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Abstract

The prevalent deployment of learning from
human preferences through reinforcement
learning (RLHF) relies on two important ap-
proximations: the first assumes that pairwise
preferences can be substituted with point-
wise rewards. The second assumes that a
reward model trained on these pointwise re-
wards can generalize from collected data to
out-of-distribution data sampled by the pol-
icy. Recently, Direct Preference Optimisa-
tion (DPO) has been proposed as an approach
that bypasses the second approximation and
learn directly a policy from collected data
without the reward modelling stage. How-
ever, this method still heavily relies on the
first approximation.

In this paper we try to gain a deeper theo-
retical understanding of these practical algo-
rithms. In particular we derive a new general
objective called ΨPO for learning from hu-
man preferences that is expressed in terms of
pairwise preferences and therefore bypasses
both approximations. This new general ob-
jective allows us to perform an in-depth anal-
ysis of the behavior of RLHF and DPO (as spe-
cial cases of ΨPO) and to identify their poten-
tial pitfalls. We then consider another special
case for ΨPO by setting Ψ simply to Identity,
for which we can derive an efficient optimi-
sation procedure, prove performance guaran-
tees and demonstrate its empirical superior-
ity to DPO on some illustrative examples.

Under review.

1 Introduction

Learning from human preferences (Christiano et al.,
2017) is a paradigm adopted in the natural language
processing literature to better align pretrained (Rad-
ford et al., 2018; Ramachandran et al., 2016) and
instruction-tuned (Wei et al., 2022) generative lan-
guage models to human desiderata. It consists in first
collecting large amounts of data where each datum is
composed of a context, pairs of continuations of the
context, also called generations, and a pairwise human
preference that indicates which generation is the best.
Then, a policy generating good generations given a
context is learnt from the collected data. We frame the
problem of learning from human preferences as an of-
fline contextual bandit problem (Lu et al., 2010). The
goal of this bandit problem is that given a context to
choose an action (playing the role of the generation)
which is most preferred by a human rater under the
constraint that the resulting bandit policy should be
close to some known reference policy. The constraint
of staying close to a known reference policy can be
satisfied e.g., by using KL regularisation (Geist et al.,
2019) and its role is to avoid model drift (Lazaridou
et al., 2020; Lu et al., 2020).

A prominent approach to tackle the problem of learn-
ing from human preferences is through reinforcement
learning from human feedback (RLHF, Ouyang et al.,
2022; Stiennon et al., 2020) in which first a reward
model is trained in the form of a classifier of preferred
and dispreferred actions. Then the bandit policy is
trained through RL to maximize this learned reward
model while minimizing the distance with the refer-
ence policy. Recently RLHF has been used successfully
in solving the problem of aligning generative language
models with human preferences (Ouyang et al., 2022).
Furthermore recent works such as direct preference op-
timisation (DPO, Rafailov et al., 2023) and (SLiC-HF,
Zhao et al., 2023) have shown that it is possible to
optimize the bandit policy directly from human pref-
erences without learning a reward model. They also
have shown that on a selection of standard language
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tasks they are competitive with the state of the art
RLHF while they are simpler to implement and require
less resources.

Despite this practical success, little is known regard-
ing theoretical foundations of these practical meth-
ods. Notable exceptions, that consider specific special
cases, are (Wang et al., 2023; Chen et al., 2022) and
prior work on preference-based (Busa-Fekete et al.,
2014, 2013) and dueling bandits and RL (Novoseller
et al., 2020; Pacchiano et al., 2023). However, these
theoretical works focus on providing theoretical guar-
antees in terms of regret bounds in the standard bandit
setting and they do not deal with the practical setting
of RLHF, DPO and SLiC-HF.

In this work, our focus is on bridging the gap between
theory and practice by introducing a simple and gen-
eral theoretical representation of the practical algo-
rithms for learning from human preferences. In par-
ticular, we show that it is possible to characterise the
objective functions of RLHF and DPO as special cases
of a more general objective exclusively expressed in
terms of pairwise preferences. We call this objective
Ψ-preference optimisation (ΨPO) objective, where Ψ
is an arbitrary non-deceasing mapping. We then ana-
lyze this objective function in the special cases of RLHF
and DPO and investigate its potential pitfalls. Our the-
oretical investigation of RLHF and DPO reveals that in
principle they can be both vulnerable to overfitting.
This is due to the fact that those methods rely on
the strong assumption that pairwise preferences can be
substituted with ELo-score (pointwise rewards) via a
Bradley-Terry (BT) modelisation (Bradley and Terry,
1952). In particular, this assumption could be prob-
lematic when the (sampled) preferences are determin-
istic or nearly deterministic as it leads to over-fitting
to the preference dataset at the expense of ignoring
the KL-regularisation term (see Sec. 4.2). We then
present a simple solution to avoid the problem of over-
fitting, namely by setting Ψ to identity in the ΨPO.
This method is called Identity-PO (IPO) and by con-
struction bypasses the BT modelisation assumption for
preferences (see Sec. 5). Finally, we propose a practi-
cal solution, via a sampled loss function (see Sec. 5.2),
to optimize this simplified version of ΨPO empirically
and, we compare its performance with DPO on simple
bandit examples, providing empirical support for our
theoretical findings (see Sec. 5.3 and Sec. 5.4).

