
Proceedings of Machine Learning Research vol 98:1–23, 2019 30th International Conference on Algorithmic Learning Theory

A simple parameter-free and adaptive approach to optimization under
a minimal local smoothness assumption

Peter L. Bartlett PETER@BERKELEY.EDU
University of California, Berkeley, USA

Victor Gabillon VICTOR.GABILLON@HUAWEI.COM
Noah’s Ark Lab, Huawei Technologies, London, UK

Michal Valko MICHAL.VALKO@INRIA.FR

SequeL team, INRIA Lille - Nord Europe, France
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Abstract
We study the problem of optimizing a function under a budgeted number of evaluations. We only
assume that the function is locally smooth around one of its global optima. The difficulty of op-
timization is measured in terms of 1) the amount of noise b of the function evaluation and 2) the
local smoothness, d, of the function. A smaller d results in smaller optimization error. We come
with a new, simple, and parameter-free approach. First, for all values of b and d, this approach
recovers at least the state-of-the-art regret guarantees. Second, our approach additionally obtains
these results while being agnostic to the values of both b and d. This leads to the first algorithm that
naturally adapts to an unknown range of noise b and leads to significant improvements in a mod-
erate and low-noise regime. Third, our approach also obtains a remarkable improvement over the
state-of-the-art SOO algorithm when the noise is very low which includes the case of optimization
under deterministic feedback (b = 0). There, under our minimal local smoothness assumption, this
improvement is of exponential magnitude and holds for a class of functions that covers the vast ma-
jority of functions that practitioners optimize (d = 0). We show that our algorithmic improvement
is borne out in experiments as we empirically show faster convergence on common benchmarks.
Keywords: optimization, tree search, deterministic feedback, stochastic feedback

1. Introduction

In budgeted function optimization, a learner optimizes a function f : X → R having access to a
number of evaluations limited by n. For each of the n evaluations (or rounds), at round t, the learner
picks an element xt ∈ X and observes a real number yt, where yt = f(xt) + εt, where εt is the
noise. Based on εt, we distinguish two feedback cases:

Deterministic feedback The evaluations are noiseless, that is ∀t, εt = 0 and yt = f(xt). Please
refer to the work by de Freitas et al. (2012) for a motivation, many applications, and references
on the importance of the case b = 0.

Stochastic feedback The evaluations are perturbed by a noise of range b ∈ R+
1: At any round, εt

is a random variable, assumed independent of the noise at previous rounds,

E[yt|xt] = f(xt) and |yt − f(xt)| ≤ b. (1)
1. Alternatively, we can turn the boundedness assumption into a sub-Gaussianity assumption equipped with a variance

parameter equivalent to our range b.
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The objective of the learner is to return an element x(n) ∈ X with largest possible value f(x(n))
after the n evaluations. x(n) can be different from the last evaluated element xn. More precisely,
the performance of the algorithm is the loss (or simple regret),

rn , sup
x∈X

f(x)− f(x(n)) .

We consider the case that the evaluation is costly. Therefore, we minimize rn as a function of n.
We assume that there exists at least one point x? ∈ X such that f(x?) = supx∈X f(x).

Prior work Among the large work on optimization, we focus on algorithms that perform well
under minimal assumptions as well as minimal knowledge about the function. Relying on minimal
assumptions means that we target functions that are particularly hard to optimize. For instance,
we may not have access to the gradients of the function, gradients might not be well defined, or
the function may not be continuous. While some prior works assume a global smoothness of the
function (Pintér, 1996; Strongin and Sergeyev, 2000; Hansen and Walster, 2003; Kearfott, 2013),
another line of research assumes only a weak/local smoothness around one global maximum (Auer
et al., 2007; Kleinberg et al., 2008; Bubeck et al., 2011a). However, within this latter group, some
algorithms require the knowledge of the local smoothness such as HOO (Bubeck et al., 2011a),
Zooming (Kleinberg et al., 2008), or DOO (Munos, 2011). Among the works relying on an un-
known local smoothness, SOO (Munos, 2011; Kawaguchi et al., 2016) represents the state-of-the-art
for the deterministic feedback. For the stochastic feedback, StoSOO (Valko et al., 2013) extends SOO
for a limited class of functions. POO (Grill et al., 2015) provides more general results. We classify
the most related algorithms in the following table.

smoothness deterministic stochastic
known DOO Zooming, HOO
unknown DiRect, SOO, SequOOL StoSOO, POO, StroquOOL

Note that for more specific assumptions on the smoothness, some works study optimization without
the knowledge of smoothness: DiRect (Jones et al., 1993) and others (Slivkins, 2011; Bubeck et al.,
2011b; Malherbe and Vayatis, 2017) tackle Lipschitz optimization.

Finally, there are algorithms that instead of simple regret, optimize cumulative regret, like
HOO (Bubeck et al., 2011a) or HCT (Azar et al., 2014). Yet, none of them adapts to the unknown
smoothness and compared to them, the algorithms for simple regret that are able to do that, such as
POO or our StroquOOL, need to explore significantly more, which negatively impacts their cumula-
tive regret (Grill et al., 2015; Locatelli and Carpentier, 2018).

Existing tools Partitionining and near-optimality dimension As in most of the previously
mentioned work, the search domain X is partitioned into cells at different scales (depths), i.e., at
a deeper depth, the cells are smaller but still cover all of X . The objective of many algorithms is
to explore the value of f in the cells of the partition and determine at the deepest depth possible in
which cell is a global maximum of the function. The notion of near-optimality dimension d aims
at capturing the smoothness of the function and characterizes the complexity of the optimization
task. We adopt the definition of near-optimality dimension given recently by Grill et al. (2015) that
unlike Bubeck et al. (2011a), Valko et al. (2013), Munos (2011), and Azar et al. (2014), avoids
topological notions and does not artificially attempt to separate the difficulty of the optimization
from the partitioning. For each depth h, it simply counts the number of near-optimal cells Nh,
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cells whose value is close to f(x?), and determines how this number evolves with the depth h. The
smaller d, the more accurate the optimization should be.

New challenges Adaptations to different data complexities As did Bubeck and Slivkins (2012),
Seldin and Slivkins (2014), and De Rooij et al. (2014) in other contexts, we design algorithms that
demonstrate near-optimal behavior under data-generating processes of different nature, obtaining
the best of all these possible worlds. In this paper, we consider the two following data complexities
for which we bring new improved adaptation.

• near-optimality dimension d = 0: In this case, the number of near-optimal cells is simply
bounded by a constant that does not depend on h. As shown by Valko et al. (2013), if the
function is lower- and upper-bounded by two polynomial envelopes of the same order around a
global optimum, then d = 0. As discussed in the book of Munos (2014, section 4.2.2), d = 0
covers the vast majority of functions that practitioners optimize and the functions with d > 0
given as examples in prior work (Bubeck et al., 2011b; Grill et al., 2015; Valko et al., 2013;
Munos, 2011; Shang et al., 2019) are carefully engineered. Therefore, the case of d = 0 is of
practical importance. However, even with deterministic feedback, the case d = 0 with unknown
smoothness has not been known to have a learner with a near-optimal guarantee. In this paper,
we also provide that. Our approach not only adapts very well to the case d = 0 and b ≈ 0, it also
provides an exponential improvement over the state of the art for the simple regret rate.

• low or moderate noise regime: When facing a noisy feedback, most algorithms assume that the
noise is of a known predefined range, often using b = 1 hard-coded in their use of upper con-
fidence bounds. Therefore, they cannot take advantage of low noise scenarios. Our algorithms
have a regret that scales with the range of the noise b, without a prior knowledge of b. Further-
more, our algorithms ultimately recover the new improved rate of the deterministic feedback
suggested in the precedent case (d = 0).

Main results Theoretical results and empirical performance We consider the optimization
under an unknown local smoothness. We design two algorithms, SequOOL for the deterministic
case in Section 3 and StroquOOL for the stochastic one in Section 4.

