Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret

Daniele Calandriello^{*}, Luigi Carratino[†], Alessandro Lazaric[‡], Michal Valko[§], Lorenzo Rosasco^{*,†,¶} *LCSL - Istituto Italiano di Tecnologia, [†]Università degli Studi di Genova, [‡]Facebook Al Research Paris, [§]INRIA Lille - Nord Europe, [¶]Massachusetts Institute of Technology

In a nutshell

Gaussian process-UCB (GP-UCB) is a popular Bayesian/bandit optimization alternative to grad student descent. However, it requires $\mathcal{O}(T^3)$ time and $\mathcal{O}(T^2)$ space and does not scale.

We introduce the first general GP optimization algorithm (BKB) that is no regret and provably scalable, with near-linear runtime $\mathcal{O}(Td_{\text{eff}}^2)$. It also maintains valid posterior variance estimates at all steps, while previous approaches could under/over-estimate the confidence intervals of the GP. BKB main ingredient is a novel adaptive selection of inducing point using approximate posterior variance sampling.

Gaussian process optimization

Arms $\mathcal{A} = {\mathbf{x}_i}_{i=1}^A$ with $\mathbf{x}_i \in \mathbb{R}^d$, similarity (kernel) $k(\cdot, \cdot)$ and RKHS \mathcal{H} For $t \in [1, \ldots, T]$: (1) select $\mathbf{x}_{t+1} = \arg \max_{\mathbf{x}_i} u_t(\mathbf{x}_i)$ (2) Receive noisy feedback $y_{t+1} = f(\mathbf{x}_{t+1}) + \eta_{t+1}$ (3) Improve u_{t+1} for next time

Goal: minimize regret $R_T = \sum_{t=1}^T f(\mathbf{x}_*) - f(\mathbf{x}_t)$ vs. $\mathbf{x}_* = \arg \max_{\mathbf{x}_i} f(\mathbf{x}_i)$ Assumption: $f \in \mathcal{H}$ arbitrary but $||f|| \leq F$ (frequentist/bandit regret)

Measuring the complexity of a GP Maximum information gain: $\gamma_T \triangleq \max_{\mathcal{D} \subset \mathcal{A}: |\mathcal{D}|=T} \log \det(\mathbf{K}_{\mathcal{D}}/\lambda + \mathbf{I})$ Effective dimension/rank: $d_{\text{eff}} \triangleq \sum_{i=1}^{T} \sigma_T^2(\widetilde{\mathbf{x}}_i)$ From γ_T to d_{eff} : log det $(\mathbf{K}_T + \mathbf{I}) \leq d_{\text{eff}} \log (T) \ll \gamma_T \log(T)$

GP-UCB and sparse **GPs**

 $\mu_t(\mathbf{x}) = \mathbf{k}_t(\mathbf{x})^{\mathsf{T}}(\mathbf{K}_t + \lambda \mathbf{I})^{-1}\mathbf{y}_t$ GP-UCB: $u_t(\mathbf{x}) = \mu_t(\mathbf{x}) + \beta_t \sigma_t(\mathbf{x}) \quad \sigma_t^2(\mathbf{x}) = \frac{1}{\lambda} \Big(\mathbf{k}(\mathbf{x}, \mathbf{x}) - \mathbf{k}_t(\mathbf{x})^{\mathsf{T}} (\mathbf{K}_t + \lambda \mathbf{I})^{-1} \mathbf{k}_t(\mathbf{x}) \Big)$ No regret $R_T^{\text{GP-UCB}} \leq \widetilde{\mathcal{O}}(\sqrt{T}(\gamma_T + \sqrt{\gamma_T F}))$ but too slow $\mathcal{O}(At^2)$ per step

Sparse GPs: given *m* inducing points $\mathcal{S} = {\mathbf{x}_j}_{j=1}^m$ (a.k.a. dictionary) replace $k(\mathbf{x}_i, \mathbf{x}_j)$ with $\tilde{k}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{k}_{\mathcal{S}}(\mathbf{x}_i)^{\mathsf{T}} \mathbf{K}_{\mathcal{S}}^+ \mathbf{k}_{\mathcal{S}}(\mathbf{x}_j)$

