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MOTIVATION RIDGE SPECTRAL SPARSIFIERS

Graphs are ubiquitous (e.g. Facebook n = 102, m = 10'?)

. . . s : : : Spectrum is preserved with mixed multiplicative/additive error
Ls typical graph algorithm has O(mn) time and O(m) space cost Definition 1. A (e, 7y)-spectral sparsifier of G is a re-weighted sub- pectrum 15 preserved wi X ultiplicative/additiv
graph ‘H C ¢ whose Laplacian Ly, satisfies ((1 —e)\i(Lg) —ev < Mi(Ly) < (1 + e)X(Lg) + 57,}
Large graphs do not fit in a single machine memory —
( (1 —-¢)Lg —enI X Ly = (1 +¢)Lg + evL. ) (5) Preserves all directions larger than ~
Hard to solve with engineering: An (g,0)-spectral sparsifier is a traditional e-sparsifier
L» multiple passes slow, distribution has communication costs
Hard to solve for natural graphs (i.e. no vectorial representation) Definition 2. Given a graph ¢, deTﬁneT » Proposition 1 (.[5] (informal)).. Starting from the empty graph, con-
L, sparsity level cannot be chosen v-effective resistance: re(y) = b. (BgBg ++1I)" "b. struct ‘H by adding each edge in G to H independently with prob-
i i . —~  \i(Lg) ability pe = qre(y). If § > 4log(4n/d)/e®, then w.p.1 — §, H is an
Effective dimension: deg(vy) = > _7e(7) = <n . : . ’ ’
Make the graph sparse, while preserving its spectral structure ; Ai(Lg) +7 (€,7)-sparsifier with O(deg(7)q) edges.

Already known in graph community: spectral graph sparsifiers

. . . . >
L» but ML models also have regularization ( Computing r.() requires O(m) time/space and multiple passes over the graph. Can we do better? )

1) Can we reduce memory costs without reducing accuracy?

2) Does regularization help us to further reduce memory costs? DISTRIBUTED SEQUENTIAL RESPARSIFICATION

3) Can we do so without assumptions and increased runtime?

LEARNING ON (GRAPHS

The graph G = (X, £) is undirected and weighted
e |X| =n nodes and |£| = m edges
e The weights a., . encodes the distance between nodes

The Laplacian of G is the PSD matrix Lg = Dg — Ag.
e Using edge-indicator vector b, = \/ac(X; — X;)
L. Lg =)"_b.b! = BB Positive Semi-Definite
e G is connected, Lg has only one 0 eigenvalue and Ker(Lg) =1

Laplacian smoothing (LapSmo) with Gaussian noise.
Let y = £* 4 £ be a noisy measurement of £* with [£]; ~ N(0, 02).

f2argmin(f —y) (f —y) + M Lgf = A\Lg + D)y, (1)