• SequOOL is the first algorithm to obtain a loss e−Ω̃(n) under such minimal assumption, with
deterministic feedback. The previously known SOO (Munos, 2011) is only proved to achieve a
loss ofO(e−

√
n). Therefore, SequOOL achieves, up to log factors, the result of DOO that knows the

smoothness. Note that Kawaguchi et al. (2016) designed a new version of SOO, called LOGO, that
gives more flexibility in exploring more local scales but it was still only shown to achieve a loss
of O(e−

√
n) despite the introduction of a new parameter. Achieving exponentially decreasing

regret had previously only been achieved in setting with more assumptions (de Freitas et al.,
2012; Malherbe and Vayatis, 2017; Kawaguchi et al., 2015). For example, de Freitas et al.
(2012) achieves e−Ω̃(n) regret assuming several assumptions, for example that the function f is
sampled from the Gaussian process with four times differentiable kernel along the diagonal. The
consequence of our results is that to achieve e−Ω̃(n) rate, none of these strong assumptions is
necessary.

• StroquOOL recovers, in the stochastic feedback, up to log factors, the results of POO, for the
same assumption. However, as discussed later, StroquOOL is a simpler approach than POO
which additionally features much simpler and elegant analysis.
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• StroquOOL adapts naturally to different noise range, i.e., the various values of b.

• StroquOOL obtains the best of both worlds in the sense that StroquOOL also obtains, up to
log factors, the new optimal rates reached by SequOOL in the deterministic case. StroquOOL
obtains this result without being aware a priori of the nature of the data, only for an additional
log factor. Therefore, if we neglect the additional log factor, we can just have a single algorithm,
StroquOOL, that performs well in both deterministic and stochastic case, without the knowledge
of the smoothness in either one of them.

• In the numerical experiments, StroquOOL naturally adapts to lower noise. SequOOL obtains an
exponential regret decay when d = 0 on common benchmark functions.

Algorithmic contributions and originality of the proofs Why does it work? Both SequOOL and
StroquOOL are simple and parameter-free algorithms. Moreover, both SequOOL and StroquOOL
are based on a new core idea that the search for the optimum should progress strictly sequentially
from an exploration of shallow depths (with large cells) to deeper depths (small and localized cells).
This is different from the standard approach in SOO, StoSOO, and the numerous extensions that
SOO has inspired (Buşoniu et al., 2013; Wang et al., 2014; Al-Dujaili and Suresh, 2018; Qian and
Yu, 2016; Kasim and Norreys, 2016; Derbel and Preux, 2015; Preux et al., 2014; Buşoniu and
Morărescu, 2014; Kawaguchi et al., 2016). We come up with our idea by identifying a bottleneck
in SOO (Munos, 2011) and its extensions that open all depths simultaneously (their Lemma 2).
However, in general, we show that the improved exploration of the shallow depths is beneficial for
the deeper depths and therefore, we always complete the exploration of depth h before going to
depth h+ 1. As a result, we design a more sequential approach that simplifies our Lemma 2.

This desired simplicity is also achieved by being the first to adequately leverage the reduced
and natural set of assumptions introduced in the POO paper (Grill et al., 2015). This adequate and
simple leverage should not conceal the fact that our local smoothness assumption is minimal and
already way weaker than global Lipschitzness. Second, this leveraging was absent in the analysis
for POO which additionally relies on the 40 pages proof of HOO; see Shang et al., 2019 for a detailed
discussion. Our proofs are succinct2 while obtaining performance improvement (d = 0) and a new
adaptation (b = 0). To obtain these, in an original way, our theorems are now based on solving a
transcendental equation with the Lambert W function. For StroquOOL, a careful discrimination
of the parameters of the equation leads to optimal rates both in the deterministic and stochastic case.

Intriguingly, the amount of evaluations allocated to each depth h follows a Zipf law (Powers,
1998), that is, each depth level h is simply pulled inversely proportional to its depth index h. It
provides a parameter-free method to explore the depths without knowing the boundC on the number
of optimal cells per depth (Nh = C ∝ n/h when d = 0) and obtain a maximal optimal depth h?

of order n/C. A Zipf law has been used by Audibert et al. (2010) and Abbasi-Yadkori et al. (2018)
in pure-exploration bandit problems but without any notion of depth in the search. In this paper, we
introduce the Zipf law to tree search.

Finally, another novelty is that were are not using upper bounds in StroquOOL (unlike StoSOO,
HCT, HOO, POO), which results in the contribution of removing the need to know the noise amplitude.

2. The proof is even redundantly written twice for StroquOOL and SequOOL for completeness
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2. Partition, tree, assumption, and near-optimality dimension
Partitioning The hierarchical partitioning P = {Ph,i}h,i we consider is similar to the ones intro-
duced in prior work (Munos, 2011; Valko et al., 2013; Grill et al., 2015): For any depth h ≥ 0 in
the tree representation, the set {Ph,i}1≤i≤Ih of cells (or nodes) forms a partition of X , where Ih is
the number of cells at depth h. At depth 0, the root of the tree, there is a single cell P0,1 = X . A
cell Ph,i of depth h is split into children subcells {Ph+1,j}j of depth h + 1. As Grill et al. (2015),
our work defines a notion of near-optimality dimension d that does not directly relate the smooth-
ness property of f to a specific metric ` but directly to the hierarchical partitioning P . Indeed, an
interesting fundamental quest is to determine a good characterization of the difficulty of the opti-
mization for an algorithm that uses a given hierarchical partitioning of the space X as its input (see
Grill et al., 2015, for a detailed discussion). Given a global maximum x? of f , i?h denotes the index
of the unique cell of depth h containing x? , i.e., such that x? ∈ Ph,i?h . We follow the work of Grill
et al. (2015) and state a single assumption on both the partitioning P and the function f .

Assumption 1 For any global optimum x?, there exists ν > 0 and ρ ∈ (0, 1) such that ∀h ∈ N,
∀x ∈ Ph,i?h , f(x) ≥ f(x

?)− νρh.

Definition 1 For any ν > 0, C > 1, and ρ ∈ (0, 1), the near-optimality dimension3 d(ν, C, ρ)
of f with respect to the partitioning P and with associated constant C, is

d(ν, C, ρ) , inf
{
d′ ∈ R+ : ∀h ≥ 0, Nh(3νρh) ≤ Cρ−d

′h
}
,

where Nh(ε) is the number of cells Ph,i of depth h such that supx∈Ph,i f(x) ≥ f(x?)− ε.

Tree-based learner Tree-based exploration or tree search algorithm is an approach that has been
widely applied to optimization as well as bandits or planning (Kocsis and Szepesvári, 2006; Co-
quelin and Munos, 2007; Hren and Munos, 2008); see Munos (2014) for a survey. At each round,
the learner selects a cell Ph,i containing a predefined representative element xh,i and asks for its
evaluation. We denote its value as fh,i , f(xh,i). We use Th,i to denote the total number of evalua-
tions allocated by the learner to the cell Ph,i. Our learners collect the evaluations of f and organize
them in a tree structure T that is simply a subset of P: T , {Ph,i ∈ P : Th,i > 0}, T ⊂ P .
For the noisy case, we also define the estimated value of the cell f̂h,i. Given the Th,j evaluations
y1, . . . , yTh,j , we have f̂h,i , 1

Th,j

∑Th,j
s=1 ys, the empirical average of rewards obtained at this cell.

We say that the learner opens a cell Ph,i withm evaluations if it asks form evaluations from each of
the children cells of cell Ph,i. In the deterministic feedback, m = 1. For the sake of simplicity, the
bounds reported in this paper are in terms of the total number of openings n, instead of evaluations.
The number of function evaluations is upper bounded by Kn, where K is the maximum number of
children cells of any cell in P .

Our results use the LambertW function. Solving for the variable z, the equationA = zez gives
z = W (A). Notice that W is multivalued for z ≤ 0. Nonetheless, in this paper, we consider z ≥ 0
and W (z) ≥ 0, referred to as the standard W. Lambert W cannot be expressed with elementary
functions. Yet, due to Hoorfar and Hassani (2008), we have W (z) = log(z/ log z) + o(1).

Finally, let [a : c] = {a, a + 1, . . . , c} with a, c ∈ N, a ≤ c, and [a] = [1 : a]. Next, logd
denotes the logarithm in base d, d ∈ R. Without a subscript, log is the natural logarithm in base e.