2 Notations

In the remaining, we build on the notations of
DPO (Rafailov et al., 2023). Given a context x ∈ X ,
where X is the finite space of contexts, we assume a
finite action space Y. A policy π ∈ ∆X

Y associates

to each context x ∈ X a discrete probability distri-
bution π(.|x) ∈ ∆Y where ∆Y is the set of discrete
distributions over Y. We denote µ ∈ ∆X

Y the behav-
ior policy. From a given context x, let y, y′ ∼ µ(x)
be two actions generated independently by the refer-
ence policy. These are then presented to human raters
who express preferences for one of the generations, de-
noted as yw ≻ yl where yw and yl denote the preferred
and dispreferred actions amongst {y, y′} respectively.
We then write true human preference p∗(y ≻ y′|x) the
probability of y being preferred to y′ knowing the con-
text x. The probability comes from the randomness of
the choice of the human we ask for their preference. So
p∗(y ≻ y′|x) = Eh[I{h prefers y to y′ given x}], where
the expectation is over humans h. We also introduce
the expected preference of a generation y over a dis-
tribution µ knowing x, noted p∗(y ≻ µ|x), via the
following equation:

p∗(y ≻ µ|x) = E
y′∼µ(.|x)

[p∗(y ≻ y′|x)] .

For any two policy π, µ ∈ ∆X
Y and a context distribu-

tion ρ we denote the total preference of policy π to µ
as

p∗ρ(π ≻ µ|x) = E
x∼ρ

y∼π(.|x)

[p∗(y ≻ µ|x)] .

In practice, we do not observe p∗ directly, but sam-
ples I(y, y′|x) from a Bernoulli distribution with mean
p∗(y ≻ y′|x) (i.e., I(y, y′|x) is 1 with probability
p∗(y ≻ y′|x) and 0 otherwise). In particular, we
assume we have access to the preferences through a
dataset of rated generations D = (xi, yi, y

′
i)

N
i=1 =

(xi, yw,i ≻ yl,i)
N
i=i, where N is the dataset size. In

addition, for a general finite set S, a discrete proba-
bility distribution η ∈ ∆S and a real function f ∈ RS ,
we note the expectation of f under η as Es∼η[f(s)] =∑

s∈S f(s)η(s). For a finite dataset D = (si)
N
i=1,

with si ∈ S for each i, and a real function f ∈ RS ,
we denote the empirical expectation of f under D as
Es∼D[f(s)] = 1

N

∑N
i=1 f(si).

3 Background

3.1 Reinforcement Learning from Human
Feedback (RLHF)

The standard RLHF paradigm (Christiano et al., 2017;
Stiennon et al., 2020) consists of two main stages: (i)
learning the reward model; (ii) policy optimisation us-
ing the learned reward. Here we provide a recap of
these stages.
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3.1.1 Learning the Reward Model

Learning a reward model consists in training a binary
classifier to discriminate between the preferred and dis-
preferred actions using a logistic regression loss. For
the classifier, a popular choice is Bradley-Terry model:
for a given context x and action y, we denote the point-
wise reward, which can also be interpreted as an Elo
score, of y given x by r(x, y). The Bradley-Terry model
represents the preference function p(y ≻ y′|x) (classi-
fier) as a sigmoid of the difference of rewards:

p(y ≻ y′|x) = σ
(
r(x, y)− r(x, y′)

)
, (1)

where σ(·) denotes the sigmoid function and plays
the role of normalisation. Given the dataset D =
(xi, yw,i ≻ yl,i)

N
i=1 one can learn the reward function

by optimizing the following logistic regression loss

L(r) = −E(x,yw,yl)∼D

[
log (p(yw ≻ yl|x))

]
. (2)

Assuming that p∗(y ≻ y′|x) conforms to the Bradley-
Terry model, one can show that as the size of the
dataset D grows, p(y ≻ y′|x) becomes a more and
more accurate estimate of true p∗(y ≻ y′|x) and in the
limit converges to p∗(y ≻ y′|x).

3.1.2 Policy Optimisation with the Learned
Reward

Using the reward (Elo-score) r(x, y) the RLHF objective
is simply to optimize for the policy π ∈ ∆X

Y that max-
imizes the expected reward while minimizing the dis-
tance between π and some reference policy πref ∈ ∆X

Y
through the following KL-regularized objective func-
tion:

J(π) = Eπ[r(x, y)]− τDKL(π || πref) , (3)

in which the context x is drawn from ρ and the action
y is drawn from π(.|x). The divergence DKL(π||πref)
is defined as follows:

DKL(π || πref) = Ex∼ρ[KL(π(.|x) || πref(.|x))] .

where:

KL(π(.|x) || πref(.|x)) = Ey∼π(.|x)

[
log

(
π(y|x)
πref(y|x)

)]
.

The objective in Equation (3) is essentially optimized
by PPO (Schulman et al., 2017) or similar approaches.

The combination of RLHF +PPO has been used with
great success in practice (e.g., InsturctGPT and GPT-
4 Ouyang et al., 2022; OpenAI, 2023).