GP-UCB + **DTC:** $| \widetilde{\mu}_t(\mathbf{x}) = \widetilde{\mathbf{k}}_t(\mathbf{x})^{\mathsf{T}}(\widetilde{\mathbf{K}}_t + \lambda \mathbf{I})^{-1}\mathbf{y}_t$ $\widetilde{u}_t(\mathbf{x}) = \widetilde{\mu}_t(\mathbf{x}) + \widetilde{\beta}_t \widetilde{\sigma}_t(\mathbf{x}) \quad \Big| \quad \widetilde{\sigma}_t^2(\mathbf{x}) = \frac{1}{\lambda} \Big(\mathbf{k}(\mathbf{x}, \mathbf{x}) - \widetilde{\mathbf{k}}_t(\mathbf{x})^{\mathsf{T}} (\widetilde{\mathbf{K}}_t + \lambda \mathbf{I})^{-1} \widetilde{\mathbf{k}}_t(\mathbf{x}) \Big)$ Deterministic training conditional (DTC) a.k.a. projected GP $\rightarrow \mathcal{O}(Am^2 + m^3)$ per step since Rank $(\mathbf{\tilde{K}}_t) = m$ but is it no regret?

[1] Srinivas et al. Gaussian process optimization in the bandit setting: No regret and experimental design. ICML 2010 [2] Mutný et al. Efficient high-dimensional Bayesian optimization with additivity and quadrature Fourier features. NeurIPS 2018 [3] Kuzborskij et al. Efficient linear bandits through matrix sketching. AISTATS 2011 [5] Wang et al. Batched Large-scale Bayesian Optimization in High-dimensional Spaces. AISTATS 2018

\mathfrak{S} **Problem:** how to choose \mathcal{S} for good accuracy/regret? \mathfrak{S}

Budgeted Kernelized Bandits (BKB)

- \mathbf{X}_t changes over time \mathbf{S}_t must change with t
- Accuracy-efficiency tradeoff of m \mathbf{v} adaptively resize \mathcal{S}_t
- $\sigma_t^2(\cdot)$ captures informative arms include \mathbf{x}_i with large $\sigma_t^2(\mathbf{x}_i)$

Greedy inclusion hard to analyze **end** random inclusion $p_{t,i} \propto \sigma_t^2(\cdot)$ end

Main result: BKB is scalable and no regret

Theorem: Let $\widetilde{\beta}_t \triangleq 2\sqrt{\left(\sum_{s=1}^t \widetilde{\sigma}_t^2(\widetilde{\mathbf{x}}_s)\right)\log(t) + \log(1/\delta) + 3\sqrt{\lambda}F}$. Then w.p. $1 - \delta$, for all $t \in [T]$ and all $\mathbf{x} \in \mathcal{A}$, we have

$$\sigma_t^2(\mathbf{x})/2 \le \widetilde{\sigma}_t^2(\mathbf{x}) \le 2\sigma_t^2(\mathbf{x})$$
 and

and BKB suffers at most regret

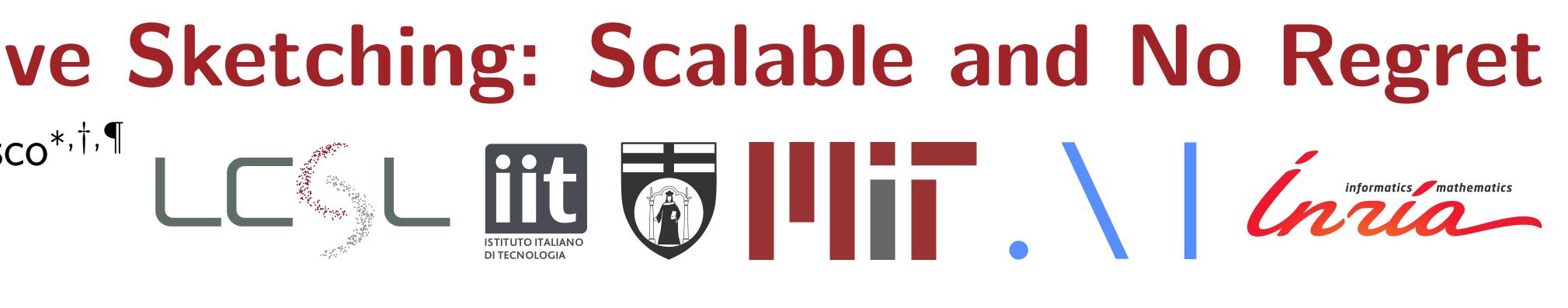
 $R_T^{\rm BKB} \le 32\sqrt{T} \left(d_{\rm eff} \log(T) + \sqrt{\lambda F^2 d_{\rm eff} \log(T)} + \log(1/\delta) \right)$