3. Grill et al. (2015) define d(ν, C, ρ) with the constant 2 instead of 3. 3 eases the exposition of our results.
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3. Adaptive deterministic optimization and improved rate

3.1. The SequOOL algorithm

Parameters: n, P = {Ph,i}
Initialization: Open P0,1. hmax ←

⌊
n/log(n)

⌋
·

For h = 1 to hmax

Open bhmax/hc cells Ph,i of depth h
with largest values fh,j .

Output x(n)← argmax
xh,i:Ph,i∈T

fh,i.

Figure 1: The SequOOL algorithm

The Sequential Online Optimization aL-
gorithm SequOOL is described in Fig-
ure 1. SequOOL explores the depth se-
quentially, one by one, going deeper and
deeper with a decreasing number of cells
opened per depth h, bhmax/hc openings at
depth h. The maximal depth that is opened
is hmax. The analysis of SequOOL shows
that it is useful that hmax ,

⌊
n/log n

⌋
,

where log n is the n-th harmonic number,
log n ,

∑n
t=1

1
t with log n ≤ log n+ 1 for any positive integer n. SequOOL returns the element of

the evaluated cell with the highest value, x(n) = argmax
xh,i:Ph,i∈T

fh,i. We use the budget of n+1 for the

simplicity of stating our guarantees. Notice that SequOOL does not use more openings than that as

1 +

hmax∑
h=1

⌊
hmax

h

⌋
≤ 1 + hmax

hmax∑
h=1

1

h
= 1 + hmaxlog hmax ≤ n+ 1.

Remark 2 The algorithm can be made anytime and unaware of n using the classic ‘doubling trick’.

Remark 3 (More efficient use of the budget) Because of the use of the floor functions b·c, the
budget used in practice, 1 +

∑hmax
h=1

⌊
hmax
h

⌋
, can be significantly smaller than n. While this only

affects numerical constants in the bounds, in practice, it can influence the performance noticeably.
Therefore one should consider, for instance, having hmax replaced by c × hmax with c ∈ R and
c = max{c′ ∈ R : 1 +

∑hmax
h=1

⌊
c′hmax
h

⌋
≤ n}. Additionally, the use the budget n could be

slightly optimized by taking into account that the necessary number of pulls at depth h is actually
min

(
bhmax/hc,Kh

)
.

3.2. Analysis of SequOOL

For any global optimum x? in f , let ⊥h be the depth of the deepest opened node containing x?

at the end of the opening of depth h by SequOOL—an iteration of the for cycle. Note that ⊥(·) is
increasing. The proofs of the following statements are given in Appendix A.

Lemma 4 For any global optimum x? with associated (ν, ρ) as defined in Assumption 1, forC > 1,
for any depth that h ∈ [hmax], if hmax/h ≥ Cρ−d(ν,C,ρ)h, we have ⊥h = h with ⊥0 = 0.

Lemma 4 states that as long as at depth h, SequOOL opens more cells than the number of near-
optimal cells at depth h, the cell containing x? is opened at depth h.

Theorem 5 Let W be the standard Lambert W function (Section 2). For any function f , one of its
global optima x? with associated (ν, ρ), C > 1, and near-optimality dimension d = d(ν, C, ρ), we
have, after n rounds, the simple regret of SequOOL is bounded as follows:

• If d = 0, rn ≤ νρ
1
C

⌊
n

logn

⌋
. • If d > 0, rn ≤ νe−

1
d
W
(
d log(1/ρ)

C

⌊
n

logn

⌋)
.
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For more readability, Corollary 6 uses a lower bound on W by Hoorfar and Hassani (2008).

Corollary 6 If d > 0, assumptions in Theorem 5 hold and ñ ,
⌊
n/log n

⌋
d log(1/ρ)/C > e,

rn ≤ ν
(

ñ

log(ñ)

)− 1
d

.

3.3. Discussion for the deterministic feedback

Comparison with SOO SOO and SequOOL are both for deterministic optimization without knowl-
edge of the smoothness. The regret guarantees of SequOOL are an improvement over SOO. While
when d > 0 both algorithms achieve a regret Õ

(
n−1/d

)
, when d = 0, the regret of SOO is O(ρ

√
n)

while the regret of SequOOL is ρΩ̃(n) which is a significant improvement. As discussed in the in-
troduction and by Valko et al. (2013, Section 5), the case d = 0 is very common. As pointed out
by Munos (2011, Corollary 2), SOO has to actually know whether d = 0 or not to set the maximum
depth of the tree as a parameter for SOO. SequOOL is fully adaptive, does not need to know any of
this and actually gets a better rate.4

The conceptual difference from SOO is that SequOOL is more sequential: For a given depth h,
SequOOL first opens cells at depth h and then at depth h + 1 and so on, without coming back to
lower depths. Indeed, an opening at depth h + 1 is based on the values observed while opening
at depth h. Therefore, it is natural and less wasteful to do the openings in a sequential order.
Moreover, SequOOL is more conservative as it opens the lower depths more while SOO opens every
depth equally. However from the perspective of depth, SequOOL is more aggressive as it opens
depth as high as n, while SOO stops at

√
n.

Comparison with DOO Contrarily to SequOOL, DOO knows the smoothness of the function that is
used as input parameter ν̃ = ν and ρ̃ = ρ. However this knowledge only improves the logarithmic
factor in the current upper bound. When d > 0, DOO achieves a simple regret of O

(
n−1/d

)
, when

d = 0, the simple regret is of O(ρn).
DOO with multiple parallel (ν̃, ρ̃) instances? An alternative approach to SequOOL, based on DOO,
which would also not require the knowledge of the true smoothness (ν, ρ), is to run m multiple par-
allel instances of DOO with different values for ν̃ and ρ̃. For instance, we could mimic the behavior of
POO (Grill et al., 2015), and runm , blog nc instances of DOO, each with budget n/blog nc, where,
in instance i ∈ [blog nc], ρ̃i is set to 1/2i. Under the condition that ρ ≥ ρ̃min = 1/2blognc ≈ 1/n,
among these blog nc instances, one of them, let us say that the j-th one, is such that we have
ρ̃j = 1/2j ≤ ρ ≤ 1/2j−1 = 2ρ̃j . This instance j of DOO therefore a x(n) with a regret ρΩ̃(n).

However, in the case of ρ ≤ ρ̃min = 1/2blognc = 1/n, we can only guarantee a regret
(ρ̃min)

Ω̃(n). Therefore, for a fixed n, this approach will fail to capture the case where ρ ≈ 0
such as, for instance, the case ρ = e−n. Note that this argument still holds if the number of parallel
instances m = o(n). Finally, the other disadvantage would be that as in POO, this alternative would
use upper-bounds νmax and ρmax that would appear in the final guarantees.

4. A similar behavior is also achieved by combining two SOO algorithms, by running half of the samples for d = 0 and
half for d > 0. However, SequOOL does this naturally and gets a better rate when d = 0.
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Lower bounds As discussed by Munos (2014) for d = 0, DOO matches the lower bound and it is
even comparable to the lower-bound for concave functions. While SOO was not matching the bound
of DOO, with our result, we now know that, up to a log factor, it is possible to achieve the same
performance as DOO, without the knowledge of the smoothness.

4. Noisy optimization with adaptation to low noise

4.1. The StroquOOL algorithm

Parameters: n, P = {Ph,i}
Init: Open hmax times cell P0,1.

hmax ←
⌊

n
2(logn+1)2

⌋
, pmax ← blog hmaxc.

For h = 1 to hmax J Exploration I
For m = 1 to bhmax/hc

Open
⌊
hmax
hm

⌋
times the non-opened

cell Ph,i with the highest values f̂h,i
and given that Th,i ≥

⌊
hmax
hm

⌋
·

For p = 0 to pmax J Cross-validation I
Evaluate hmax/2 times the candidates:

x(n, p)← argmax
(h,i)∈T , Th,i≥2p

f̂h,i.