3.2 Direct Preference Optimisation

An alternative approach to the RL paradigm described
above is direct preference optimisation (DPO; Rafailov
et al., 2023), which avoids the training of a reward
model altogether. The loss that DPO optimises, given
an empirical dataset D, as a function of π, is given by

min
π

E(x,yw,yl)∼D

[
− log σ

(
τ log

(
π(yw|x)
π(yl|x)

)
−

τ log

(
πref(yw|x)
πref(yl|x)

))]
.

(4)

In its population form, the loss takes on the form

min
π

E
x∼ρ

y,y′∼µ

[
− p∗(y ≻ y′|x) log σ

(
τ log

(
π(y|x)
π(y′|x)

)
−

τ log

(
πref(y|x)
πref(y′|x)

))]
.

(5)

Rafailov et al. (2023) show that when (i) the Bradley-
Terry model in Equation (1) perfectly fits the pref-
erence data and (ii) the optimal reward function r is
obtained from the loss in Equation (2), then the global
optimisers of the RLHF objective in Equation (3) and
the DPO objective in Equation (5) perfectly coincide.
In fact, this correspondence is true more generally; see
Proposition 4 in Appendix B.

4 A General Objective for Preference
Optimisation

A central conceptual contribution of the paper is to
propose a general objective for RLHF, based on maxi-
mizing a non-linear function of preferences. To this
end, we consider a general non-decreasing function
Ψ : [0, 1] → R, a reference policy πref ∈ ∆X

Y , and a
real positive regularisation parameter τ ∈ R∗

+, and de-
fine the Ψ-preference optimisation objective (ΨPO) as

max
π

E
x∼ρ

y∼π(.|x)
y′∼µ(.|x)

[Ψ(p∗(y ≻ y′|x))]− τDKL(π || πref) . (6)

This objective balances the maximisation of a po-
tentially non-linear function of preference probabili-
ties with the KL regularisation term which encourages
policies to be close to the reference πref. This is mo-
tivated by the form of Equation (3), and we will see
in the next subsection that it strictly generalises both
RLHF and DPO, when the BT model holds.
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4.1 A Deeper Analysis of DPO and RLHF

In the remaining, we omit the dependency on x for the
ease of notations. This is without losing generality and
all the following results are true for all x ∈ Supp(ρ).

We first connect DPO and RLHF with the Ψ-preference
objective in Equation (6), under the special choice of
Ψ(q) = log(q/(1 − q)). More precisely, the following
proposition establishes this connection.

Proposition 1. Suppose Ψ(q) = log(q/(1 − q)).
When the Bradley-Terry model holds for p∗, that is,
there exists r : Y → R such that

p∗(y ≻ y′) = σ(r(y)− r(y′)) ,

then the optimal policy for Equation (6), for the RLHF
objective in Equation (3), and for the standard DPO

objective in Equation (5) are identical.

Proof. Note that under the assumption that the
Bradley-Terry model holds, we have

E
y′∼µ

[Ψ(p∗(y ≻ y′))] = E
y′∼µ

[
Ψ

(
er(y)

er(y) + er(y′)

)]
= E

y′∼µ
[log(er(y)/er(y

′))]

= E
y′∼µ

[r(y)− r(y′)]

= r(y)− E
y′∼µ

[r(y′)] .

This is equal to the reward in Equation (3), up to an
additive constant, and so it therefore follows that the
optimal policy for Equation (6) and for optimizing the
objective in Equation (3) are identical. Further, as
shown by Rafailov et al. (2023), the optimal policy for
the DPO objective in Equation (5) and the objective in
Equation (3) are identical, which gives the statement
of the proposition.

Applying this proposition to the objective function of
Equation (6), for which there exists an analytical solu-
tion, reveals that under the BT assumption the closed-
form solution to DPO and RLHF can be written as

π∗(y) ∝ πref(y) exp
(
τ−1Ey′∼µ[Ψ(p∗(y ≻ y′))]

)
. (7)

The derivations leading to Equation 7 is a well known
result and is provided in App.A.1 for completeness.

4.2 Weak Regularisation and Overfitting

It is worth taking a step back, and asking what kinds
of policies the above objective leads us to discover.
This highly non-linear transformation of the preference
probabilities means that small increases in preference

probabilities already close to 1 are just as incentivized
as larger increases in preference probabilities around
50%, which may be undesirable. The maximisation of
logit-preferences, or Elo score in game-theoretic termi-
nology, can also have counter-intuitive effects, even in
transitive settings (Bertrand et al., 2023).

Consider the simple example where we have two ac-
tions y and y′ such that p∗(y ≻ y′) = 1, i.e., y is always
preferred to y′. Then the Bradley-Terry model would
require that (r(y)− r(y′)) → +∞ to satisfy (1). If we
plug this into the optimal policy (7) then we would get

that π∗(y′)
π∗(y) = 0 (i.e., π∗(y′) = 0) irrespective of what

constant τ is used for the KL-regularisation. Thus the
strength of the KL-regularisation becomes weaker and
weaker the more deterministic the preferences.