 $R_T^{\text{BKB}} \leq 16 R_T^{\text{GP-UCB}} \log(T)$: no regret but only $\widetilde{\mathcal{O}}(TAd_{\text{eff}}^2)$ time!

 \mathfrak{S}_{t} computable in $\widetilde{\mathcal{O}}(Ad_{\text{eff}}^{2})$ time replacing worst-case bounds on γ_{T} • No assumptions on k (e.g., not only stationary k) No free lunch: worst-case falls back to GP-UCB \sim Not incremental: have to recompute \mathcal{S}_t at each step

Alg.	$k(\cdot, \cdot)$	m
TS-QFF $[2]$	stationary	$2^d \gamma_T$
SOFUL $[3]$	linear	k
BKB	any	$d_{ m eff}$

Solution DTC is not a GP (not consistent), but now a justified heuristic \cong Easy extension to infinite \mathcal{A} , but how to optimize posterior?



- for $t = \{1, ..., T 1\}$ do Compute $\widetilde{\mu}_t(\mathbf{x}_i)$ and $\widetilde{\sigma}_t^2(\mathbf{x}_i)$ for all \mathbf{x}_i ; Select $\widetilde{\mathbf{x}}_{t+1} \leftarrow \arg \max_{\mathbf{x}_i \in \mathcal{A}} \widetilde{u}_t(\mathbf{x}_i);$
- for $i = \{1, ..., t+1\}$ do Set $\widetilde{p}_{t+1,i} \leftarrow \overline{q} \cdot \widetilde{\sigma}_t^2(\widetilde{\mathbf{x}}_i);$ Draw $q_{t+1,i} \sim Bernoulli(\widetilde{p}_{t+1,i});$ If $q_{t+1} = 1$ then include $\widetilde{\mathbf{x}}_i$ in \mathcal{S}_{t+1} ;