Output x(n)← argmax
{x(n,p), p∈[0:pmax]}

f̂(x(n, p))

Figure 2: The StroquOOL algorithm

In the presence of noise, it is natural to evalu-
ate the cells multiple times, not just one time
as in the deterministic case. The amount of
times a cell should be evaluated to differen-
tiate its value from the optimal value of the
function depends on the gap between these
two values as well as the range of noise. As
we do not want to make any assumptions on
knowing these quantities, our algorithm tries
to be robust to any potential values by not
making a fixed choice on the number of eval-
uations. Intuitively, StroquOOL implicitly
uses modified versions of SequOOL, denoted
SequOOL(p),5 where each cell is evaluated p
times, p ≥ 1, while in SequOOL p = 1. On
one side, given one instance of SequOOL(p),
evaluating more each cells (p large) leads to
a better quality of the mean estimates in each
cell. On the other side, as a tradeoff, it im-
plies that SequOOL(p) is using more evalua-
tions per depth and therefore is not able to explore deep depths of the partition. The largest depth
explored is now O(n/p). StroquOOL then implicitly performs the same amount of evaluations as
it would be performed by log n instances of SequOOL(p) each with a number of evaluations of
p = 2p

′
, where we have p′ ∈ [0 : log n].

The St(r)ochastic sequential Online Optimization aLgorithm, StroquOOL, is described in Fig-
ure 2. Remember that ‘opening’ a cell means ‘evaluating’ its children. The algorithm opens cells by
sequentially diving them deeper and deeper from the root node h = 0 to a maximal depth of hmax.
At depth h, we allocate, in a decreasing fashion, different number of evaluations bhmax/(hm)c
to the cells with highest value of that depth, with m from 1 to bhmax/hc. The best cell that has
been evaluated at least O(hmax/h) times is opened with O(hmax/h) evaluations, the next best
cells that have been evaluated at least O(hmax/(2h)) times are opened with O(hmax/(2h)) eval-
uations, the next best cells that have been evaluated at least O(hmax/(3h)) times are opened with
O(hmax/(3h)) evaluations and so on, until some O(hmax/h) next best cells that have been eval-
uated at least once are opened with one evaluation. More precisely, given, m and h, we open,
withbhmax/(hm)c evaluations, the m non-previously-opened cells Ph,i with highest values f̂h,i

5. Again, this is only for the intuition, the algorithm is not a meta-algorithm over SequOOL(p)s.
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and given that Th,i ≥ bhmax/(hm)c. For each p ∈ [0 : pmax , blog2(hmax)c], the candidate
output x(n, p) is the cell with highest estimated value that has been evaluated at least 2p times,
x(n, p) , argmax

(h,i)∈T ,Th,i≥2p
f̂h,i. We set hmax ,

⌊
n/(2(logn+ 1)2)

⌋
. Then, StroquOOL uses less

than n openings, which we detail in Appendix B.

4.2. Analysis of StroquOOL

The proofs of the following statements are given in Appendix D and E. For any x?, ⊥h,p is the depth
of the deepest opened node with at least 2p evaluations containing x? at the end of the opening of
depth h of StroquOOL.

Lemma 7 For any global optimum x? with associated (ν, ρ) from Assumption 1, any C > 1, for
any δ ∈ (0, 1), on event ξδ defined in Lemma 12, for any pair (h, p) of depths h, and integer p such
that h ∈ [hmax], and p ∈ [0 : logbhmax/hc], we have that if b

√
log(2n2/δ)/2p+1 ≤ νρh and if

hmax/(4h2
p) ≥ Cρ−d(ν,C,ρ)h, that ⊥h,p = h with ⊥0,p , 0.

Lemma 7 gives two conditions so that the cell containing x? is opened at depth h. This holds if
(a) StroquOOL opens, with 2p evaluations, more cells at depth h than the number of near-optimal
cells at depth h (hmax/(4h2

p) ≥ Cρ−d(ν,C,ρ)h) and (b) the 2p evaluations are sufficient to discrim-
inate the empirical average of near-optimal cells from the empirical average of sub-optimal cells
(b
√

log(2n2/δ)/2p ≤ νρh). To state the next theorems, we introduce h̃ a positive real number
satisfying (hmaxν

2ρ2h̃)/(4h̃b2 log(2n2/δ)) = Cρ−dh̃. We have

h̃ =
1

(d+ 2) log(1/ρ)
log

(
n

log n

)
+ o(1) with n ,

ν2hmax(d+ 2) log(1/ρ)

4Cb2 log(2n2/δ)
·

The quantity h̃ gives the depth of the deepest cell opened by StroquOOL that contains x? with high
probability. Consequently, h̃ also lets us characterize for which regime of the noise range b we
recover results similar to the loss for the deterministic case. Discriminating on the noise regime, we
now state our results, Theorem 8 for a high noise and Theorem 10 for a low one.

Theorem 8 High-noise regime After n rounds, for any function f , a global optimum x? with
associated (ν, ρ), C > 1, and near-optimality dimension simply denoted d = d(ν, C, ρ), with
probability at least 1− δ, if b ≥ νρh̃/

√
log(2n2/δ), the simple regret of StroquOOL obeys

rn ≤ νρ
1

(d+2) log(1/ρ)
W

(⌊
n

2(log2 n+1)2

⌋
(d+2) log(1/ρ)ν2

4Cb2 log(2n2/δ)

)
+ 2b

√
log(2n2/δ)

/⌊
n

2(log2 n+ 1)2

⌋
·

Corollary 9 With the assumptions of Theorem 8 and n > e,

rn ≤ ν
(
log n

n

) 1
d+2

+ 2b

√√√√ 18 log(2n2/δ)

2
⌊

n
2(log2 n+1)2

⌋ , where n ,

⌊
n/2

(log2 n+ 1)2

⌋
(d+ 2) log(1/ρ)ν2

4Cb2 log(2n2/δ)
·

9
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Theorem 10 Low-noise regime After n rounds, for any function f and one of its global optimum
x? with associated (ν, ρ), anyC > 1, and near-optimality dimension simply denoted d = d(ν, C, ρ),
with probability at least 1− δ, if b ≤ νρh̃/

√
log(2n2/δ), the simple regret of StroquOOL obeys

• If d = 0, rn ≤ 3νρ
1
4C

⌊
n/2

(log2(n)+1)2

⌋
. • If d > 0, rn ≤ 3νe

− 1
d
W

(⌊
n/2

(log2 n+1)2

⌋ d log 1
ρ

4C

)
.

This results also hold for the deterministic feedback case, b = 0, with probability 1.

Corollary 11 With the assumptions of Theorem 10, if d > 0, then

rn ≤ 3ν

(
log(ñ)

ñ

) 1
d

with ñ ,

⌊
n/2

(log2 n+ 1)2

⌋
d log(1/ρ)

4C
and ñ > e.

4.3. Discussion for the stochastic feedback
Worst-case comparison to POO and StoSOO When b is large and known StroquOOL is an
algorithm designed for the noisy feedback while adapting to the smoothness of the function. There-
fore, it can be directly compared to POO and StoSOO that both tackle the same problem. The results
for StroquOOL, like the ones for POO, hold for d ≥ 0, while the theoretical guarantees of StoSOO
are only for the case d = 0. The general rate of StroquOOL in Corollary 9 6 is similar to the ones of
POO (for d ≥ 0) and StoSOO (for d = 0) as their loss is Õ(n−1/(d+2)). More precisely, looking at
the log factors, we can first notice an improvement over StoSOO when d = 0. We have rStroquOOL

n =
O(log3/2(n)/

√
n) ≤ rStoSOO

n = O(log2 n/
√
n). Comparing with POO, we obtain a worse logarith-

mic factor, as rPOO
n = O((log2(n)/n))1/(d+2)) ≤ r

StroquOOL
n = O(((log3 n)/n)1/(d+2)). Despite

having this (theoretically) slightly worse logarithmic factor compared to POO, StroquOOL has two
nice new features. First, our algorithm is conceptually simple, parameter-free, and does not need
to call a sub-algorithm: POO repetitively calls different instances of HOO which makes it a heavy
meta-algorithm. Second, our algorithm, as we detail next, naturally adapts to low noise and, even
more, recovers the rates of SequOOL in the deterministic case, leading to exponentially decreasing
loss when d = 0. We do not know if the extra logarithmic factor for StroquOOL as compared to
POO to is the unavoidable price to pay to obtain an adaptation to the deterministic feedback case.
Comparison to HOO HOO is also designed for the noisy optimization setting. HOO needs to know
the smoothness of f , i.e., (ν, ρ) are input parameters of HOO. Using this extra knowledge HOO is only
able to improve the logarithmic factor to achieve a regret of rHOO

n = O((log(n)/n)1/(d+2)).