The weakness of the KL-regularisation becomes even
more pronounced in the finite data regime, where we
only have access to a sample estimate of the preference
p̂(y ≻ y′). Even if the true preference is, e.g., p∗(y ≻
y′) = 0.8, empirically it can be very possible when we
only have a few data points to estimate p̂(y ≻ y′) = 1,
in which case the empirical optimal policy would make
π(y′) = 0 for any τ . This means that overfitting can
be a substantial empirical issue, especially when the
context and action spaces are extremely large as it is
for large language models.

Why may standard RLHF be more robust to this problem
in practice? While a purported advantage of DPO is
that it avoids the need to fit a reward function, we ob-
serve that in practice when empirical preference prob-
abilities are in the set {0, 1}, the reward function ends
up being underfit. The optimal rewards in the presence
of {0, 1} preference probabilities are infinite, but these
values are avoided, and indeed regularisation of the re-
ward function has been observed to be an important
aspect of RLHF training in practice (Christiano et al.,
2017). This underfitting of the reward function is thus
crucial in obtaining a final policy that is sufficiently
regularised towards the reference policy πref, and DPO,
in avoiding the training of the reward function, loses
the regularisation of the policy that the underfitted
reward function affords.

While standard empirical practices such as early-
stopping can still be used as an additional form of
regularisation to curtail this kind of overfitting, in the
next section, we will introduce a modification of the
ΨPO objective such that the optimal empirical policy
can be close to πref even when preferences are deter-
ministic.
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5 IPO: ΨPO with Identity Mapping

We have observed in the previous section that DPO is
prone to overfitting, and this stems from a combination
of the unboundedness of Ψ, together with not training
an explicit reward function. Not training a reward
function directly is a clear advantage of DPO, but we
would like to avoid the problems of overfitting as well.

This analysis of DPO motivates choices of Ψ which are
bounded, ensuring that the KL regularisation in Equa-
tion 6 remains effective even in the regime of {0, 1}-
valued preferences, as it is often the case when working
with empirical datasets. A particularly natural form
of objective to consider is given by taking Ψ to be the
identity mapping in Equation (6), leading to direct
regularized optimisation of total preferences:

max
π

p∗ρ(π ≻ µ)− τDKL(π || πref) . (8)

The standard approach to optimize the objective func-
tion of Equation (8) is through RLHF with the choice
of reward r(y) = p∗(y ≻ µ). However both using RL
and estimating the reward model r(y) can be costly.
Inspired by DPO one would like to devise an empirical
solution for the optimisation problem of Equation (8)
which can directly learn from the preference dataset.
Thus it would be able to avoid RL and reward model-
ing altogether.

5.1 Derivations and Computationally
Efficient Algorithm

As with DPO, it will be beneficial to re-express Equa-
tion (8) as an offline learning objective. To derive such
an expression, we begin by following the derivation of
Rafailov et al. (2023), manipulating the analytic ex-
pression for the optimal policy into a system of root-
finding problems. As in the previous section, we drop
dependence on the context x from our notation, as all
arguments can be applied on a per-context basis.

Root-finding problems. Let g(y) =
Ey′∼µ[Ψ(p∗(y ≻ y′))]. Then we have

π∗(y) ∝ πref(y) exp(τ
−1g(y)) . (9)

For any y, y′ ∈ Supp(πref), we therefore have

π∗(y)

π∗(y′)
=

πref(y)

πref(y′)
exp(τ−1(g(y)− g(y′))) . (10)

By letting

h∗(y, y′) = log

(
π∗(y)πref(y

′)

π∗(y′)πref(y)

)
and rearranging Equation (10), we obtain

h∗(y, y′) = τ−1
(
g(y)− g(y′)

)
. (11)

The core idea now is to consider a policy π, define

hπ(y, y
′) = log

(
π(y)πref(y

′

π(y′)πref(y)

)
,

and aim to solve the equations:

hπ(y, y
′) = τ−1

(
g(y)− g(y′)

)
. (12)

Loss for IPO. We now depart from the approach to
the analysis employed by Rafailov et al. (2023), to ob-
tain a novel offline formulation of Equation (6), in the
specific case of Ψ as the identity function. In this case,
Equation (12) reduces to

hπ(y, y
′) = τ−1

(
p∗(y ≻ µ)− p∗(y′ ≻ µ)

)
.

We begin by re-expressing these root-finding problems
as a single optimisation problem L(π):

L(π) = E
y,y′∼µ

[(
hπ(y, y

′)− p∗(y ≻ µ)− p∗(y′ ≻ µ)

τ

)2
]
.

(13)

One can easily show that for the choice of π∗ we have
L(π∗) = 0. Thus π∗ is a global minimizer of L(π).
The following theorem establishes the uniqueness of
this solution.

Theorem 2 (Uniqueness of Global/Local Optima).
Assume that Supp(µ) = Supp(πref) and define Π to
be the set of policies π such that Supp(π) = Supp(µ).
Then π 7→ L(π) has a unique local/global minimum in
Π, which is π∗.

Proof. By assumption, π∗ ∈ Π, and by definition
∀π ∈ Π, L(π) ≥ 0 as L(π) is an expectation of squared
terms. Further, from Equation (11), it follows imme-
diately that L(π∗) = 0, and so we deduce that π∗ is a
global optimum for L. We now show that there are no
other local/global minima for L in Π.

