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Linear Online Convex Optimization (LOCO)

Online game between learner and adversary, at each round t ∈ [T ]

1 the adversary reveals a new point xt ∈ X
2 the learner chooses a function fwt and predicts fwt (xt) = xT

t wt ,
3 the adversary reveals the curved loss `t ,
4 the learner suffers `t(xT

t wt) and observes the associated gradient gt .

Kernel
ϕ(·) : X → H is the high-dimensional (possibly infinite) map

Φt = [φ1, . . . ,φt ], ΦT
tΦt = Kt (kernel trick)

gt = `′t(φ
T
t wt)φt := ġtφt

Optimization to minimize regret R(w) =
∑T

t=1 `t(φtwt)− `t(φtw)

and compete with best-in-hindsight w∗ := arg minw∈H
∑T

t=1 `t(φtw)
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Kernel Online Convex Optimization (KOCO)

convex

strongly convex σ curved

First order (GD) Zinkevich 2003, Kivinen et al. 2004:
O(d)/O(t) time/space per-step but slow rate
approximation avoids O(t) runtime dependency

but introduce approximation error (potentially O(T ) regret)

Second-Order Kernel Online Convex Optimization with Adaptive Sketching ICML - 3/10



Kernel Online Convex Optimization (KOCO)

convex strongly convex

σ curved

First order (GD) Hazan, Rakhlin, et al. 2008:
O(d)/O(t) time/space per-step and fast rate
but not satisfied in practice (e.g. (yt − φT

t wt)
2)
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Kernel Online Convex Optimization (KOCO)

convex strongly convex σ curved
First order (GD)
O(d)/O(t) time/space per-step but slow rate

Second order Hazan, Kalai, et al. 2006, Zhdanov and Kalnishkan 2010:
fast rate but O(d2)/O(t2) time/space per-step
fast approximations for linear case Luo et al. 2016

no approximate methods for kernel case

How to reduce computational cost without losing fast rate?
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Second-Order KOCO (Kernel-Online Newton Step)

Second-Order Gradient Descent
wt+1 = wt − A−1

t gt , At = At−1 + σgtgT
t , A0 = αI

Lemma: O(log(Det(KT + αI))) ≤ 2dT
eff(α)log(T/α).
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Effective Dimension

Formally dT
eff(α) is an α soft-thresholded version of the rank defined as

dT
eff (α) = Tr

(
KT (KT + αI)−1

)
=

T∑
t=1

λt(KT )

λt(KT ) + α
≤ Rank(KT ) = r

α

α

r

t

Intuitively, it quantifies the number of
relevant orthogonal directions played by the
adversary.
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Effective Dimension

Formally dT
eff(α) is an α soft-thresholded version of the rank defined as

dT
eff (α) = Tr

(
KT (KT + αI)−1

)
=

T∑
t=1

λt(KT )

λt(KT ) + α
≤ Rank(KT ) = r

α

α

r

t

A direction (eigenvector) is relevant if its
importance (eigenvalue) is larger than the
regularization α

Second-Order Kernel Online Convex Optimization with Adaptive Sketching ICML - 5/10



Effective Dimension

Formally dT
eff(α) is an α soft-thresholded version of the rank defined as

dT
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)
=
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λt(KT )

λt(KT ) + α
≤ Rank(KT ) = r

α

α

r

t

If all φt are orthogonal

dT
eff(α) ∼ T/α

If all φt come from a bounded distribution
or a finite set and α = 1 then

dT
eff(1) ∼ O(1) ≤ r

is constant in T
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Goal

How to maintain dT
eff(α) log(T ) regret and reduce computational costs?

Computation scales with number of vectors gtgt added to At

skip some of the additions

Regret is large when τt,t is large
Update At only when τt,t is large

Computing τt,t is expensive
Propose Kernel Online Row Sampling (KORS)
to approximate τt,t efficiently
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Naive Approach

Unbiased estimator:

Ãt = Ãt−1 + (I{coin flip w.p. pt}/pt)σgtgT
t

with pt ∝ τ̃t,t
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Naive Approach

Unbiased estimator:

Ãt = Ãt−1 + (I{coin flip w.p. pt}/pt)σgtgT
t

with pt ∝ τ̃t,t

Pros:
w.h.p. Ãt updated only dT

eff(α) log2(T ) times

Õ(dT
eff(α)

2 + t) per-step space/time complexity

Cons:
Expected regret dT

eff(α) log(T )

The weights 1/pt ∼ 1/τ̃t,t can be large
large updates Ãt − Ãt−1 and large variance
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Naive Approach

Un

biased estimator:

Ãt = Ãt−1 + (I{coin flip w.p. pt}

/pt

)σgtgT
t

with pt ∝ τ̃t,t
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Sketched-KONS

Sketched-KONS:

Ãt = Ãt−1 + (I{coin flip w.p. pt}

/pt

)σgtgT
t

with pt ∝ max{γ, τ̃t,t}
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Sketched-KONS

Sketched-KONS:

Ãt = Ãt−1 + (I{coin flip w.p. pt}

/pt

)σgtgT
t

with pt ∝ max{γ, τ̃t,t}

Theorem: with high probability Sketched-KONS
(1) achieves dT

eff(α) log(T )/max{γ, τmin} regret

(2) requires only Õ(dT
eff(α)

2 + t2γ2 + t) per-step space/time

Trade-off 1/γ increase in regret for γ2 space/time improvement
Still dependent on t
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What next?

Can we get rid of dependency on t without losing fast rates?

Skipping updates not enough:
we propose a counterexample

Different approaches?
Learn how to remove old gsgT

s from At?
Instead of approximating At , approximate φt

Random feature not strong enough yet
Avron et al. ICML 17 for batch setting)
Ongoing work using RLS sampling and Nyström embeddings
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