 - $|\mathcal{S}_t| \leq \mathcal{O}(d_{\text{eff}}\log(t/\delta)),$

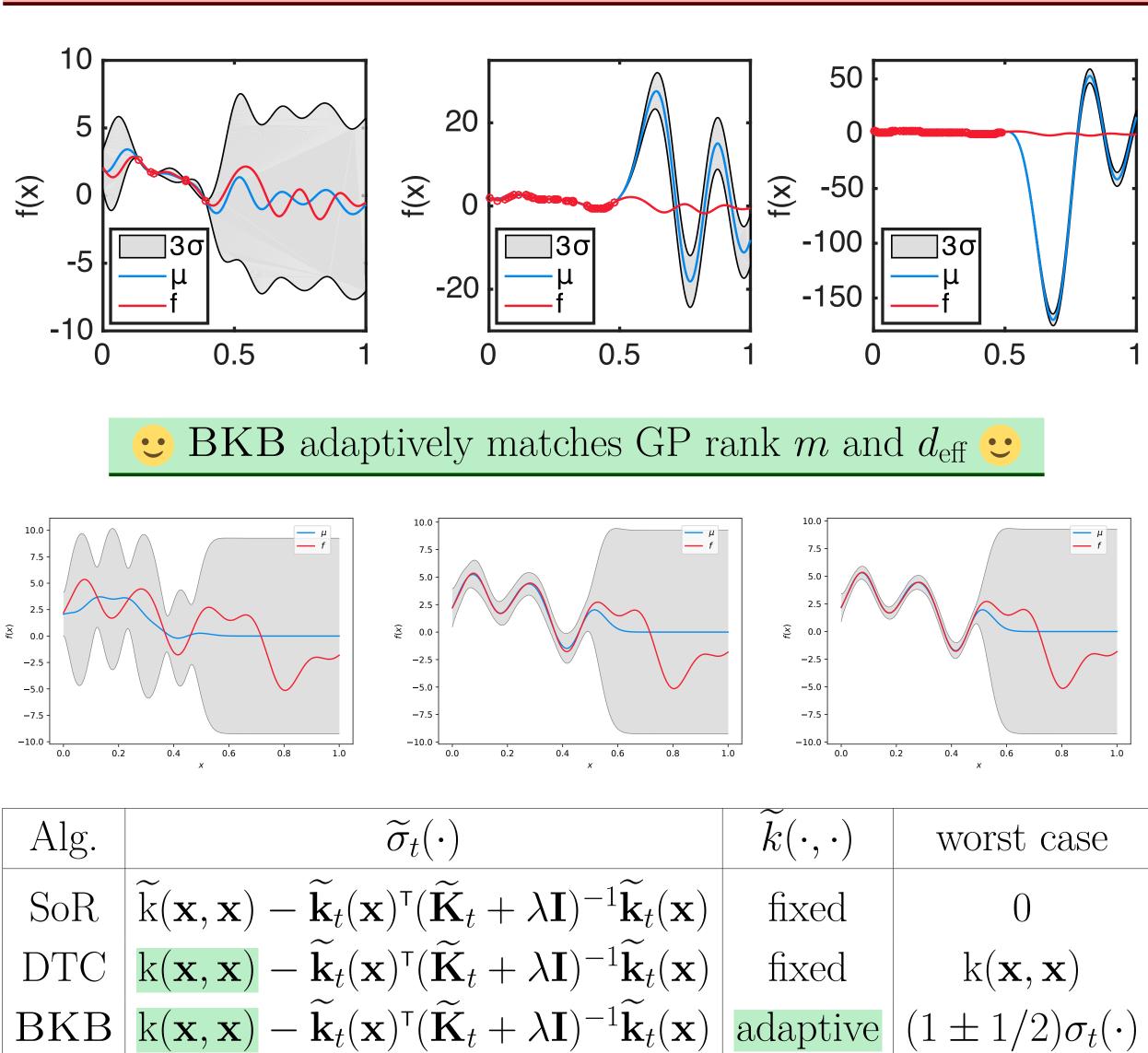
$$R_T/R_T^{\text{GP-UCB}}$$

$$16$$

$$1 + \sum_{i=k+1}^T \lambda_i(\mathbf{K}_T)$$

$$16 \log(T)$$

No variance starvation



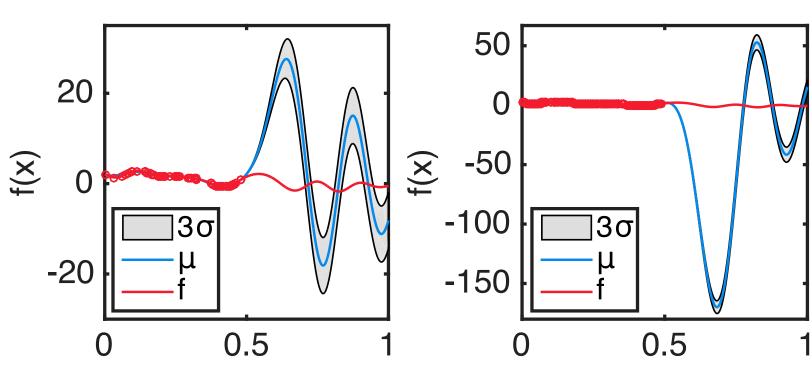
Confidence intervals

$$C_t = [\mu_t(\mathbf{x}) \pm \beta_t \sigma_t(\mathbf{x})]$$
$$\widetilde{C}_t = [\widetilde{\mu}_t(\mathbf{x}) \pm \widetilde{\beta}_t \widetilde{\sigma}_t(\mathbf{x})]$$