Adaptation to the range of the noise b without a prior knowledge A favorable feature of our
bound in Corollary 9 is that it characterizes how the range of the noise b affects the rate of the regret
for all d ≥ 0. Effectively, the regret of StroquOOL scales with

(
n/b2

)−1/(d+2). Note that b is any
real non-negative number and it is unknown to StroquOOL. To achieve this result, and contrarily
to HOO, StoSOO, or POO, we designed StroquOOL without using upper-confidence bounds (UCBs).
Indeed, UCB approaches are overly conservative as they use, in the design of their confidence
bound, hard-coded (and often overestimated) upper-bound on b that we denote b̃. HOO, POO, and
StoSOO, would only obtain a similar regret to StroquOOL, scaling with b, when b is known to them,
in with case b̃ would be set as b̃ = b. In general, UCB approaches have their regret scaling with
(n/b̃2)−1/(d+2). Therefore, the most significant improvement of StroquOOL over HOO, POO, and
StoSOO is expected when b̃� b.

6. Note that the second term in our bound has at most the same rate as the first one.
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Figure 3: Bottom right: Wrapped-sine function (d > 0). The true range of the noise b and the
range used by HOO and POO is b̃. Top: b = 0, b̃ = 1 left — b = 0.1, b̃ = 1 middle —
b = b̃ = 1 right. Bottom: b = b̃ = 0.1 left — b = 1, b̃ = 0.1 middle.

Adaptation to the deterministic case and d=0 When the noise is very low, that is, when b ≤
νρh̃/

√
log(2n2/δ), which includes the deterministic feedback, in Theorem 10 and Corollary 11,

StroquOOL recovers the same rate as DOO and SequOOL up to logarithmic factors. Remarkably,
StroquOOL obtains an exponentially decreasing regret when d = 0 while POO, StoSOO, or HOO
only guarantee a regret of Õ(

√
1/n) when unaware of the range b. Therefore, up to log factors,

StroquOOL achieves naturally the best of both worlds without being aware of the nature of the
feedback (either stochastic or deterministic). Again, if the input noise parameter b̃ � b (it is
often set to 1 by default) this is a behavior that one cannot expect from HOO, POO, or StoSOO as
they explicitly use confidence intervals based on b̃. Finally, using UCB approaches with empirical
estimation of the variance σ̂2 would not circumvent this behavior. Indeed, the UCB in such case is
typically of the form

√
σ̂2/T + b̃/T (Maurer and Pontil, 2009). Then if b̃� b, the term b̃/T in the

upper confidence bound will force an overly conservative exploration. This prevents having e−Ω̃(n)

when d = 0 and b ≈ 0.

5. Experiments

We empirically demonstrate how SequOOL and StroquOOL adapt to the complexity of the data and
compare them to SOO, POO, and HOO. We use two functions used by prior work as testbeds for opti-
mization of difficult function without the knowledge of smoothness. The first one is the wrapped-
sine function (S(x), Grill et al., 2015, Figure 3, bottom right) with S(x) , 1

2(sin(π log2(2|x −
1
2 |)) + 1)((2|x − 1

2 |)− log .8 − (2|x − 1
2 |)− log .3) − (2|x − 1

2 |)− log .8. This function has d > 0 for
the standard partitioning (Grill et al., 2015). The second is the garland function (G(x), Valko et al.,
2013, Figure 4, bottom right) with G(x) , 4x(1 − x)(3

4 + 1
4(1 −

√
| sin(60x)|)). Function G
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Figure 4: Left & center: Deterministic feedback. Right: Garland function for which d = 0.

has d = 0 for the standard partitioning (Valko et al., 2013). Both functions are in one dimen-
sion, X = R. Our algorithms work in any dimension, but, with the current computational power
available, they would not scale beyond a thousand dimensions.

StroquOOL outperforms POO and HOO and adapts to lower noise. In Figure 3, we report the re-
sults of StroquOOL, POO, and HOO for different values of ρ. As detailed in the caption, we vary the
range of noise b and the range of noise b̃ used by HOO and POO. In all our experiments, StroquOOL
outperforms POO and HOO. StroquOOL adapts to low noise, its performance improves when b dimin-
ishes. To see that, compare top-left (b = 0), top-middle (b = .1), and top-right (b = 1) subfigures.
On the other hand, POO and HOO do not naturally adapt to the range of the noise: For a given param-
eter b̃ = 1, the performance is unchanged when the range of the real noise varies as seen by com-
paring again top-left (b = 0), top-middle (b = .1), and top-right (b = 1). However, note that POO
and HOO can adapt to noise and perform empirically well if they have a good estimate of the range
b = b̃ as in bottom-left, or if they underestimate the range of the noise, b̃� b, as in bottom-middle.
In Figure 5, we report similar results on the garland function. Finally, StroquOOL demonstrates
its adaptation to both worlds in Figure 4 (left), where it achieves exponential decreasing loss in the
case d = 0 and deterministic feedback.

Regrets of SequOOL and StroquOOL have exponential decay when d = 0. In Figure 4, we
test in the deterministic feedback case with SequOOL, StroquOOL, SOO and the uniform strategy
on the garland function (left) and the wrap-sine function (middle). Interestingly, for the garland
function, where d = 0, SequOOL outperforms SOO and displays a truly exponential regret decay
(y-axis is in log scale). SOO appears to have the regret of e−

√
n. StroquOOL which is expected

to have a regret e−n/ log2 n lags behind SOO. Indeed, n/ log2 n exceeds
√
n for n > 10000, for

which the result is beyond the numerical precision. In Figure 4 (middle), we used the wrapped-sine.
While all algorithms have similar theoretical guaranties since here d > 0, SOO outperforms the other
algorithms.

A more thorough empirical study is desired. Especially we would like to see how our methods
compare with state-of-the-art black-box GO approaches (Pintér, 2018; Pintér et al., 2018; Strongin
and Sergeyev, 2000; Sergeyev et al., 2013; Sergeyev and Kvasov, 2017, 2006; Sergeyev, 1998; Lera
and Sergeyev, 2010; Kvasov and Sergeyev, 2012; Lera and Sergeyev, 2015; Kvasov and Sergeyev,
2015).
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Figure 5: Garland function: The true range of the noise is b and the range of noise used by HOO
and POO is b̃ and they are set as top: b = 0, b̃ = 1 left — b = 0.1, b̃ = 1 middle —
b = 1, b̃ = 1 right, bottom: b = 0.1, b̃ = 0.1 left — b = 1, b̃ = 0.1 middle.
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Appendix A. Regret analysis of SequOOL for deterministic feedback

Lemma 4 For any global optimum x? with associated (ν, ρ) as defined in Assumption 1, forC > 1,
for any depth that h ∈ [hmax], if hmax/h ≥ Cρ−d(ν,C,ρ)h, we have ⊥h = h with ⊥0 = 0.