fFER™
where X is a regularization parameter. Algorithm 1 The DiSRe algorithm. Algorithm 2 Merge-Resparsify
_ . _ 1: Input: G ¢, v, §, Output: (e, y)-sparsifier Hg 1: Input: (g,~)-sparsifiers Hy, ;, Hp, i of graphs Gy, i, Gp i
Graph semn-supervused learning (SSL_)- 2: Partition G into k£ sub-graphs: 2: Output: #H, an (¢,7) sparsifier of Gy, ; + Gy, 4/
o Th.ere exists a label y; for each node in G His <+ G < {(eii,pre =1)} 3: Initialize H = Hyp, i + Hp,ir
o S is the set of [ labeled nodes 3: Initialize set 81 = {H1.}7, 4: For all e € H, use a fast SDD solver to compute
e 7 is the set of u = n — [ unlabeled nodes 4 forh=1,....k—1do
e Is € R"™ " is the diagonal indicator matrix of nodes in S 5. Pick two sparsifiers Hp, ;, My from Sy, Thite(7) < (1 —e)bl (Lay + (14 e)7I) b,
o C :AClIS +eudrand ¢ 2 ¢y >0 6: H Merge-Resparsify(Hn i, Hn,ir)
* ¥s = _ISY c R" | 7.  Place H back into Sp1 5: Set probabilities ppi1. < min{qryr1.¢(7), Ph.e}
e With input X', § and ys, return a labeling f € R" 8: end for 6: Sample 241, from Bernoulli(pp11,e/pn,e) (i-e. coin-flip)
harmonic function solution (HFS): 9: Return Hg, the last sparsifier in Sk 7. Return H < {(€; j,Dh+1.¢)} for all 2511, #0
[ L — )T _ T : O(d | < | ind dent f
fhrs = al;%g}lm l(f y) Is(f —y) + Af Lgf Theorem 1. Let € > 0 be the accuracy, 0 < § < 1 the probability Space: O(def(7)log(n)) < O(nlog(n)) (independent from m )
_ (L T+ 5 of error, and p = (1 + 3¢)/(1 — €). Given an arbitrary graph G and|| Time: O(defr(7) 10g3(n)) for fully balanced and & = m/(dete(7)3)
= (MLg +Is)"ys. (2) an arbitrary merge tree structure, if DiSRe is run with over-sampling L» With only O(m] 3( )) « (D)
_ _ _ parameter § = 26plog(3n/d)/e*, then with probability 1 — § 'th Only &AM L0 () WOrK {10ading & 15 S2in
stable harmonic function solution (STA): - \ C e
(1) each sub-graphs Hyy, ;3 is an (e, y)-sparsifier of Gyj, 1y Iiommunlcatlon. only O(log(n).) rounds |
I e AT B T T 9 with at ¢ 3ad. Joes. removed edges are forgotten single pass/streaming
fora e f]’[glgflb l(f y) IS(f Y) + AL Lgf_l— lf 1 L (2) with at most 3qde(y) edges J L, point-to-point, centralization on|y to choose tree
T + \. J
yo(MLg+1s)™1
= (MLg + Is)™" — 1). 3
Lo +1)* (vs = 33 1 )
SSL WITH DISRE
local transductive regression solution (LTR): Setting. The labels are bounded |y(z)| < ¢ and F is the set of centered functions such that |f(x) — y(x)| < 2c.
Y o (F o\ T _ T ~
frrp = ai‘%&m(f y) C(f —y)+1f (Lg+ ADf Theorem 2. If the labels ys are centered then, w.p. 1 — §, fsta computed on a (g,0)-sparsifier O(nlog(n)) space, O(n log3 (n)) time
‘H satisfi 3
= (C Y Lg + \I) + ) ys. (4) ST ) . L O(mlog”(n)) work
I (1 + ) r(l,u)lnt |14 2l Ao (Lg)e 2 Ls EXACT O(m) time/space
Spectral clustering (SC R(f) < R(E) + 5 + | 28 + + 5 )
pectral clustering (SC). lu 2 1 —e \((1 = €)lyAz(Lg)—1) Preserve risk rate: only }—J_rzf slower
F2£ argmin Tr(F'LF). < 3cv + e [.u) 2 lu 2maxil, u} Fi ' '
F:FTFg:Ik,fCJ_l ( ) B < (= oa(le) 12 T (1= e)imha(lo) - (1, u) T w05 2max{la] — 1 irst bc.>und W|thou’Evassumpt|ons on G
Ly require centered f

NEAR-LINEAR TIME SOLVERS
Pseudo-inverse Lg dense LAPSMO WITH DISRE

Ls O(n?) time to construct and O(n?) space to store

Theorem 3. Let f be the LAPSMO solution computed using Lg and f the solution O(dess(v) log(n)) space, O(desr() 10g3 (n)) time
Use iterative method (e.g. GD) to solve ||Lgx — YHZZ computed using its (&, y)-sparsifier Ls. Then, Ls exploit regularization: 7{ sub-linear in n
L O(m) space, O(mt) time, Anax(Lg)/Amin(Lg) ~ n iter. e S . In general, requires ~ o FT Lo/ ||
. . . L I = tllz < l—¢ (0-25+ A7) (Af Lot + >\7||f||2>. L, trade-off between smoothness and decay of Lg
Preconditioned Conjugate GD + recursive sparsification

L O(m) space, O(mlog(n)) time, Amax(Lg)/Amin(Lg) ~ 1 iter.

Cost of learning on graph: O(m) space/time, O(log(n)) passes EXPERIMENTS

Dataset: Amazon co-purchase graph from https://snap.stanford.edu/data/com-Amazon.html (Yang and Leskovec, 2012)

Lsn = 334, 863 nodes, natural, artificially sparse (true graph known only to Amazon)
REFERENCES Lswe compute 4-step random walk to recover removed co-purchases, m = 98,465, 352 edges (294 avg. degree)
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