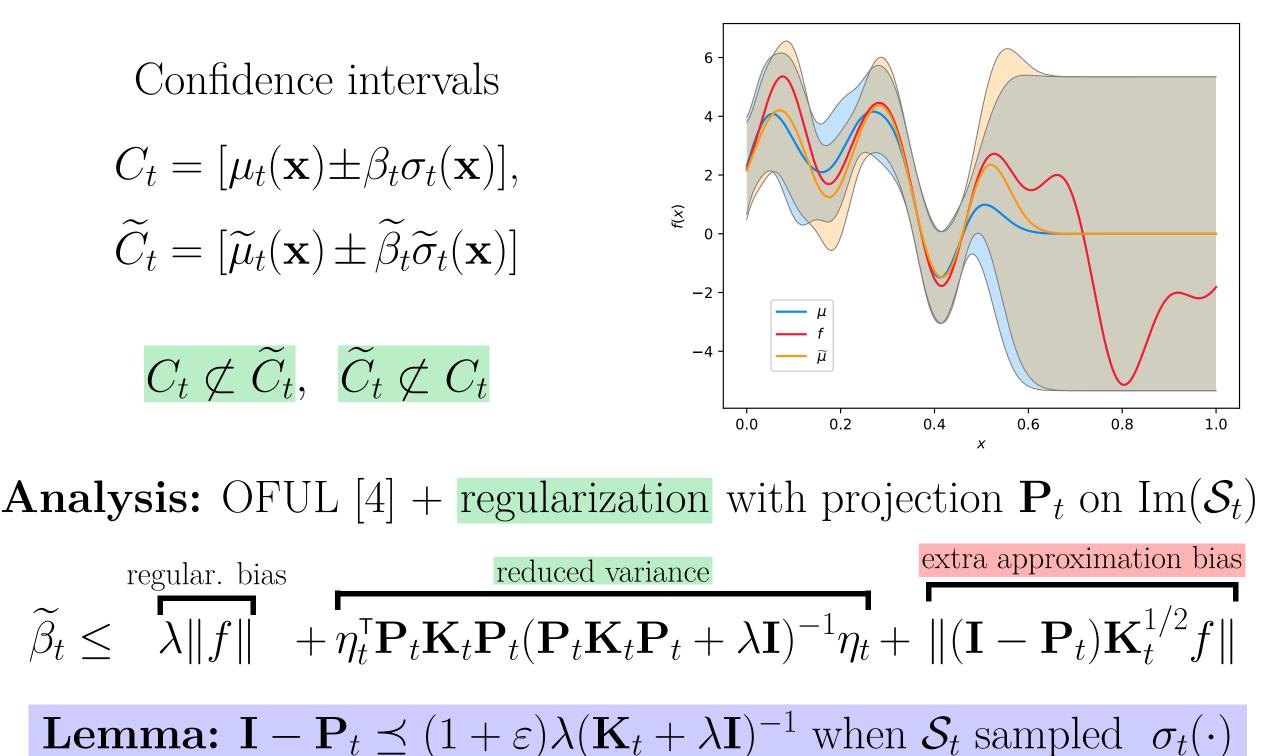
$$C_t \not\subset \widetilde{C}_t, \quad \widetilde{C}_t \not\subset C_t$$

 $\| (\mathbf{I} - \mathbf{P}_t) \mathbf{K}_t^{1/2} f \|^2 \le (1 + d)$

 \therefore Sparse GPs become over/underconfident when $d_{\text{eff}} \gg m$ [5] \therefore



Not simply an approximate GP-UCB



$+\varepsilon)\lambda\ (\mathbf{F}$	$\mathbf{X}_t + \mathbf{X}_t$	$(\mathbf{I})^{-1}$	$^{1/2}\mathbf{K}_{t}^{1/2}f\Vert$	$\leq (1$	+ 8	$\varepsilon)\lambda\ f$	
1.	11.	C		. •	1	1	C

Non-uniform error: self-normalized bias focuses on essential parts of \mathcal{A} $\mathbf{:}$ no need for uniform bounds, ε -grids, and $\exp\{d\}$ dependencies