We write J = Supp(µ). We parametrise the set
Π via vectors of logits s ∈ RJ , setting πs(y) =
exp(s(y))/

∑
y′∈J exp(s(y′)) for y ∈ J , and πs(y) = 0

otherwise. Let us write L(s) = L(πs) for the objective
as a function of the logits s.

L(s) = Ey,y′∼µ

[[
p∗(y ≻ µ)− p∗(y′ ≻ µ)

τ
(14)

− (s(y)− s(y′))− log

(
πref(y

′)

πref(y)

)]2]
.

The objective is quadratic as a function of the logits
s. Further, by expanding the quadratic above, we see
that the loss can be expressed as a sum of squares∑

y,y′∈J

µ(y)µ(y′)(s(y)− s(y′))2 (15)
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plus linear and constant terms. This is therefore a
positive-semidefinite quadratic, and hence is convex.
We thus deduce that all local minimisers of the loss
L(s) are global minimisers as well (Boyd and Van-
denberghe, 2004, Chap. 4). We now notice since πs is
a surjective continuous mapping from s to π one can
easily show from the definition of local minimum that
every local minimiser π of L corresponds to a set of
local minimisers Sπ of L. Thus all local minimums of
L are also global minimums as well.

Finally, the only direction s in which the quadratic in
Equation (15) does not increase away from 0 is when
all bracketed terms remain 0; that is, in the direction
(1, . . . , 1) ∈ RJ . Thus, L(s) is strictly convex, except
in the direction (1, . . . , 1). (Boyd and Vandenberghe,
2004, Chap. 3). However, modifying logits in the di-
rection e = (1, . . . , 1) does not modify the resulting
policy πs, since, for y ∈ J ,

πs+λe(y) =
es(y)+λ∑

y′∈J es(y′)+λ
=

es(y)∑
y′∈J es(y′)

= πs(y) .

The strict convexity combined with the fact that
π∗ is a global minima proves that π∗ is the unique
global/local minima in Π (Boyd and Vandenberghe,
2004, Chap. 4).

5.2 Sampled Loss for IPO

In order to obtain the sampled loss for IPO we need
to show that we can build an unbiased estimate of the
right-hand side of the equation (13). To this end, we
consider the Population IPO Loss:

E
y,y′∼µ

[(
hπ(y, y

′)− τ−1I(y, y′)
)2]

, (16)

where I(y, y′) is drawn from a Bernoulli distribution
with mean p∗(y ≻ y′), i.e., I(y, y′) is 1 if y is pre-
ferred to y′ (which happens with probability p∗(y ≻
y′)), and 0 otherwise. This straightforwardly yields
a sample-based loss that can be used, by sampling a
pair (y, y′) from the preference dataset, and consult-
ing the recorded preference to obtain a sample from
I(y, y′). The following proposition justifies the switch
from Equation (13) to Equation (16), by demonstrat-
ing their equality.

Proposition 3. The expressions in Equation (13) and
Equation (16) are equal, up to an additive constant
independent of π.

Proof. This equivalence is not completely trivial, since
in general the conditional expectation

E[hπ(Y, Y
′)− τ−1I(Y, Y ′) | Y = y, Y ′ = y′]

is not equal to the corresponding quantity appearing
in Equation (13), namely

hπ(y, y
′)− τ−1

(
p∗(y ≻ µ)− p∗(y′ ≻ µ)

)
.

We instead need to exploit some symmetry between
the distributions of y and y′, and use the fact that
hπ(y, y

′) decomposes as an additive function of y and
y′. To show this equality of losses, it is enough to
focus on the “cross-terms” obtained when expanding
the quadratics in Equations (13) and (16); that is, to
show

E
y,y′∼µ

[
hπ(y, y

′)I(y, y′)
]

= E
y,y′∼µ

[
hπ(y, y

′)(p∗(y ≻ µ)− p∗(y′ ≻ µ))
]
.

Now, starting with the right-hand side, and using the
shorthand πy = log(π(y)), πR

y = log(πref(y)), py =
p∗(y ≻ µ), and similarly for y′, we have

E
y,y′∼µ

[
hπ(y, y

′)(p∗(y ≻ µ)− p∗(y′ ≻ µ))
]

= E
y,y′∼µ

[
(πy − πy′ + πR

y′ − πR
y )(py − py′)

]
= E

y,y′∼µ

[
πypy − πypy′ − πy′py + πy′

+ py′ + πR
y′py − πR

y′py′ − πR
y py + πR

y py′

]
= E

y,y′∼µ

[
(2py − 1)πy − (2py − 1)πR

y

]
,

where we have used iid-ness of y and y′, and
Ey∼µ[py] = 1/2. Turning to the left-hand side, we
have

E
y,y′∼µ

[
hπ(y, y

′)I(y, y′)
]

= E
y,y′∼µ

[(
πy − πy′ + πR

y′ − πR
y

)
I(y, y′)

]
= E

y∼µ

[(
πy − πR

y

)
E

y′∼µ
[I(y, y′) | y]

]
+ E

y′∼µ

[(
− πy′ + πR

y′

)
E

y∼µ
[I(y, y′) | y′]

]
= E

y,y′∼µ

[
πypy − πy′(1− py′) + πR

y′(1− py′)− πR
y py

]
= E

y,y′∼µ

[
(2py − 1)πy − (2py − 1)πR

y

]
,

where we use the fact that Ey′∼µ I(y, y
′) = py and

Ey∼µ I(y, y
′) = 1− py′ . This demonstrates equality of

the losses, as required.