Proof We prove Lemma 4 by induction in the following sense. For a given h, we assume the
hypotheses of the lemma for that h are true and we prove by induction that ⊥h′ = h′ for h′ ∈ [h].
1◦ For h′ = 0, we trivially have ⊥h′ ≥ 0.
2◦ Now consider h′ > 0 and assume⊥h′−1 = h′−1 with the objective to prove⊥h′ = h′. Therefore,
at the end of the processing of depth h′ − 1, during which we were opening the cells of depth
h′ − 1 we managed to open the cell (h′ − 1, i?h′−1) the optimal node of depth h′ − 1 (i.e., such that
x? ∈ Ph′−1,i?

h′−1
). During phase h′, the

⌊
hmax
h′

⌋
cells from

{
Ph′,i

}
i

with highest values
{
fh′,i

}
i

are
opened. For the purpose of contradiction, let us assume⊥h′ = h′−1 that isPh′,i?h is not one of them.
This would mean that there exist at least

⌊
hmax
h′

⌋
cells from

{
Ph′,i

}
i
, distinct from Ph′,i?h , satisfying

fh′,i ≥ fh′,i?h . As fh′,i? ≥ f(x?) − νρh
′

by Assumption 1, this means we have Nh′(3νρh
′
) ≥⌊

hmax
h′

⌋
+ 1 (the +1 is for Ph′,i?h). As h′ ≤ h this gives hmax

h′ ≥ hmax
h and therefore Nh′(3νρh

′
) ≥⌊

hmax
h

⌋
+1. However by assumption of the lemma we have hmax

h ≥ Cρ−d(ν,C,ρ)h ≥ Cρ−d(ν,C,ρ)h′ . It

follows that Nh′(3νρh
′
) >

⌊
Cρ−d(ν,C,ρ)h′

⌋
. This contradicts f being of near-optimality dimension

d(ν, C, ρ) with associated constantC as defined in Definition 1. Indeed the conditionNh′(3νρh
′
) ≤

Cρ−dh
′

in Definition 1 is equivalent to the condition Nh′(3νρh
′
) ≤

⌊
Cρ−dh

′
⌋

as Nh′(3νρh
′
) is an

integer.

Theorem 5 Let W be the standard Lambert W function (Section 2). For any function f , one of its
global optima x? with associated (ν, ρ), C > 1, and near-optimality dimension d = d(ν, C, ρ), we
have, after n rounds, the simple regret of SequOOL is bounded as follows:

• If d = 0, rn ≤ νρ
1
C

⌊
n

logn

⌋
. • If d > 0, rn ≤ νe−

1
d
W
(
d log(1/ρ)

C

⌊
n

logn

⌋)
.

Corollary 6 If d > 0, assumptions in Theorem 5 hold and ñ ,
⌊
n/log n

⌋
d log(1/ρ)/C > e,

rn ≤ ν
(

ñ

log(ñ)

)− 1
d

.

Proof Let x? be a global optimum with associated (ν, ρ). For simplicity, let d = d(ν, C, ρ). We
have

f(x(n))
(a)
≥ f⊥hmax+1,i?

(b)
≥ f(x?)− νρ⊥hmax+1.

where (a) is because x(⊥hmax + 1, i?) ∈ T and x(n) = argmaxPh,i∈T fh,i, and (b) is by Assump-
tion 1. Note that the tree has depth hmax + 1 in the end. From the previous inequality we have
rn = supx∈X f(x) − f(x(n)) ≤ νρ⊥hmax+1. For the rest of the proof, we want to lower bound
⊥hmax . Lemma 4 provides a sufficient condition on h to get lower bounds. This condition is an
inequality in which as h gets larger (more depth) the condition is more and more likely not to hold.
For our bound on the regret of SequOOL to be small, we want a quantity h so that the inequality
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holds but having h as large as possible. So it makes sense to see when the inequality flip signs which
is when it turns to equality. This is what we solve next. We solve Equation 2 and then verify that it
gives a valid indication of the behavior of our algorithm in term of its optimal h. We denote h the
positive real number satisfying

hmax

h
= Cρ−dh. (2)

First we will verify that
⌊
h
⌋

is a reachable depth by SequOOL in the sense that h ≤ hmax. As ρ < 1,
d ≥ 0 and h ≥ 0 we have ρ−dh ≥ 1. This gives Cρ−dh ≥ 1. Finally as hmax

h
= Cρ−dh, we have

h ≤ hmax.
If d = 0 we have h = hmax/C. If d > 0 we have h = 1

d log(1/ρ)W (hmaxd log(1/ρ)/C) where
W is the standard Lambert W function. Using standard properties of the b·c function, we have

hmax⌊
h
⌋ ≥ hmax

h
= Cρ−dh ≥ Cρ−dbhc. (3)

We always have ⊥hmax ≥ 0. If h ≥ 1, as discussed above
⌊
h
⌋
∈ [hmax], therefore ⊥hmax ≥ ⊥bhc,

as⊥· is increasing. Moreover⊥h = h because of Lemma 4 which assumptions are verified because
of Equation 3 and

⌊
h
⌋
∈ [0 : hmax]. So in general we have ⊥hmax ≥

⌊
h
⌋
. If d = 0 we have,

rn ≤ νρ⊥hmax+1 ≤ νρbhc+1 = νρbhmax
C c+1 ≤ νρhmax

C = νρ
1
C

⌊
n

logn

⌋
.

If d > 0 rn ≤ νρ⊥hmax+1 ≤ νρ
1

d log(1/ρ)
W
(
hmaxd log(1/ρ)

C

)
. To obtain the result in Corollary 6, we

use that W (x) verifies for x ≥ e, W (x) ≥ log
(

x
log x

)
(Hoorfar and Hassani, 2008). Therefore, if

hmaxd log(1/ρ)/C > e we have, denoting dρ = d log(1/ρ),

rn
ν
≤ ρ

1
dρ

(
log

(
hmaxdρ/C

log(hmaxdρ/C)

))
= e

1
d log(1/ρ)

log

 hmaxdρ/C

log

(
hmaxdρ

C

)
 log(ρ)

=

 hmaxdρ/C

log
(
hmaxdρ
C

)
− 1

d

.

Appendix B. StroquOOL is not using a budget larger than n

Summing over the depths except the depth 0, StroquOOL never uses more evaluations than the
budget hmaxlog

2
(hmax) during this depth exploration as

hmax∑
h=1

bhmax/hc∑
p=0

⌊
hmax

hp

⌋
≤

hmax∑
h=1

bhmax/hc∑
p=0

hmax

hp
=

hmax∑
h=1

hmax

h

bhmax/hc∑
p=0

1

p
=

hmax∑
h=1

hmax

h
log(bhmax/hc)

≤ log(hmax)

hmax∑
h=1

hmax

h
= hmaxlog

2
(hmax).

We need to add the additional evaluations for the cross-validation at the end,
pmax∑
p=0

1

2

⌊
n

2(logn+ 1)2

⌋
≤ n

4
·

Therefore, in total the budget is not more than n
2 + n

4 + hmax = n.

18



SIMPLE APPROACH TO OPTIMIZATION UNDER A MINIMAL SMOOTHNESS ASSUMPTION

Appendix C. Lower bound on the probability of event ξδ
In this section, we define and consider event ξδ and prove it holds with high probability.

Lemma 12 Let C be the set of cells evaluated by StroquOOL during one of its runs. C is a random
quantity. Let ξδ be the event under which all average estimates in the cells receiving at least one
evaluation from StroquOOL are within their classical confidence interval, then P (ξδ) ≥ 1 − δ,
where

ξδ ,

{
∀Ph,i ∈ C, p ∈ [0 : pmax] : if Th,i = 2p, then

∣∣∣f̂h,i − fh,i∣∣∣ ≤ b√ log(2n2/δ)

2p+1

}
·

Proof The proof of this lemma follows the proof of the equivalent statement given for StoSOO
(Valko et al., 2013). The crucial point is that while we have potentially exponentially many com-
binations of cells that can be evaluated, given any particular execution we need to consider only a
polynomial number of estimators for which we can use Chernoff-Hoeffding concentration inequal-
ity.

Let m denote the (random) number of different nodes sampled by the algorithm up to time n.
Let τ1

j be the first time when the j-th new node PHj ,Ij is sampled, i.e., at time τ1
j − 1 there are

only j − 1 different nodes that have been sampled whereas at time τ1
j , the j-th new node PHj ,Ij

is sampled for the first time. Let τ sj , for 1 ≤ s ≤ THj ,Ij (n), be the time when the node PHj ,Ij is
sampled for the s-th time. Moreover, we denote Y s

j = yτsj − f(xHj ,Ij ). Using this notation, we
rewrite ξ as:

ξδ =

{
∀j, p s.t. , 1 ≤ i ≤ m, p ∈ [0 : pmax], if THi,Ji(n) = 2p,

∣∣∣∣ 12p
2p∑
s=1

Y s
j

∣∣∣∣ ≤
√

log(2n2/δ)

2p+1

}
.

