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Linear Online Convex Optimization (LOCO)

Online game between learner and adversary, at each round t € [T]
1 the adversary reveals a new point x; € X
2 the learner chooses a function #,, and predicts f, (x;) = x;w;,
3 the adversary reveals the curved loss /;,

4 the learner suffers ¢;(x;w;) and observes the associated gradient g;.
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Kernel Online Convex Optimization (KOCO)

Online game between learner and adversary, at each round t € [T]
1 the adversary reveals a new point x; € X
2 the learner chooses a function #,, and predicts f, (x;) = x;w;,
3 the adversary reveals the curved loss /;,

4 the learner suffers ¢;(x;w;) and observes the associated gradient g;.

Kernel

©(+) : X — H is the high-dimensional (possibly infinite) map
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1 the adversary reveals a new point ©(x;) = ¢, € H
2 the learner chooses a function fy, and predicts fiy, (X:) = ©(x¢) Wy,
3 the adversary reveals the curved loss /;,

4 the learner suffers ¢;(¢;w;) and observes the associated gradient g;.

Kernel
©(+) : X — H is the high-dimensional (possibly infinite) map
&, =[¢y,..., 0], P;P: = K; (kernel trick)
gt = li(diWi) P, = &b,

Second-Order Kernel Online Convex Optimization with Adaptive Sketching ICML - 2/10



Kernel Online Convex Optimization (KOCO)

Online game between learner and adversary, at each round t € [T]
1 the adversary reveals a new point ©(x;) = ¢, € H
2 the learner chooses a function fy, and predicts fiy, (X:) = ©(x¢) Wy,
3 the adversary reveals the curved loss /;,

4 the learner suffers ¢;(¢;w;) and observes the associated gradient g;.

Kernel
©(+) : X — H is the high-dimensional (possibly infinite) map
&, =[¢y,..., 0], P;P: = K; (kernel trick)
gt = li(diWi) P, = &b,

Optimization to minimize regret R(w) = Z;l L(pywy) — Le(Dpew)
and compete with best-in-hindsight w* := arg min,, ¢, Z;l L w)
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Kernel Online Convex Optimization (KOCO)

N > |

convex
First order (GD) Zinkevich 2003, Kivinen et al. 2004:
L» O(d)/O(t) time/space per-step but slow rate
approximation avoids O(t) runtime dependency
Ls but introduce approximation error (potentially O(T) regret)
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Kernel Online Convex Optimization (KOCO)
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N A \ a4
A ‘
convex strongly convex

First order (GD) Hazan, Rakhlin, et al. 2008:
L» O(d)/O(t) time/space per-step and fast rate
but not satisfied in practice (e.g. (y: — drw¢)?)
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Kernel Online Convex Optimization (KOCO)
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First order (GD)
L» O(d)/O(t) time/space per-step but slow rate
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Kernel Online Convex Optimization (KOCO)

A
\ 4 \ «
A
w . Q
convex strongly convex o curved

First order (GD)
L» O(d)/O(t) time/space per-step but slow rate
Second order Hazan, Kalai, et al. 2006, Zhdanov and Kalnishkan 2010:
L, fast rate but O(d?)/O(t?) time/space per-step
fast approximations for linear case Luo et al. 2016
no approximate methods for kernel case

n lezia—

Second-Order Kernel Online Convex Optimization with Adaptive Sketching



Kernel Online Convex Optimization (KOCO)

N\ d \ A « \
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convex strongly convex
First order (GD)

L» O(d)/O(t) time/space per-step but slow rate

o curved

Second order Hazan, Kalai, et al. 2006, Zhdanov and Kalnishkan 2010:
L, fast rate but O(d?)/O(t?) time/space per-step
fast approximations for linear case Luo et al. 2016
no approximate methods for kernel case

How to reduce computational cost without losing fast rate?

n lrzia—
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Second-Order KOCO (Kernel-Online Newton Step)

Second-Order Gradient Descent
Wil = Wp — At_lgt7 A=A+ 088, Ay =al

A7l = +
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Second-Order KOCO (Kernel-Online Newton Step)

Second-Order Gradient Descent
Wil = Wp — At_lgt, A=A+ 088, Ay =al

T T
R(w) <O (Z gIAtlgt> <0 (LquI (®, 0] +al) ¢t>
t=1

t=1

< O(log(Det(K 1 + al)))
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Second-Order KOCO (Kernel-Online Newton Step)

Second-Order Gradient Descent
Wil = Wp — At_lgt7 A=A+ 088, Ay =al

T T
R(w) <O (Z gIAtlgt> < O<LZ o1 (.0 +al) "' ¢,

t=1

=1 Ridge Leverage Score 7¢
< O(log(Det(Kt + al))) < ?
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Second-Order KOCO (Kernel-Online Newton Step)

Second-Order Gradient Descent
Wil = Wp — At_lgt7 A=A+ 088, Ay =al

T T
R(w) <O (Z gIAtlgt> < O<LZ o1 (.0 +al) "' ¢,

t=1

=1 Ridge Leverage Score 7¢
< O(log(Det(Kt + al))) < ?