We now discuss how to approximate the loss in Equa-
tion (16) with an empirical dataset. As in our ear-
lier discussion, the empirical dataset D takes the form
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(yw,i, yl,i)
N
i=i. Note that each datapoint (yw,i, yl,i) con-

tributes two terms to an empirical approximation of
Equation (16), with (y, y′, I(y, y′)) = (yw,i, yl,i, 1), and
also (y, y′, I(y, y′)) = (yl,i, yw,i, 0). This symmetry is
important to exploit, and leads to a reduction in the
variance of the loss. The overall empirical loss is there-
fore given by

1

2
E

(yw,yl)∼D

[
(hπ(yw, yl)− τ−1)2 + hπ(yl, yw)

2
]
=

1

2
E

(yw,yl)∼D

[
(hπ(yw, yl)− τ−1)2 + hπ(yw, yl)

2
]
,

which up to a constant equals:

E
(yw,yl)∼D

[(
hπ(yw, yl)−

τ−1

2

)2
]
. (17)

This simplified form of the loss provides some valu-
able insights on the way in which IPO optimizes
the policy π: IPO learns from preferences dataset
simply by regressing the gap between log-likelihood
ratios log(π(yw)/π(yl)) and log(πref(yw)/πref(yl)) to
τ−1

2 . So the weaker the regularisation becomes, the
higher would be the log-likelihood ratio of yw to yl.
In other words IPO, unlike DPO, always regularizes
its solution towards πref by controlling the gap be-
tween the log-likelihood ratios log(π(yw)/π(yl)) and
log(πref(yw)/πref(yl)), thus avoiding the over-fitting to
the preference dataset. We summarize the sampled
IPO in Algorithm 1:

Algorithm 1 Sampled IPO

Require: Dataset D of prompts, preferred and dis-
preferred generations x, yw and yl, respectively. A
reference policy πref

1: Define

hπ(y, y
′, x) = log

(
π(y|x)πref(y

′|x)
π(y′|x)πref(y|x)

)
2: Starting from π = πref minimize

E
(yw,yl,x)∼D

(
hπ(yw, yl, x)−

τ−1

2

)2

.

5.3 Illustrative Examples

To illustrate the qualitative difference between our al-
gorithm and DPO we will consider a few simple cases.
For simplicity we assume there is no context x, i.e., we
are in the bandit setting.

5.3.1 Asymptotic Setting

We first consider the simple case where we have 2 ac-
tions only, y1 and y2, and a deterministic preference
between them: p∗(y1 ≻ y2) = 1. Suppose we start
with a uniform πref and µ. We know from Section
4.2 that DPO will converge to the deterministic policy
π∗(y1) = 1, π∗(y2) = 0 regardless of the value of τ .
Thus even when the regularisation coefficient τ is very
large, this is very different from the uniform πref.

Now, let us derive the optimal policy for IPO. We have
p∗(y1 ≻ µ) = 3/4 and p∗(y2 ≻ µ) = 1/4. Plug-
ging this into equation (9) with Ψ = I we get that

π∗(y1) = exp(0.75τ−1)
exp(0.75τ−1)+exp(0.25τ−1) = σ(0.5τ−1), and

π∗(y2) = σ(−0.5τ−1), where σ is the sigmoid func-
tion. Hence we see that if we have large regularisation
as τ → +∞, then π∗ converges to the uniform policy
πref, and on the flip side as τ → +0, then π∗(y1) → 1
and π∗(y2) → 0, which is the deterministic optimal
policy. The regularisation parameter τ can now actu-
ally be used to control how close to πref we are.

5.4 Sampled Preferences

So far we relied on the closed-form optimal policy from
Eq. (9) to study DPO and IPO’s stability, but this equa-
tion is not applicable to more complex settings where
we only have access to sampled preference instead of
p⋆. We can still however find accurate approximations
of the optimal policy by choosing a parametrisation πθ

and optimize θ with an empirical loss over a dataset
and iterative gradient-based updates. We will use this
approach to show two non-asymptotic examples where
DPO over-fits the dataset of preferences and ignore πref:
when one action y wins against all others DPO pushes
πθ(y) to 1 regardless of τ , and conversely when one ac-
tion y never wins against the others DPO pushes πθ(y)
to 0 again regardless of τ . In the same scenarios, IPO
does not converge to these degenerate solutions but
instead remains close to πref based on the strength of
the regularisation τ .

For both scenarios we consider a discrete space Y =
{ya, yb, yc} with 3 actions, and select a dataset of pairs
D = {(yw,i, yl,j)}. Given D, we leverage the empiri-
cal losses from Eq. 4 and Eq. 13 to find DPO’s and
IPO’s optimal policy. We encode policies as πθ(yi) =
softmax(θ)i using a vector θ ∈ R3, and optimize them
for 18000 steps using Adam (Kingma and Ba, 2014)
with learning rate 0.01 and mini-batch size 9. Mini-
batches are constructed using uniform sampling with
replacement from D. Both policies and losses are im-
plemented using the flax Python framework (Brad-
bury et al., 2018; Heek et al., 2023), and the Adam im-
plementation is from optax (Babuschkin et al., 2020).
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Figure 1: Comparison Between the Learning Curves
of Action Probabilities of IPO and DPO for D1

For each set of hyper-parameters we repeat the exper-
iment 10 times with different seeds, and report mean
and 95% confidence intervals. All experiments are ex-
ecuted on a modern cloud virtual machine with 4 cores
and 32GB of ram.