(4)

Now, for any j and p, the (Y s
j )1≤s≤u are i.i.d. from some distribution PHj ,Ij . The node PHj ,Ij is

random and depends on the past samples (before time τ1
j ) but the (Y s

j )s are conditionally indepen-
dent given this node and consequently:

P

(∣∣∣∣ 12p
2p∑
s=1

Y s
j

∣∣∣∣ ≤
√

log(2n2/δ)

2p+1

)
=

= EPHj,Ij P
(∣∣∣∣ 12p

u∑
s=1

Y s
i

∣∣∣∣ ≤
√

log(2n2/δ)

2p+1

∣∣∣∣∣PHj ,Ij
)

≥ 1− δ

2n
,

using Chernoff-Hoeffding’s inequality. We finish the proof by taking a union bound over all values
of 1 ≤ j ≤ n and 1 ≤ p ≤ pmax.

Appendix D. Proof of Lemma 7

Lemma 7 For any global optimum x? with associated (ν, ρ) from Assumption 1, any C > 1, for
any δ ∈ (0, 1), on event ξδ defined in Lemma 12, for any pair (h, p) of depths h, and integer p such

19



SIMPLE APPROACH TO OPTIMIZATION UNDER A MINIMAL SMOOTHNESS ASSUMPTION

that h ∈ [hmax], and p ∈ [0 : logbhmax/hc], we have that if b
√
log(2n2/δ)/2p+1 ≤ νρh and if

hmax/(4h2
p) ≥ Cρ−d(ν,C,ρ)h, that ⊥h,p = h with ⊥0,p , 0.

Proof We place ourselves on event ξδ defined in Lemma 12 and for which we proved that P (ξδ) ≥
1− δ. We fix p. We prove the statement of the lemma, given that event ξδ holds, by induction in the
following sense. For a given h and p, we assume the hypotheses of the lemma for that h and p are
true and we prove by induction that ⊥h′,p = h′ for h′ ∈ [h].
1◦ For h′ = 0, we trivially have that ⊥h′,p ≥ 0.
2◦ Now consider h′ > 0, and assume ⊥h′−1,p = h′ − 1 with the objective to prove that ⊥h′,p = h′.
Therefore, at the end of the processing of depth h′ − 1, during which we were opening the cells
of depth h′ − 1 we managed to open the cell Ph′−1,i?

h′−1
with at least 2p evaluations. Ph′−1,i?

h′−1

is the optimal node of depth h′ − 1 (i.e., such that x? ∈ Ph′−1,i?). Let m be the largest integer
such that 2p ≤ hmax

2h′m . We have hmax
2h′m ≤

⌊
hmax
h′m

⌋
and also 2p ≥ hmax

2h′(m+1) ≥ hmax
4h′m . During phase

h′, the m cells from
{
Ph′,i

}
with highest values

{
f̂(xh′,i)

}
h′,i

and having been evaluated at least⌊
hmax
h′m

⌋
≥ 2p are opened at least

⌊
hmax
h′m

⌋
≥ 2p times. For the purpose of contradiction, let us assume

that Ph′,i?
h′

is not one of them. This would mean that there exist at least m cells from
{
Ph′,i

}
,

distinct from Ph′,i?h , satisfying f̂h′,i ≥ f̂h′,i?
h′

and each having been evaluated at least 2p times. This

means that, for these cells we have fh′,i + νρh
′ ≥ fh′,i + νρh

(a)
≥ fh′,i + b

√
log(2n2/δ)

2p+1

(b)
≥ f̂h′,i ≥

f̂h′,i?
h′

(b)
≥ fh′,i?

h′
− b
√

log(2n2/δ)
2p+1

(a)
≥ fh′,i?

h′
− νρh ≥ fh′,i?

h′
− νρh′ , where (a) is by assumption of

the lemma, (b) is because ξ holds. As fh′,i?
h′
≥ f(x?) − νρh

′
by Assumption 1, this means we

have Nh′(3νρh
′
) ≥ m + 1 ≥ hmax

4h′2p + 1 (the +1 is for Ph′,i?
h′

). As h′ ≤ h this gives hmax
h′2p ≥

hmax
h2p and therefore Nh′(3νρh

′
) ≥

⌊
hmax
4h2p

⌋
+ 1. However by assumption of the lemma we have

hmax
4h2p ≥ Cρ−d(ν,C,ρ)h ≥ Cρ−d(ν,C,ρ)h′ . It follows thatNh′(3νρh

′
) >

⌊
Cρ−d(ν,C,ρ)h′

⌋
. This leads to

having a contradiction with the function f being of near-optimality dimension d(ν, C, ρ) as defined
in Definition 1. Indeed, the condition Nh′(3νρh

′
) ≤ Cρ−dh

′
in Definition 1 is equivalent to the

condition Nh′(3νρh
′
) ≤

⌊
Cρ−dh

′
⌋

as Nh′(3νρh
′
) is an integer. Reaching the contradiction proves

the claim of the lemma.

Appendix E. Proof of Theorem 8 and Theorem 10

Theorem 8 High-noise regime After n rounds, for any function f , a global optimum x? with
associated (ν, ρ), C > 1, and near-optimality dimension simply denoted d = d(ν, C, ρ), with
probability at least 1− δ, if b ≥ νρh̃/

√
log(2n2/δ), the simple regret of StroquOOL obeys

rn ≤ νρ
1

(d+2) log(1/ρ)
W

(⌊
n

2(log2 n+1)2

⌋
(d+2) log(1/ρ)ν2

4Cb2 log(2n2/δ)

)
+ 2b

√
log(2n2/δ)

/⌊
n

2(log2 n+ 1)2

⌋
·

Theorem 10 Low-noise regime After n rounds, for any function f and one of its global optimum
x? with associated (ν, ρ), anyC > 1, and near-optimality dimension simply denoted d = d(ν, C, ρ),
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with probability at least 1− δ, if b ≤ νρh̃/
√

log(2n2/δ), the simple regret of StroquOOL obeys

• If d = 0, rn ≤ 3νρ
1
4C

⌊
n/2

(log2(n)+1)2

⌋
. • If d > 0, rn ≤ 3νe

− 1
d
W

(⌊
n/2

(log2 n+1)2

⌋ d log 1
ρ

4C

)
.

Proof [Proof of Theorem 8 and Theorem 10] We first place ourselves on the event ξ defined in
Lemma 12 and where it is proven that P (ξ) ≥ 1− δ. We bound the simple regret of StroquOOL on
ξ. We consider a global optimum x? with associated (ν, ρ). For simplicity we write d = d(ν, C, ρ).
We have for all p ∈ [0 : pmax]

f(x(n)) + b

√
log(2n2/δ)

hmax

(a)
≥ f̂(x(n))

(c)
≥ f̂(x(n, p))

(b)
≥ f̂(x(⊥hmax,p + 1, i?))

(a)
≥ f(x(⊥hmax,p + 1, i?))− b

√
log(2n2/δ)

hmax

(d)
≥ f(x?)− νρ⊥hmax,p+1 − b

√
log(2n2/δ)

hmax

where (a) is because the x(n, p) are evaluated hmax times at the end of StroquOOL and because ξ
holds, (b) is because x⊥hmax,p+1,i? ∈ {(h, i) ∈ T , Th,i ≥ 2p} and x(n, p) = argmax

Ph,i∈T ,Th,i≥2p
f̂h,i, (c)

is because x(n) = argmax
{x(n,p),p∈[0:pmax]}

f̂(x(n, p)), and (d) is by Assumption 1.

From the previous inequality we have rn = f(x?)− f(x(n)) ≤ νρ⊥hmax,p+1 + 2b
√

log(2n2/δ)
hmax

,
for p ∈ [0 : pmax].

