑fb(t)
s=1 log

(
1 + 3σ̃2

fb(s−1)(xs,Sfb(s−1))
)
+ log (1/δ) + (1 +

√
2)
√
λF

This gives us that at all steps t where t = fb(t) (i.e., right after a resparsification)

µ̃fb(t)(xi,Sfb(t))− β̃fb(t)σ̃fb(t)(xi,Sfb(t)) ≤ f(xi) ≤ µ̃fb(t)(xi,Sfb(t)) + β̃fb(t)σ̃fb(t)(xi,Sfb(t))
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We can bound the instantaneous regret rt = f(x∗)− f(xt) as follows. First we bound

f(x∗) ≤ µ̃fb(t)(x∗,Sfb(t)) + β̃fb(t)σ̃fb(t)(x∗,Sfb(t))
(a)

≤ µ̃fb(t)(x∗,Sfb(t)) + β̃fb(t)C̃σ̃t−1(x∗,Sfb(t))
(b)

≤ µ̃fb(t)(xt,Sfb(t)) + β̃fb(t)C̃σ̃t−1(xt,Sfb(t))

where (a) is due to Lemma 1, and (b) is due to the greediness of xt w.r.t. ũt. Similarly, we can bound

f(xt) ≥ µ̃fb(t)(xt,Sfb(t))− β̃fb(t)σ̃fb(t)(xt,Sfb(t))

≥ µ̃fb(t)(xt,Sfb(t))− β̃fb(t)C̃σ̃t−1(xt,Sfb(t)).

Putting it together

RT =

T∑
t=1

rt =

T∑
t=1

f(x∗)− f(xt)

≤
T∑
t=1

µ̃fb(t)(xt,Sfb(t)) + β̃fb(t)C̃σ̃t−1(xt,Sfb(t))− µ̃fb(t)(xt,Sfb(t)) + β̃fb(t)C̃σ̃t−1(xt,Sfb(t))

= 2

T∑
t=1

β̃fb(t)C̃σ̃t−1(xt,Sfb(t))

≤ 2C̃β̃fb(T )

T∑
t=1

σ̃t−1(xt,Sfb(t)). (10)

We first focus on bounding β̃fb(T ) ≤ β̃T , starting from bounding a part of it as

T∑
s=1

log
(
1 + 3σ̃2

fb(s−1)(xs)
) (a)

≤ 3

T∑
s=1

σ̃2
fb(s−1)(xs)

(b)

≤ 9

T∑
s=1

σ2
fb(s−1)(xs)

(c)

≤ 21C̃

T∑
s=1

σ2
s−1(xs).

where we used (a) the fact that log(1 + x) ≤ x, (b) Lemma 2, and (c) Lemma 6. Plugging it back into the definition of β̃T
we have

β̃T = 2ξ

√∑fb(T )
s=1 log

(
1 + 3σ̃2

fb(s−1)(xs,Sfb(s−1))
)
+ log (1/δ) + (1 +

√
2)
√
λF

≤ 2ξ
√
21C̃

∑T
s=1 σ

2
s−1(xs) + log (1/δ) + (1 +

√
2)
√
λF

Going back to Equation 10, the summation
∑T
t=1 σ̃t−1(xt,Sfb(t)) can be also bounded as

T∑
t=1

σ̃t−1(xt,Sfb(t))
(a)

≤
√
T

(
T∑
t=1

σ̃2
t−1(xt,Sfb(t))

)1/2
(b)

≤
√
T

(
T∑
t=1

σ̃2
fb(t−1)(xt,Sfb(t))

)1/2

(c)

≤
√
3
√
T

(
T∑
t=1

σ2
fb(t−1)(xt)

)1/2
(d)

≤ 3C̃
√
T

(
T∑
t=1

σ2
t−1(xt)

)1/2

,

using (a) Cauchy-Schwarz, (b) the fact that σ̃2
t−1(xt) ≤ σ̃2

fb(t−1)(xt) by Lemma 1, (c) Lemma 2, and (d) Lemma 6.
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Putting it all together

RT ≤ 2C̃ · β̃fb(T ) ·
∑T
t=1 σ̃t−1(xt,Sfb(t))

≤ 2C̃ · β̃T · 3C̃
√
T
(∑T

t=1 σ
2
t−1(xt)

)1/2
≤ 2C̃ ·

(
2ξ
√

21C̃
∑T
t=1 σ

2
t−1(xt) + log (1/δ) + (1 +

√
2)
√
λF

)
· 3C̃
√
T
(∑T

t=1 σ
2
t−1(xt)

)1/2
≤ 2C̃ ·

(
2ξ
√

21C̃
∑T
t=1 σ

2
t−1(xt) + 2ξ

√
log (1/δ) + (1 +

√
2)
√
λF

)
· 3C̃
√
T
(∑T

t=1 σ
2
t−1(xt)

)1/2
≤ 55C̃2

√
T ·
(
ξ
√
C̃
∑T
t=1 σ

2
t−1(xt) + ξ

√
log (1/δ) +

√
λF

)
·
(∑T

t=1 σ
2
t−1(xt)

)1/2
≤ 55C̃2

√
T ·
(
ξ
√
C̃
∑T
t=1 σ

2
t−1(xt) + ξ log (1/δ) +

√
λF

)
·
(∑T

t=1 σ
2
t−1(xt)

)1/2
≤ 55C̃2 · C̃ ·

√
T

(
ξ
∑T
t=1 σ

2
t−1(xt) + (ξ log(1/δ) + F )

√
λ
∑T
t=1 σ

2
t−1(xt)

)
.

