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In a nutshell

Gaussian process-UCB (GP-UCB) is a popular Bayesian/bandit op-
timization alternative to grad student descent. However, it requires
O(T 3) time and O(T 2) space and does not scale.

We introduce the first general GP optimization algorithm (BKB) that
is no regret and provably scalable, with near-linear runtime O(Td2

eff).
It also maintains valid posterior variance estimates at all steps, while
previous approaches could under/over-estimate the confidence intervals
of the GP. BKB main ingredient is a novel adaptive selection of in-
ducing point using approximate posterior variance sampling.

Gaussian process optimization

Arms A = {xi}Ai=1 with xi ∈ Rd, similarity (kernel) k(·, ·) and RKHS H

For t ∈ [1, . . . , T ]: (1) select xt+1 = arg maxxi ut(xi)
(2) Receive noisy feedback yt+1 = f (xt+1) + ηt+1
(3) Improve ut+1 for next time

Goal: minimize regret RT =
∑T

t=1 f (x∗)−f (xt) vs. x∗ = arg maxxi f (xi)
Assumption: f ∈ H arbitrary but ‖f‖ ≤ F (frequentist/bandit regret)

Measuring the complexity of a GP
Maximum information gain: γT , maxD⊂A:|D|=T log det(KD/λ + I)
Effective dimension/rank: deff ,

∑T
i=1 σ

2
T (x̃i)

From γT to deff: log det (KT + I) ≤ deff log (T )� γT log(T )

GP-UCB and sparse GPs

GP-UCB: µt(x) = kt(x)T(Kt + λI)−1yt
ut(x) = µt(x) + βtσt(x) σ2

t (x) = 1
λ

(
k(x,x)− kt(x)T(Kt + λI)−1kt(x)

)
No regret RGP-UCB

T ≤ Õ(
√
T (γT +

√
γTF )) but too slow O(At2) per step

Sparse GPs: given m inducing points S = {xj}mj=1 (a.k.a. dictionary)
replace k(xi,xj) with k̃(xi,xj) = kS(xi)TK+

SkS(xj)

GP-UCB + DTC: µ̃t(x) = k̃t(x)T(K̃t + λI)−1yt
ũt(x) = µ̃t(x) + β̃tσ̃t(x) σ̃2

t (x) = 1
λ

(
k(x,x)− k̃t(x)T(K̃t+λI)−1k̃t(x)

)
Deterministic training conditional (DTC) a.k.a. projected GP
O(Am2 +m3) per step since Rank

(
K̃t

)
= m but is it no regret?

Problem: how to choose S for good accuracy/regret?

Budgeted Kernelized Bandits (BKB)

Xt changes over time
St must change with t

Accuracy-efficiency tradeoff of m
adaptively resize St

σ2
t (·) captures informative arms
include xi with large σ2

t (xi)

Greedy inclusion hard to analyze
random inclusion pt,i ∝ σ2

t (·)

for t = {1, . . . , T − 1} do
Compute µ̃t(xi) and σ̃2

t (xi) for all xi;
Select x̃t+1← arg maxxi∈A ũt(xi);

for i = {1, . . . , t + 1} do
Set p̃t+1,i← q · σ̃2

t (x̃i);
Draw qt+1,i ∼ Bernoulli (p̃t+1,i);
If qt+1 = 1 then include x̃i in St+1;

end
end

Main result: BKB is scalable and no regret

Theorem: Let β̃t , 2
√(∑t

s=1 σ̃
2
t (x̃s)

)
log(t) + log(1/δ)+3

√
λF. Then

w.p. 1− δ, for all t ∈ [T ] and all x ∈ A, we have

σ2
t (x)/2 ≤ σ̃2

t (x) ≤ 2σ2
t (x) and |St| ≤ O(deff log(t/δ)),

and BKB suffers at most regret

RBKB
T ≤ 32

√
T
(
deff log(T ) +

√
λF 2deff log(T ) + log(1/δ)

)

RBKB
T ≤ 16RGP-UCB

T log(T ): no regret but only Õ(TAd2
eff) time!

β̃t computable in Õ(Ad2
eff) time replacing worst-case bounds on γT

No assumptions on k (e.g., not only stationary k)
No free lunch: worst-case falls back to GP-UCB
Not incremental: have to recompute St at each step

Alg. k(·, ·) m RT/R
GP-UCB
T

TS-QFF [2] stationary 2dγT 16
SOFUL [3] linear k 1 +

∑T
i=k+1 λi(KT )

BKB any deff 16 log(T )

DTC is not a GP (not consistent), but now a justified heuristic
Easy extension to infinite A, but how to optimize posterior?

No variance starvation

Sparse GPs become over/underconfident when deff� m [5]

BKB adaptively matches GP rank m and deff
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Alg. σ̃t(·) k̃(·, ·) worst case
SoR k̃(x,x)− k̃t(x)T(K̃t + λI)−1k̃t(x) fixed 0
DTC k(x,x) − k̃t(x)T(K̃t + λI)−1k̃t(x) fixed k(x,x)
BKB k(x,x) − k̃t(x)T(K̃t + λI)−1k̃t(x) adaptive (1± 1/2)σt(·)

Not simply an approximate GP-UCB

Confidence intervals

Ct = [µt(x)±βtσt(x)],

C̃t = [µ̃t(x)± β̃tσ̃t(x)]

Ct 6⊂ C̃t, C̃t 6⊂ Ct

Analysis: OFUL [4] + regularization with projection Pt on Im(St)

β̃t ≤
regular. bias

λ‖f‖ +
reduced variance

ηT
tPtKtPt(PtKtPt + λI)−1ηt+

extra approximation bias

‖(I−Pt)K1/2
t f‖

Lemma: I−Pt � (1 + ε)λ(Kt + λI)−1 when St sampled σt(·)

‖(I−Pt)K1/2
t f‖2 ≤ (1 + ε)λ‖(Kt + λI)−1/2K1/2

t f‖ ≤ (1 + ε)λ‖f‖

Non-uniform error: self-normalized bias focuses on essential parts of A
no need for uniform bounds, ε-grids, and exp{d} dependencies
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