For the rest of proof we want to lower bound maxp∈[0:pmax]⊥hmax,p. Lemma 7 provides some
sufficient conditions on p and h to get lower bounds. These conditions are inequalities in which as
p gets smaller (fewer samples) or h gets larger (more depth) these conditions are more and more
likely not to hold. For our bound on the regret of StroquOOL to be small, we want quantities p and
h where the inequalities hold but using as few samples as possible (small p) and having h as large as
possible. Therefore we are interested in determining when the inequalities flip signs which is when
they turn to equalities. This is what we solve next. We denote h̃ and p̃ the real numbers satisfying

hmaxν
2ρ2h̃

4h̃b2 log(2n2/δ)
= Cρ−dh̃ and b

√
log(2n2/δ)

2p̃
= νρh̃. (5)

Our approach is to solve Equation 5 and then verify that it gives a valid indication of the behavior
of our algorithm in term of its optimal p and h. We have

h̃ =
1

(d+ 2) log(1/ρ)
W

(
ν2hmax(d+ 2) log(1/ρ)

4Cb2 log(2n2/δ)

)
where standard W is the Lambert W function.

However after a close look at the Equation 5, we notice that it is possible to get values p̃ < 0
which would lead to a number of evaluations 2p < 1. This actually corresponds to an interesting
case when the noise has a small range and where we can expect to obtain an improved result, that
is: obtain a regret rate close to the deterministic case. This low range of noise case then has to be
considered separately.
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Therefore, we distinguish two cases which corresponds to different noise regimes depending on

the value of b. Looking at the equation on the right of (5), we have that p̃ < 0 if ν2ρ2h̃

b2 log(2n2/δ)
> 1.

Based on this condition we now consider the two cases. However for both of them we define some
generic ḧ and p̈.

High-noise regime ν2ρ2h̃

b2 log(2n2/δ)
≤ 1: In this case, we denote ḧ = h̃ and p̈ = p̃. As 1

2p̃
=

ν2ρ2h̃

b2 log(2n2/δ)
≤ 1 by construction, we have p̃ ≥ 0. Using standard properties of the b·c function, we

have

b

√
log(2n2/δ)

2bp̃c+1
≤ b
√

log(2n2/δ)

2p̃
= νρh̃ ≤ νρbh̃c (6)

and,
hmax

4
⌊
h̃
⌋
2bp̃c

≥ hmax

4
⌊
h̃
⌋
2p̃

=
hmaxν

2ρ2h̃

4
⌊
h̃
⌋
b2 log(2n2/δ)

≥ hmaxν
2ρ2h̃

4h̃b2 log(2n2/δ)
= Cρ−dh̃ ≥ Cρ−dbh̃c.

(7)

Low-noise regime ν2ρ2h̃

b2 log(2n2/δ)
> 1 or b = 0: In this case, we can reuse arguments close to the

argument used in the deterministic feedback case in the proof of SequOOL (Theorem 5), we denote
ḧ = h and p̈ = p where h and p verify,

hmax

4h
= Cρ−dh and p = 0. (8)

If d = 0 we have h = hmax/C. If d > 0 we have h = 1
d log(1/ρ)W

(
hmaxd log(1/ρ)

4C

)
where standard

W is the standard Lambert W function. Using standard properties of the b·c function, we have

b

√
log(2n2/δ)

2bp̈c+1
≤ b
√
log(2n2/δ) < νρh̃

(a)
≤ νρh ≤ νρbhc (9)

where (a) is because of the following reasoning. First note that one can assume b > 0 as for the case

b = 0, the Equation 9 is trivial. As we have hmaxν2ρ2h̃

4h̃b2 log(2n2/δ)
= Cρ−dh̃ and ν2ρ2h̃

b2 log(2n2/δ)
> 1, then,

hmax

4h̃
< Cρ−dh̃. From the inequality hmax

4h̃
< Cρ−dh̃ and the fact that h corresponds to the case of

equality hmax

4h
= Cρ−dh, we deduce that h ≤ h̃, since the left term of the inequality decreases with

h while the right term increases. Having h ≤ h̃ gives ρh ≥ ρh̃.
Given these particular definitions of ḧ and p̈ in two distinct cases we now bound the regret.
First we will verify that

⌊
ḧ
⌋

is a reachable depth by StroquOOL in the sense that ḧ ≤ hmax and

p̈ ≤ log2(hmax/h) for all h ≤ ḧ. As ρ < 1, d ≥ 0 and ḧ ≥ 0 we have ρ−dḧ ≥ 1. This gives
Cρ−dḧ ≥ 1. Finally as hmax

ḧ2p̈
= Cρ−dḧ, we have ḧ ≤ hmax/2

p̈. Note also that from the previous

equation we have that if ḧ ≥ 1, p̈ ≤ log2(hmax/h) for all h ≤ ḧ . Finally in both regimes we
already proved that p̈ ≥ 0.

We always have ⊥hmax,bp̈c ≥ 0. If ḧ ≥ 1, as discussed above
⌊
ḧ
⌋
∈ [hmax], therefore

⊥hmax,bp̈c ≥ ⊥bḧc,bp̈c, as⊥·,bpc is increasing for all p ∈ [0, pmax]. Moreover on event ξ,⊥bḧc,bp̈c =⌊
ḧ
⌋

because of Lemma 7 which assumptions on
⌊
ḧ
⌋

and bp̈c are verified because of Equations 6
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and 7 in the high-noise regime and because of Equations 8 and 9 in the low-noise regime, and, in
general,

⌊
ḧ
⌋
∈
[⌊
hmax/2

p̈
⌋]

and bp̈c ∈ [0 : pmax]. So in general we have ⊥bhmax/2p̈c,bp̈c ≥
⌊
ḧ
⌋

.
We can now bound the regret in the two regimes.

High-noise regime In general, we have, on event ξ,

rn ≤ νρ
1

(d+2) log(1/ρ)
W

(
ν2hmax(d+2) log(1/ρ)

C log(2n2/δ)

)
+ 2b

√
log(2n2/δ)

hmax
·

While in the deterministic feedback case, the regret was scaling with dwhen d ≥ 0, in the stochastic
feedback case, the regret scale with d + 2. This is because the uncertainty due to the presence of
noise diminishes as n−

1
2 when we collect n observations.

Moreover, as proved by Hoorfar and Hassani (2008), the Lambert W (x) function verifies for
x ≥ e, W (x) ≥ log

(
x

log x

)
. Therefore, if ν2hmax(d+2) log(1/ρ)

4C log(2n2/δ)
> e we have, denoting d′ = (d +

2) log(1/ρ),

rn − 2b

√
log(2n2/δ)

hmax
≤ νρ

1
d′

log

 hmaxd
′ν2

4C log(2n2/δ)

log

(
hmaxd′ν2

4C log(2n2/δ)

)


= νe

1
(d+2) log(1/ρ)

log

 hmaxd
′ν2

4C log(2n2/δ)

log

(
hmaxd′ν2

4C log(2n2/δ)

)
 log(ρ)

= ν

 hmaxd′ν2

4C log(2n2/δ)

log
(

hmaxd′ν2

4C log(2n2/δ)

)
− 1

d+2

.

Low-noise regime We have 2b
√

log(2n2/δ)
hmax

≤ 2 νρh̃√
log(2n2/δ)

√
log(2n2/δ)
hmax

≤ 2νρh̃ ≤ 2νρh. There-

fore rn ≤ νρ⊥hmax,p+1 + 2b
√

log(2n2/δ)
hmax

≤ 3νρh. Discriminating between d = 0 and d > 0 leads
to the claimed results.

Results in Expectation We want to obtain additionally, our final result as an upper bound on
the expected simple regret Ern. Compared to the results in high probability, the following extra
assumption that the function f is bounded is made: For all x ∈ X , |f(x)| ≤ fmax. Then δ is set as
δ = 4b

fmax
√
n

. We bound the expected regret now discriminating on whether or not the event ξ holds.
We have

Ern ≤ (1− δ)

νρ⊥hmax,p̈+1 + 2b

√
log(fmaxn5/2/b)

hmax

+ δ × fmax

≤ νρ⊥hmax,p̈+1 + 2b

√
log(fmaxn5/2/b)

hmax
+

4b√
n

≤ νρ⊥hmax,p̈+1 + 6b

√
log(fmaxn5/2/b)

hmax
·
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