D. Details on experiments
In this section we report extended results on the experiments, integrating Section 5 with more details.

D.1. Abalone and Cadata

For the experiments on the Abalone and Cadata datasets, the kernel used by the algorithms in Figure 1 and Figure 2 are
Gaussian kernels with bandwidth as reported in Table 1. The other free hyperparameters are F = 1, δ = 1/T, q = 2.

Abalone Cadata
Global-BBKB σ = 17.5 σ = 12.5
GlobalLocal-BBKB σ = 17.5 σ = 12.5
BKB σ = 17.5 σ = 12.5
GP-UCB σ = 5 σ = 12.5
GP-BUCB σ = 12.5 σ = 12.5
ASYNC-TS σ = 10 σ = 10

Table 1: Badwith of Gaussian Kernel used in the Abalone and Cadata experiments

For all batched algorithms the batch size is chosen using the corresponding rule presented in the original paper (i.e.,,
Lemmas 1 and 3 for BBKB’s variants and Proposition 1 for GP-BUCB), except for ASYNC-TS which does not have one,
and that we run with fixed batch size= 30. Moreover, ASYNC-TS struggled to converge in our experiments, and to reduce
overexploration we divide βt by a factor of 10 only for ASYNC-TS. We report in Figure 5 and Figure 6 further experiments
on the Abalone and Cadata dataset respectively. For each plot, we report regret ratio between each algorithm and a uniform
policy, with each plot corresponding to a different bandwidth in the Gaussian kernel, which is shared between all algorithms.
Notice how BBKB remains robust for a wider range of σ.

D.2. NAS-bench-101

We use a subset of NAS-bench-101, generated using the following procedure. The whole NAS-bench-101 dataset contains
architecture with 1 to 5 inner nodes, and up to 3 different kind of nodes (3x3 and 1x1 convolutions, and 3x3 max-pooling).
We restrict ourselves to only architectures with exactly 4 inner nodes, and restrict the node type to only 3x3 convolutions or
max-pooling.

This kind of architectures are represented as the concatenation of a 15-dimensional vector, which is the flattened representa-
tion of the upper half of the network’s adjacency matrix, and a 4-dimensional {0, 1} vector indicating whether each inner
node is a convolution (1) or a max-pooling (0).

For the 15-dimensional vector, we remove the first and last feature (corresponding to connection from the input and to the
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Figure 5: Regret ratio for the Abalone dataset, with Gaussian kernel with, from left to right and from top to bottom,
badwidths equal to 5, 7.5, 10, 12.5, 15, 17.5

output) as they are present in all architecture and result in a constant feature of 1 that is not influential for learning. Finally,
for each of these two halves of the representation, we renormalize each half separately to have at most unit norm and then
concatenate the two halves. This strategy makes it so that each quantity (i.e., similarity in adjacency or similarity in node
type) carries roughly the same weight.

Both Global-BBKB and GlobalLocal-BBKB uses a Gaussian kernel with σ = 125 for the experiments with initialization,
and σ = 100 for the experiment without initialization. And as for the other experiments F = 1, δ = 1/T, q = 2. The
implementation of REG-EVOLUTION is taken from https://github.com/automl/nas_benchmarks, and we
leave the hyper-parameters to the default values chosen by the authors in Ying et al. (2019) as optimal. For completeness
we report in Figure 7 regret ratio, batch size, time and time with training of the experiments on NAS-bench-101 without
initialization.

https://github.com/automl/nas_benchmarks


Near-linear time Gaussian process optimization with adaptive batching and resparsification

0 2000 4000 6000 8000 10000
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R t
/R

un
if

t

Batch-GPUCB
BKB
eps-Greedy
Global-BBKB
GlobalLocal-BBKB
GPUCB
async-TS

0 2000 4000 6000 8000 10000
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R t
/R

un
if

t

Batch-GPUCB
BKB
eps-Greedy
Global-BBKB
GlobalLocal-BBKB
GPUCB
async-TS

0 2000 4000 6000 8000 10000
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R t
/R

un
if

t

Batch-GPUCB
BKB
eps-Greedy
Global-BBKB
GlobalLocal-BBKB
GPUCB
async-TS

0 2000 4000 6000 8000 10000
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R t
/R

un
if

t

Batch-GPUCB
BKB
eps-Greedy
Global-BBKB
GlobalLocal-BBKB
GPUCB
async-TS

0 2000 4000 6000 8000 10000
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R t
/R

un
if

t

Batch-GPUCB
BKB
eps-Greedy
Global-BBKB
GlobalLocal-BBKB
GPUCB
async-TS

0 2000 4000 6000 8000 10000
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R t
/R

un
if

t
Batch-GPUCB
BKB
eps-Greedy
Global-BBKB
GlobalLocal-BBKB
GPUCB
async-TS

Figure 6: Regret ratio for the Cadata dataset, with Gaussian kernel with, from left to right and from top to bottom, badwidths
equal to 5, 7.5, 10, 12.5, 15, 17.5
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Figure 7: From left to right and from top to bottom: regret ratio, batch-size, time without experimental costs and total
runtime on the NAS-bench-101 dataset, with Gaussian kernel with bandwith 100