Lemma: O(log(Det(Kt + al))) < 2dJ(a)log(T/a).

n lrezia—
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Effective Dimension
Formally dJ:(c) is an « soft-thresholded version of the rank defined as

Ae(KT)

< Rank(K7) =
(K7)+a ank(Kr) =r

)
d(0) = Tr (K (Kr +al) ") = Y sk ta

t=1
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Effective Dimension
Formally dJ:(c) is an « soft-thresholded version of the rank defined as

Ae(KT)

< Rank(K7) =
(K)o = Rank(Kr)

T
dete (@) = Tr (KT (Kt + O‘I)_1> Z 2\

t=1

>a

eff. dim. degt <a

rank r 0

dimension t

n lrezia—
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Effective Dimension

Formally dJ:(c) is an « soft-thresholded version of the rank defined as

T
T _ -1 <
deir () = Tr (KT (Kt +al) ) ; " KT) + " Rank(K7) =

>a Intuitively, it quantifies the number of
oft. dim. dey <@ relevant orthogonal directions played by the
adversary.

rank r 0

dimension t

n lrezia—

Second-Order Kernel Online Convex Optimization with Adaptive Sketching



Effective Dimension

Formally dJ:(c) is an « soft-thresholded version of the rank defined as

T
df(a) =Tr (KT (Kt + al)_l) Z " KT) + - < Rank(Kr) =

=1
~a A direction (eigenvector) is relevant if its
ofl. dim. dar 5@ importance (eigenvalue) is larger than the

regularization «

rank r 0

dimension t
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Effective Dimension
Formally dJ:(c) is an « soft-thresholded version of the rank defined as

Ae(KT)

< Rank(K7) =
(K)o = Rank(Kr)

T
dete (@) = Tr (KT (Kt + O‘I)_1> Z 2\

t=1

If all ¢, are orthogonal

defr( )~ T/a

>a

eff. dim. degt <a

rank r 0

dimension t

n lrezia—
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Effective Dimension

Formally dJ:(c) is an « soft-thresholded version of the rank defined as

T
T -1
= <
deir () = Tr (KT (Kt +al) ) ; ¥ KT) + " Rank(K7) =

If all ¢, are orthogonal

defr( )~ T/a

off. dim. don |2 If all ¢, come from a bounded distribution
or a finite set and o = 1 then

renkr - dee(1) ~ O(1) < r

is constant in T

dimension t

n lrezia—
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Goal

How to maintain df(«)log(T) regret and reduce computational costs?
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Goal

How to maintain df(«)log(T) regret and reduce computational costs?

Computation scales with number of vectors g;g; added to A,
Ls skip some of the additions

Regret is large when ¢ is large

L, Update A; only when 7¢, is large
Computing 7 is expensive

Ls Propose KERNEL ONLINE Row SampLING (KORS)
to approximate 7, ; efficiently

n lrezia—
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Naive Approach

Unbiased estimator:
A=A, + (I{coin flip w.p. p;}/pe)og:g]

with Pt X ;]\_}’t
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A=A, + (I{coin flip w.p. p;}/pe)og:g]
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Naive Approach

Unbiased estimator:
A=A, + (I{coin flip w.p. p;}/pe)og:g]
with Pt X ;7\:1-’1;
Pros:
w.h.p. A, updated only df(a)log?(T) times
(5(de-’f-f(oz)2 + t) per-step space/time complexity
Cons:

Expected regret d(c) log(T)
The weights 1/p; ~ 1/7; ¢ can be large

L, large updates A, — A,_1 and large variance

n lrezia—
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Naive Approach

biased estimator:
A=A+ ({coin flip w.p. p:} )og:g;

with Pt X ;]\_}’t
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Sketched-KONS

SKETCHED-KONS:
A=A+ ({coin flip w.p. p:} )og:g;

with p; oc max{vy, 7+ }
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Sketched-KONS

SKETCHED-KONS:
A=A+ ({coin flip w.p. p:} )og:g;

with p; oc max{vy, 7+ }

Theorem: with high probability SKETCHED-KONS
(1) achieves df(a)log(T)/max{v, Tmin} regret
(2) requires only O(dT()? + t242 + t) per-step space/time

Trade-off 1/ increase in regret for ¥2 space/time improvement
Still dependent on t

n lrezia—
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What next?

Can we get rid of dependency on t without losing fast rates?

Skipping updates not enough:
Ls we propose a counterexample

Different approaches?
Learn how to remove old g.gI from A.?
Instead of approximating A;, approximate ¢,

L, Random feature not strong enough yet
Avron et al. ICML 17 for batch setting)
Ongoing work using RLS sampling and Nystrom embeddings
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