Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret
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In a nutshell "~ Problem: how to choose S for good accuracy /regret? = No variance starvation
Gaussian process-UCB (GP-UCB) is a popular Bayesian/bandit op- Budgeted Kernelized Bandits (BKB) = Sparse GPs become over/underconfident when deg > m [5] -
timization alternative to grad student descent. However, it requires 0
O(T?) time and O(T?) space and does not scale, X, changes over time for t = {1,. ~ 1} do i
We introduce the first general GP optimization algorithm (BKB) that . & must change with ¢ Compute Mt(Xz> and 7 (x;) for all x;; % o ~
is no regret and provably scalable, with near-linear runtime O(Td%;). Accuracy-efficiency tradeoff of m (Select Xp+1 4= AIgMaXy ¢ 4 Uy(X); | = — =
It also maintains valid posterior variance estimates at all steps, while ~ adaptively resize S fori={1,....,t+1} do N —H
previous approaches could under/over-estimate the confidence intervals , t - i Set Pre1i G- 04(X;); 10, = :
of the GP. BKB main ingredient is a novel adaptive selection of in- 0i () captures informative arms D '~ B i (Brirs): |
- - - - - - - . include x; with large o7(x;) S o PO AP L),
ducing point using approximate posterior variance sampling. . t If g1 = 1 then include X; in Syq: .- BKB adaptively matches GP rank m and d.g -
Greedy inclusion hard to analyze | end

: e . random inclusion p;; o< 07(-) end o | = - =7
Gaussian process optimization /\/W %

Arms A = {x;}2, with x; € R?, similarity (kernel) k(-,-) and RKHS H

Fort c[1,...,T]: (1) select x;41 = arg max,. u;(x;) o e w e

(2) Receive noisy feedback yy11 = f(X¢41) + Mesa Theorem: Let (3, £ 2\/ D et 07(Xs)) log(t) +log(1/0) +3VAF. Then — -

(3) Impro\/‘e (I fOI' next time W.D. 1 — 5 for all t € [T] and all x - ./4, we have Alg O-t() k(’ ) worst case

S " ) — ) SoR k(x,x) — ki(x)"(K; + AI) " ky(x)  fixed 0
Goal: minimize regret Ry = ), f(x.) — f(x;) vs. X, = argmax, f(x;) 0;(x)/2 < o07(x) <207(x) and |8 < O(deglog(t/9)), DTC k(x. %) — ky(x)T(K, + A y(x) | fixec k(x, x)
Assumption: f € H arbitrary but || f|| < F (frequentist /bandit regret) S ! g 1~t ) !
and BKDB suffers at most regret BKB  k(x,x) — ki(x)"(K; + AI)"'k;(x) adaptive (1+1/2)0y(-)

Measuring the complexity of a GP
Maximum information gain: vy = I;laXDQCé:m‘:T log det(Kp/A + 1) RBEB < 32T (deﬂ»‘ log(T) + v/ AF2dglog(T) + 10g(1/5)) Not simply an approximate GP-UCB

Effective dimension /rank: du = > ., 05(X;)
From ~p to deg: logdet (Kp + 1) < deglog (T') < yplog(T)

Confidence intervals

- RBEB < 16 RGP-UCB|og(T): no regret but only O(T Ad%) time! N
GP-UCB and sparse GPs Cy = [p(x) £ Lo (x))], ,
GP-UCB: (%) = ky(x) (K, + AI) "y, .+ 3, computable in (/QV(fidgﬁ) time replacing Worst—c):ase bounds on 7 Cy = [(x) £ E{&t(x)] tz
_ ~+ No assumptions on k (e.g., not only stationary k
U (X) = (X)) 4+ Orop(X JQX:l(kX,X—kXTKJr)\I 1kX) ’ = b= "
t(X) = ulx) + fror(x) (%) A (%, %) f(x) (K ) kilx) -+ No free lunch: worst-case falls back to GP-UCB C,¢ Cp, Cy ¢ C . . . . . .
No regret RZP-UCB < @v(\/T (vr+ /7 F)) but too slow O(At*) per step -+ Not incremental: have to recompute &; at each step oo e T
Analysis: OFUL |4 4+ regularization with projection P; on Im(S;)
Sparse GPs: given m inducing points & = {x;}"L; (aka. dictionary) Alg. k(- -) m Ry RGP-UCH cegular, bias reduced variance extra approximation bias
: __ TR T
replace k(xi, ;) with k(xi, ;) = ks(xi) Ksks(x;) TS-QFF [2] stationary 20y; 16 B< Al +nPEP(PKP, + M)+ |(T—PYKf]
. T
GP-UCB + DTC: (%) = ky(x) (K, 4+ AI) ! SOFUL [3] | linear B 143 Mi(Kr) Lemma: I — P; < (1 + e)A(K; + AXI)~! when S; sampled o(+)
(%) = fiu(x) + Biz(x) | 5700) = (k%) — ki (30)"(K, + A1) 'k (x0)) BRD Ay | Gef 16 log(T) /2 12
W T R ORS o T AR T R t [T = POKfIP < (14 €)M (K + AR < (1 2)A ]
Deterministic training conditional (DTC) a.k.a. projected GP = DTC is not a GP (not consistent), but now a justified heuristic Non-uniform error: self-normalized bias focuses on essential parts of A
» O(Am? + m?>) per step since Rank (Kt) = m but is it no regret? ~ Basy extension to infinite A, but how to optimize posterior? > no need for uniform bounds, e-grids, and exp{d} dependencies
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