IPO Avoids Greedy Policies For the first exam-
ple we sample each unique action pair once to collect
a dataset D containing 3 observed preferences. Due
to symmetries of pairwise preferences sampling only 3
preferences can results in only two outcomes (up to
permutations of the actions):

D1 = {(ya, yb), (yb, yc), (ya, yc)},
D2 = {(ya, yb), (yb, yc), (yc, ya)},

where we focus onD1, which represent a total ordering,
rather than D2, which represent a cycle. The outcome
of the experiment is reported in Fig. 1 in which, we
report the learning curves for varying values of τ . We
observe that DPO always converges to the deterministic
policy for all values of τ . In other word DPO completely
ignores the reference policy, no matter how strong is
the regularisation term, and converges to the action
which is preferred in the dataset. On the other hand,
IPO prevent the policy from becoming greedy when the
regularisation is strong.

IPO Does not Exclude Actions In the first ex-
ample DPO converges to a deterministic policy because
one action strictly dominates all others and the loss
continues to push up its likelihood until it saturates.
The opposite effect happens for the logical opposite

Figure 2: Comparison Between the Learning Curves
of Action Probabilities of IPO and DPO for D3

condition, i.e., when one action does not have at least
a victory in the dataset DPO will sets its probability to
0 regardless of τ . While this is less disruptive than
the first example (a single probability is perturbed
whereas previously the whole policy was warped by
an over-achieving action) it is also much more com-
mon in real-world data. In particular, whenever the
action space is large but the dataset small, some ac-
tions will necessarily be sampled rarely or only once,
making it likely to never observe a victory. Especially
because we do not have data on their performance π
should stick close to πref for safety, but DPO’s objective
does not promote this.

In the final example the dataset consists of two ob-
served preferences D3 = {(ya, yb), (yb, ya)} and leave
the pair (ya, yc) completely unobserved. We compute
solutions using Adam once again, and report the re-
sults in Fig. 2 for varying values of τ . We observe again
here that DPO ignores the prior πref completely, no mat-
ter how strong we regularize the objective, whereas
IPO gradually decreases the probability of unobserved
action with τ .

6 Conclusion and Future Work

We presented a unified objective, called ΨPO, for learn-
ing from preferences. It unifies RLHF and DPO methods.
In addition, we introduced a particular case of ΨPO,
called IPO, that allows to learn directly from prefer-
ences without a reward modelling stage and without
relying on the Bradley-Terry modelisation assumption
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that assumes that pairwise preferences can be substi-
tuted with pointwise rewards. This is important be-
cause it allows to avoid the overfitting problem. This
theoretical contribution is only useful in practice if an
empirical sampled loss function can be derived. This
is what we have done in Sec 5 where we show that
IPO can be formulated as a root-finding problem from
which an empirical sampled loss function can be de-
rived. The IPO loss function is simple, easy to im-
plement and theoretically justified. Finally, in Sec. 5.3
and Sec. 5.4, we provide illustrative examples where we
highlight the instabilities of DPO when the preferences
are fully-known as well as when they are sampled.
Those minimal experiments are sufficient to prove that
IPO is better suited to learn from sampled preferences
than DPO. Future works should scale those experiments
to more complex settings such as training language
models on human preferences data.
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APPENDICES

A Proofs

A.1 Existence and uniqueness of the regularized argmaximum

For completeness, we briefly recall the proof of existence and uniqueness of the argmaximum of the following
regularized criterion that can also be found in the work of Rafailov et al. (2023):

Lτ (δ) = Es∈δ[f(s)]− τKL(δ || η),

=
∑
s∈S

δ(s)f(s)− τKL(δ || η),

where S is a finite set, f ∈ RS a function mapping elements of S to real numbers, τ ∈ R∗
+ a strictly positive real

number, δ ∈ ∆S and η ∈ ∆S are discrete probability distributions over S. In particular, we recall that a discrete
probability distribution δ ∈ ∆S can be identified as a positive real function δ ∈ RS

+ verifying:∑
s∈S

δ(s) = 1.

Now, if we define the softmax probability δ∗ ∈ ∆S as:

∀s ∈ S, δ∗(s) = η(s) exp(τ−1f(s))∑
s′∈S η(s′) exp(τ−1f(s′))

,

then, under the previous definitions, we have the following result:

δ∗ = argmax
δ∈∆S

Lτ (δ)

Proof.

Lτ (δ)

τ
=
∑
s∈S

δ(s)
f(s)

τ
−KL(δ || η),

=
∑
s∈S

δ(s)
f(s)

τ
−
∑
s∈S

δ(s) log
( δ(s)
η(s)

)
,

=
∑
s∈S

δ(s)
(f(s)

τ
− log

( δ(s)
η(s)

))
,

=
∑
s∈S

δ(s)
(
log
(
exp(τ−1f(s))

)
− log

( δ(s)
η(s)

))
,

=
∑
s∈S

δ(s)
(
log
(η(s) exp(τ−1f(s))

δ(s)

))
,

=
∑
s∈S

δ(s)
(
log
(η(s) exp(τ−1f(s))

∑
s′∈S η(s′) exp(τ−1f(s′))∑
s′∈S η(s′) exp(τ−1f(s′))

δ(s)

))
,

=
∑
s∈S

δ(s)
(
log
( η(s) exp(τ−1f(s))∑

s′∈S η(s′) exp(τ−1f(s′))

δ(s)

))
+
∑
s∈S

δ(s) log
( ∑
s′∈S

η(s′) exp(τ−1f(s′))
)
,

=
∑
s∈S

δ(s)
(
log
(δ∗(s)
δ(s)

))
+ log

( ∑
s′∈S

η(s′) exp(τ−1f(s′))
)
,

= −KL(δ || δ∗) + log
( ∑
s′∈S

η(s′) exp(τ−1f(s′))
)
.
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By definition of the KL, we now that δ∗ = argmaxδ∈∆S

[
−KL(δ || δ∗)

]
and as:

−KL(δ || δ∗) = Lτ (δ)

τ
− log

( ∑
s′∈S

η(s′) exp(τ−1f(s′))
)

where log
(∑

s′∈S η(s′) exp(τ−1f(s′))
)
is a constant (does not depend on δ) and τ a positive multiplicative term,

then −KL(δ || δ∗) and Lτ (δ) share the same argmaximum. This concludes the proof.

A.2 Non-uniqueness when Supp(π(·)) ̸= Supp(µ):

Notice that if we search for a solution where the support of π is strictly larger than that of µ then there could
be multiple solutions. Let us illustrate this case with a simple example. Consider a single state x and 3 actions
y1, y2, y3. The reference policy πref is uniform over {y1, y2, y3} and the policy µ assigns a probability 1/2 to both
y1 and y2 and 0 probability to y3.

Thus the loss is L(π) = 2
(
τ−1

(
p∗(y1 ≻ µ) − p∗(y2 ≻ µ)

)
− log π(y1)

π(y2)

)2
. We deduce that any policy π =

(p, q, 1− p− q) such that p
q = eτ

−1(p∗(y1≻µ)−p∗(y2≻µ)) is a global minimum of L(π).

In particular there are an infinity of solutions different from the optimal solution π∗. The problem comes from
the fact that when the support of µ does not cover the whole action space there are not enough constraints to
uniquely characterize π∗. Assuming that the supports of πref and µ coincide enables us to recover uniqueness of
the solution, as proven in Theorem 2.

B Additional results

In this section, we show the equivalence of DPO and RLHF, regardless of whether the preference model p∗ corre-
sponds to a Bradley-Terry model. Note that the assumption of the existence of a minimizer is to exclude cases
where the loss is minimized by taking the rewards of certain actions to +/−∞.

Proposition 4. Consider a preference model p∗ such that there exists a minimizer to the Bradley-Terry loss

argmin
r

− E
x∼ρ

y∼µ(·|x)
y′∼µ(·|x)

[p∗(y ≻ y′|x) log σ(r(x, y)− r(x, y′))] .

Then, the optimal policy for the DPO objective in Equation (4) and for the RLHF objective in Equation (3) with
reward model given as the minimizer to the Bradley-Terry loss above are identical, regardless of whether or not
p∗ corresponds to a Bradley-Terry preference model.

Proof. Recall that the optimal policy π∗
r for a given reward function r for the objective in Equation (3) is given

by π∗
r (y|x) ∝ πref(y|x) exp(τ−1r(x, y)). It therefore follows that

− E
x∼ρ

y,y′∼µ(·|x)

[p(y ≻ y′|x) log σ(r(x, y)− r(x, y′))]

=− E
x∼ρ

y,y′∼µ(·|x)

[
p(y ≻ y′|x) log σ

(
τ log

(
π∗
r (y|x)

π∗
r (y

′|x)

)
− τ log

(
πref(y|x)
πref(y′|x)

))]
.

In words, the value of the Bradley-Terry reward objective for r is the value of the DPO objective for π∗
r . We recall

also that the map r 7→ π∗
r is surjective.

Now, suppose r is optimal for the Bradley-Terry reward objective, meaning that π∗
r is optimal for the RLHF

objective. If π∗
r is not optimal for the DPO objective, then there exists another policy π′ that obtains a strictly

lower value for the DPO loss. But then there exists a reward function r′ such that π′ = π∗
r′ , such as r′(x, y) =

τ log(π′(y|x)/πref(y|x)), and this r′ therefore obtains a lower Bradley-Terry loss than r, a contradiction.

Similarly, if π∗ is optimal for the DPO objective, the corresponding reward function r(x, y) =
τ log(π∗(y|x)/πref(y|x)) must be optimal for the Bradley-Terry reward loss. The corresponding optimizer for the
RLHF objective is then given by π(y|x) ∝ πref(y|x) exp(τ−1τ log(π∗(y|x)/πref(y|x))) = π∗(y|x), as required.
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